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Abstract 

Carbon fiber reinforced polymers (CFRPs) can match or exceed the stiffness properties of steel 

or aluminum with nearly half the weight.  Therefore, the desire to replace steel and aluminum is 

growing in order to make more fuel efficient vehicles.  One drawback of CFRPs is that they 

require more complex techniques to model them in commercial finite element software.  Two 

software packages that are widely used in industry are ANSYS and Abaqus, therefore, 

techniques to model composites need to be investigated using each of these software packages.  

To determine their abilities, a tension test of a CFRP coupon will be constructed.  The coupon 

will be a 2 inch by 5 inch composite laminate that will be modeled with three different lay-up 

patterns.  The modeled specimens will be subjected to a 5000 pound force in the global y 

direction.  FEA solutions returned from ANSYS and Abaqus are then compared to each other 

and verified using current laminate theory.  Following the verification, the discussed modeling 

techniques will be applied to more complex geometries, such as a holed specimen and a notched 

specimen.  The modeling techniques add to the knowledge base of composite modeling and 

show how results from ANSYS and Abaqus compare to each other. 
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1. Introduction 

The definition of a composite material is very flexible, but in the most general terms it is a 

material that is composed of two or more distinct constituents.  The use of composite materials in 

engineering applications dates back to the ancient Egyptians and their use of straw in clay to 

construct buildings (Swanson, 1997).  In modern times composites have been used in civil 

engineering applications, aerospace engineering applications, and many places in between.  For 

example, the automotive industry introduced large-scale use of composites with the Chevrolet 

Corvette (Staab, 1999).  The relative importance of composite development compared to other 

engineering materials can be seen in Figure 1. 

 

Figure 1: Relative importance of material development through history (Staab, 1999) 

Automotive applications of composite materials, particularly carbon fiber reinforced polymers 

(CFRPs), began with high performance vehicles.  CFRPs were used to replace body panels, floor 

panels, wheel housings, and hoods.  This was done to reduce the weight of these vehicles in 
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order to increase their acceleration and speed on the race track.  The high cost of CFRPs has 

limited their use to high performance and racing vehicles.  The increase in fuel costs and the 

growing movement to reduce harmful emissions is pushing automobile companies to reduce the 

weight of their vehicles in order to increase the fuel economy.  A 10 percent reduction of vehicle 

mass can increase a vehicles gas mileage by up to 7 percent (Unknown, 2008).  Therefore, the 

high strength-to-weight ratios of CFRPs is being sought to decrease the weight of the common 

vehicle.  A comparison of the strength-to-weight ratio properties of CFRPs to other materials can 

be seen in Figure 2 and Figure 3. 

Replacing car parts with CFRPs poses some problems to engineers.  CFRP components are not 

as simple to model as traditional engineering materials (steel, aluminum, etc.).  First of all, 

composite materials generally do not behave in an isotropic manner.  Composite materials, such 

as CFRPs, behave in an anisotropic or orthotropic manor.  Anisotropic and orthotropic 

mechanical behaviors are difficult to predict compared to isotropic behaviors. Therefore, finite 

element analysis (FEA) packages must use more complex material models to predict these 

behaviors.  High performance composite components are made by bonding multiple plies of 

unidirectional plies into a 3D laminate part.   
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Figure 2: Envelopes comparing the Young’s modulus, E, vs. density, ρ, of various engineering materials (Ashby, 2005) 

 

Figure 3: Envelopes comparing the strength, σf, vs. density, ρ, of various engineering materials (Ashby, 2005) 
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1.1 Focus of Thesis 

The finite element method (FEM) is used to predict multiple types of static and dynamic 

structural responses.  For example, companies in the automotive industry use it to predict, stress, 

strain, deformations, and failure of many different types of components.  FEA reduces the need 

for costly experiments and allows engineers to optimize parts before they are built and 

implemented.  There are many software packages available to industries that use FEA.  A list of 

some of these commercial packages can be seen in Table 1. 

Table 1: Commercially available FEA software (Miracle & Donaldson, 2001) 

 

The focus of the thesis is to compare the composite analysis abilities of ANSYS and Abaqus.  

The comparison will be completed by modeling composite laminates of different orientations.  

Out of the packages listed above, ANSYS and Abaqus were selected due to their availability at 

The Ohio State University and their wide usage in industry and research.  
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1.2 Significance of Research 

Composite materials have very different structural responses than traditional materials.  This is 

mainly due to their anisotropic and orthotropic elastic behavior.  Therefore, for an engineer to 

properly design a composite he/she must understand how to construct a model in FEA software.  

A fundamental understanding of composite modeling will allow engineers to design car parts 

that match or exceed the performance of steel or aluminum parts.  The stronger and lighter parts 

will lead to safer more fuel efficient vehicles.  This research will provide insight on the 

differences between ANSYS and Abaqus along with a fundamental understanding of creating 

composite models. 

1.3 Overview of Thesis 

This thesis has 5 chapters.  Chapter 2 consists of a discussion on the theory behind lamina 

analysis.  The theoretical discussion will focus on the theory used to construct a MATLAB code 

used to verify the FEA results.  Chapter 3 will discuss the setup of the FEA models in ANSYS 

and Abaqus.  It will discuss the tests that were modeled, the material models used, element types, 

and the unique attributes of each FEA package.  The results from the simulations and theoretical 

calculations will be compared to each other in Chapter 4.  ANSYS will then be used to simulate 

a holed and notched tension specimen in chapter 5.  Then in the final chapter conclusions will be 

drawn, contributions will be discussed, applications will be described, and future work will be 

proposed.  The thesis will also be briefly summarized in order to reiterate the big picture of the 

research. 
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2. Laminate Analysis 

Laminated composite materials are much more difficult to analyze compared to traditional 

materials.  This is due to the fact that the mechanical response of a composite material is 

dependent on the direction of loading and they tend to react in an anisotropic or orthotropic 

manner.  In order to analyze the mechanical response of a laminate, the behavior of each 

individual ply must be predicted (Staab, 1999).  To do so, assumptions were made and theories 

were derived. 

The first assumption is that the material is perfect.  For a laminate, in this context, perfect 

describes a ply that is free of defects, a single ply consists of a single layer of fibers, and that the 

fiber arrangement is uniform.  A simple depiction of the fiber distribution in an actual ply 

compared to the modeled ply can be seen in Figure 4.  The perfect arrangement of fibers also 

allows the material to be modeled as an orthotropic material. 

 

Figure 4: Schematic of actual and modeled lamina (Staab, 1999) 
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Laminate theories were used in order to validate tension tests simulated using FEA.  These 

theories calculate the stress across the thickness of each ply of the laminate.  The theory will be 

discussed in the following text. 

2.1 Theoretical laminate analysis 

For the discussion subscripts 1, 2, and 3 will represent principal fiber direction, in-plane 

direction perpendicular to the fibers, and out-of-plane direction perpendicular to the fibers.  

These numbers also represent the principal axes of the orthotropic material behavior.  These axes 

can also be seen in Figure 4. 

For the analysis throughout this section the lamina will be analyzed using plane stress conditions.  

Assuming plane stress conditions reduces the level of complexity of the analysis because the 

model is reduced from three dimensional to two dimensional.  Therefore, this analysis is only 

concerned with the material properties in principal directions 1 and 2.  To predict the axial stress 

in a lamina   ,   ,    , and     must be provided for the material in question.  The number of 

plies, their thickness, width, and orientation must also be provided.   

To initiate the stress calculations, the provided material properties can be used to calculate    .  

This Poisson’s ratio was calculated using the following equation (Staab, 1999). 

       
  
  

 

The provided moduli and Poisson’s ratios can be used to construct a stiffness matrix.  The 

stiffness matrix for plane stress conditions can be seen in the matrix below (Staab, 1999). 
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In this matrix the individual terms are 

    
  

        
 

    
  

        
 

    
     

        
 

     
        

 

        

This stiffness matrix was calculated for each ply of the lamina.  The matrix was constructed 

relative to the orientation of each individual ply.  The orientation of the fibers in each ply as they 

relate to the global coordinate system can be seen in Figure 5. 

 

Figure 5: Sign convention of positive and negative fiber orientations (Staab, 1999) 
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The stiffness matrix for each of the plies has to be transformed into the global coordinate system 

in order to obtain the stresses in the global directions.  This transformation will formulate a new 

stiffness matrix, seen below (Staab, 1999). 

[ ̅]  [

 ̅   ̅   ̅  
 ̅   ̅   ̅  
 ̅   ̅   ̅  

] 

In the converted stiffness matrix the individual terms are (             ) 

 ̅       
   (        ) 

        
  

 ̅   (            ) 
       ( 

    ) 

 ̅         
      

   (        )  ( 
    ) 

 ̅       
   (        ) 

        
  

 ̅         
      

   (        )  ( 
    ) 

 ̅   (            ) 
       ( 

    )  

The [ ̅] matrices for each of the different plies are then added together.  This summed matrix 

will be represented by [ ̅]     .  The total matrix can be used to predict the strain that is caused 

by an applied tensile stress.  This calculation can be seen in the equation below. 

[

  
  
  
]   [ ̅]     

  [
  
  
  

] 
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The stress throughout the lamina can then be predicted using the following relation (Staab, 

1999). 

{

  
  
   
}  [

 ̅   ̅   ̅  
 ̅   ̅   ̅  
 ̅   ̅   ̅  

] {

  
  
  
} 

2.2 Laminate analysis using ANSYS 

Within ANSYS there are many different elements that can be used to model composite lay ups.  

The element types used by ANSYS are referred to as finite strain shell elements, 3D layered 

structural solid shell elements, and 3D layered structural solid elements.  There are a variety of 

specific elements associated with each element type.  Specific element selection depends upon 

application and the type of results that must be calculated (Anonymous_2, 2009).  Different 

finite strain shell elements can be chosen depending on the number of composite layers, the 

thickness of each layer, and the expected magnitude of the displacements/rotations of the model.  

Selection of 3D layered structural solid elements is based upon the geometry of the structure 

being modeled.  Structures with through the thickness discontinuities or that have a wide range 

of shell thicknesses within the part should be modeled using 3D layered structural shell elements.  

The most complex of the previously stated element types is the 3D layered structural element.  

This element type should be selected to model exotic 3D geometries.  This element type should 

also be selected if information about plasticity, hyperelasticity, stress stiffening, creep, large 

deflections, and large strains is desired.  A list of specific elements and their elements types can 

be seen in Table 2. 
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Table 2: ANSYS elements that can be used for composite analysis (Anonymous_2, 2009) 

Element 

Name 

Element Type Description 

SHELL181 Finite Strain 

Shell 

A 4-node 3-D shell element with 6 degrees of freedom at each node. The element has full 

nonlinear capabilities including large strain and allows 255 layers. 

SHELL281  Finite Strain 
Shell 

An 8-node element with six degrees of freedom at each node. The element is suitable for 
analyzing thin to moderately-thick shell structures and is appropriate for linear, large rotation, 
and/or large strain nonlinear applications. 

SOLSH190 3-D Layered 
Structural 
Solid Shell 

An 8-node 3-D solid shell element with three degrees of freedom per node (UX, UY, UZ). The 
element can be used for simulating shell structures with a wide range of thickness (from thin to 
moderately thick). The element has full nonlinear capabilities including large strain and allows 
250 layers for modeling laminated shells. 

SOLID185 3-D Layered 
Structural 
Solid Element 

A 3-D 8-Node Layered Solid used for 3-D modeling of solid structures. It is defined by eight 
nodes having three degrees of freedom at each node: translations in the nodal x, y, and z 
directions. The element has plasticity, hyperelasticity, stress stiffening, creep, large deflection, 
and large strain capabilities. It also has mixed formulation capability for simulating 
deformations of nearly incompressible elastoplastic materials, and fully incompressible 
hyperelastic materials. The element allows for prism and tetrahedral degenerations when used 
in irregular regions.  

SHELL63 Shell This 4-node shell element can be used for rough, approximate studies of sandwich shell 

models. A typical application would be a polymer between two metal plates, where the bending 
stiffness of the polymer would be small relative to the bending stiffness of the metal plates. The 
bending stiffness can be adjusted by the real constant RMI to represent the bending stiffness 
due to the metal plates, and distances from the middle surface to extreme fibers (real constants 
CTOP, CBOT) can be used to obtain output stress estimates on the outer surfaces of the 
sandwich shell.  

 

2.3 Laminate analysis using Abaqus 

As mentioned earlier, the Abaqus FEA package also provides built in composite modeling 

capabilities.  Abaqus allows the user to define composite layups for three types of elements.  

These element types are referred to as continuum shell elements, conventional shell elements, 

and solid elements.  Abaqus also has an extensive list of solid 3-D elements that are described in 

chapter 23.1.4 of the Abaqus documentation.  When analyzing composites the Abaqus user 

should only use solid elements when the transverse shear effects are predominant, when the 

normal stress cannot be ignored, and when accurate interlamintate stresses are desired.  Like 

ANSYS, the type of element that should be used to model a component is based on the 

component’s geometry and the results desired.  The element type selection process in Abaqus 

follows the same criterion as ANSYS.  Like ANSYS, Abaqus offers a GUI that is used to define 
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the properties of a layered composite structure.  This GUI is referred to as the composite layup 

editor.  The composite layup editor provides a table that the user can use to define the plies in the 

layup (Anonymous, 2008).  This table can be used to assign a name, material, thickness, and 

orientation to each ply.  The ply table also provides several options that make it easier for the 

user to create a layered composite containing many plies.  These options include; the ability to 

move or copy selected plies up or down in the table, suppress or delete plies,  create patterns with 

a group of selected plies, and read ply data from or write data to an ASCII file.  The ability to 

suppress plies allows the user to easily experiment with different configurations of plies in the 

composite layup and see the effect on the results of an analysis of a model (Anonymous, 2008).  

A list the element types and specific elements names used by Abaqus to analyze composites can 

be seen in Table 3. 

Table 3: ANSYS elements that can be used for composite analysis (Anonymous, 2008) 

Element 

Name 

Element Type Description 

STRI3
(S)

 Conventional Shell 3-node triangular facet thin shell 

S3 Conventional Shell 3-node triangular general-purpose shell, finite membrane strains (identical to element 
S3R) 

S3R Conventional Shell 3-node triangular general-purpose shell, finite membrane strains (identical to element S3) 

S3RS
(E)

 Conventional Shell 3-node triangular shell, small membrane strains 

STRI65
(S)

 Conventional Shell 6-node triangular thin shell, using five degrees of freedom per node 

S4 Conventional Shell 4-node doubly curved general-purpose shell, finite membrane strains 

S4R Conventional Shell 4-node doubly curved general-purpose shell, reduced integration with hourglass control, 
finite membrane strains 

S4RS
(E)

 Conventional Shell 4-node, reduced integration, doubly curved shell with hourglass control, small membrane 
strains 

S4RSW
(E)

 Conventional Shell 4-node, reduced integration, doubly curved shell with hourglass control, small membrane 

strains, warping considered in small-strain formulation 

S4R5
(S)

 Conventional Shell 4-node doubly curved thin shell, reduced integration with hourglass control, using five 
degrees of freedom per node 

S8R
(S)

 Conventional Shell 8-node doubly curved thick shell, reduced integration 

S8R5
(S)

 Conventional Shell 8-node doubly curved thin shell, reduced integration, using five degrees of freedom per 
node 

S9R5
(S)

 Conventional Shell 9-node doubly curved thin shell, reduced integration, using five degrees of freedom per 
node 

SC6R Continuum Shell 6-node triangular in-plane continuum shell wedge, general-purpose, finite membrane 

strains 

SC8R Continuum Shell 8-node hexahedron, general-purpose, finite membrane strains 
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3 Modeling 

The mechanical behavior of laminates was investigated using ANSYS (Canonsburg, PA, USA) 

and Abaqus (Providence, RI, USA).  In each of these packages 3 laminates of different 

orientations were modeled.  The orientations in question are unidirectional, quasi-isotropic, and 

cross-ply.  All of these laminates consisted of seven 0.005 inch thick plies of the same material.  

The layers modeled were intended to simulate a carbon fiber reinforced impregnated tape.  A 

unidirectional orientation can be seen in Figure 6, followed by a quasi-isotropic orientation in 

Figure 7 and a cross-ply in Figure 8.   

 

Figure 6: Unidirectional lay-up 
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Figure 7: Quasi-isotropic lay-up 

 

Figure 8: Cross-ply lay-up 
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Material properties for each ply were prescribed using the properties in Table 4.  This type of 

carbon-fiber composite has a modulus that is roughly 12 times stiffer in the direction of the fibers 

than transverse to the fibers.  Also, the anisotropy effects are less important in shear/Poisson’s 

ratio.  These two phenomena are due to the fact that the fibers are much stiffer than the 

surrounding matrix.   

Table 4: Elastic properties of each ply (Feraboli & Kedward, 2003) 

 

3.1 Meshing and boundary conditions 

Tension tests were simulated in ANSYS and Abaqus in order to examine the stresses throughout 

the thickness of the laminate.  In each of the packages the laminate was meshed as using shell 

elements.  The specific element used in ANSYS is referred to as SHELL281 and the shell 

element in Abaqus is known as S8R.  Each of these elements are 8-node (quadratic) 

quadrilaterals.  Also, each node of these elements has six degrees of freedom.  The shell 

elements were prescribed section properties using the lay-up editors available in both FEA 

packages.  The model geometry consisted of a rectangular plate 2 inches wide by 5 inches tall.    

The element edge sizing was set to 0.25 inch, giving a 20 x 8 mesh consisting of 160 elements.  

This mesh size was arbitrarily selected based on previous FEA experience.  Since the FEA 

results matched the theoretical results, the mesh sizing was not adjusted.  It is likely that the 

mesh size could be significantly reduced while still obtaining the same results.  The model could 
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have also been simplified by applying quarter symmetry.  Since computational cost wasn’t an 

issue for this test the selected mesh size wasn’t adjusted and the entire tension specimen was 

modeled.  For more complex models, where computational cost maybe an issue, it would be 

useful to apply any simplifications that can be justified. 

For the simulation the bottom edge of the test coupon was constrained and a force was applied to 

the top edge.  The line on the bottom of the shell was constrained in the y-direction.  Also, to 

allow for Poisson’s effects and to prevent rigid body motion, the node at the bottom corner was 

constrained in all degrees of freedom.  The force was prescribed to be distributed evenly across 

the top edge of the shell.  To simulate a total force of 5000 pounds, an edge pressure of 2500 

pounds per inch had to be prescribed.  This model is an idealization of a tension test.  In reality 

the grips used to hold the tension coupon would apply more of a constraint in the x direction, 

which would cause the stress near the edge of the part to be non-uniform.  These effects can be 

accounted for by making the tension specimen taller.  This is justified by Saint-Venant’s 

principle.  Also, since the constraints in the model are perfect, the height of the specimen doesn’t 

affect the FEA solution.  An illustration of the previously described boundary conditions and 

forces can be seen in Figure 9. 
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Figure 9: Mesh and applied boundary conditions 

Y 

X 
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4 Simulation Results 

The results discussed in this section were obtained by solving the model shown in Figure 9.  The 

solutions will be divided into sections based on how they were obtained.  The final section of this 

chapter will discuss a summary of the results obtained by FEA and theory. 

4.1 ANSYS Results  

The results discussed in this section were obtained by building the model discussed in chapter 3 

in ANSYS.  Stresses present in each layer of the laminate are displayed in tabular format 

throughout this section.  Stresses in the unidirectional lay-up are listed in Table 5, stresses in the 

quasi-isotropic lay-up are listed in Table 6, and the stresses in the cross-ply lay-up are listed in 

Table 7. 

Table 5: ANSYS stress results throughout each ply of a unidirectional layup 

Unidirectional 

Layer number Stress X (psi) Stress Y (psi) Stress XY (psi) 

One 0 71429 0 

Two 0 71429 0 

Three 0 71429 0 

Four 0 71429 0 

Five 0 71429 0 

Six 0 71429 0 

Seven 0 71429 0 
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Table 6: ANSYS stress results throughout each ply of a quasi-isotropic layup 

Quasi-isotropic 

Layer number Stress X psi Stress Y psi Stress XY psi 

One -64531 17509 0 

Two 32285 58885 36870 

Three 32285 58885 -36870 

Four -79.242 229440 0 

Five 32285 58885 -36870 

Six 32285 58885 36870 

Seven -64531 17509 0 

 

Table 7: ANSYS stress results throughout each ply of a cross-ply layup 

Cross-ply 

Layer number Stress X psi Stress Y psi Stress XY psi 

One -2432 12372 0 

Two  3242 150170 0 

Three -2432 12372 0 

Four 3242 150170 0 

Five -2432 12372 0 

Six 3242 150170 0 

Seven -2432 12372 0 

 

4.2 Abaqus Results 

Initially results given by Abaqus appeared to be vastly different from the results given by 

ANSYS.  After more investigation it was discovered that the results from ANSYS were output as 

stresses in the global coordinate directions of each ply and the results output by Abaqus were in 

the local directions of each ply.  These differences were most apparent in the case of the quasi-
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isotropic lay-up.  Results directly from the Abaqus for the quasi-isotropic lay-up can be seen in 

Table 8. 

Table 8: Abaqus stress results throughout each ply of a quasi-isotropic layup (shown in the principal directions) 

Quasi-isotropic 

Layer number Stress 1 psi Stress 2 psi Stress 12 psi 

One -64531 17509 0 

Two 82456 8715 13300 

Three 82456 8715 -13300 

Four 229442 79 0 

Five 82456 8715 -13300 

Six 82456 8715 13300 

Seven -64531 17509 0 

 

Results given by Abaqus were then transformed into the global coordinate system so that they 

could be compared with the ANSYS solutions.  To do so a simple transformation was done.  

This transformation is described by the equations below. 

{

  
  
   
}  [

       
        
          

]

  

{

  
  
   
} 

Where 
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Global stresses for the quasi-isotropic layup were obtained by applying the transformation shown 

above to the data seen in Table 8.  The global results for the quasi-isotropic lay-up can be seen in 

Table 9.  The global results for the cross-ply and unidirectional lay-ups are then seen in Table 10 

and Table 11.  (The Matlab script used to perform these transformations can be found in 

Appendix A.) 

Table 9: Abaqus stress results throughout each ply of a quasi-isotropic layup 

Quasi-isotropic 

Layer number Stress X psi Stress Y psi Stress XY psi 

One -64531 17509 0 

Two 32285 58885 36870 

Three 32285 58885 -36870 

Four -79.242 229440 0 

Five 32285 58885 -36870 

Six 32285 58885 36870 

Seven -64531 17509 0 

 

The stresses obtained from Abaqus, after they were transformed, exactly match the stresses given 

by ANSYS.  Therefore, when modeling laminates under static loads it does not matter if ANSYS 

or Abaqus is used.  It may not matter what package is used but it is important to understand how 

to use each of them properly and to understand how results are output from each package.  
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Table 10: Abaqus stress results throughout each ply of a unidirectional layup 

Unidirectional 

Layer number Stress X psi Stress Y psi Stress XY psi 
One 0 71429 0 

Two 0 71429 0 

Three 0 71429 0 

Four 0 71429 0 

Five 0 71429 0 

Six 0 71429 0 

Seven 0 71429 0 
Table 11: Abaqus stress results throughout each ply of a cross-ply layup 

 

Cross-ply 

Layer number Stress X psi Stress Y psi Stress XY psi 

One -2432 12372 0 

Two  3242 150170 0 

Three -2432 12372 0 

Four 3242 150170 0 

Five -2432 12372 0 

Six 3242 150170 0 

Seven -2432 12372 0 

 

4.3 Theoretical Results 

To verify the FEA solutions the theory discussed in chapter 2 was applied to the geometry and 

loading conditions shown in Figure 9.  The results for the three different lay-ups of interest are 

listed in Table 12, Table 13, and Table 14. (The Matlab script used to calculate the theoretical 

results was provided by Brooks Marquette and can be found in Appendix B.) 
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Table 12: Theoretical stress results throughout each ply of a unidirectional layup 

Unidirectional 

Layer number Stress X psi Stress Y psi Stress XY psi 
One 0 71429 0 

Two 0 71429 0 

Three 0 71429 0 

Four 0 71429 0 

Five 0 71429 0 

Six 0 71429 0 

Seven 0 71429 0 

 

It is seen from the stresses listed in the tables throughout this section that theory matches 

solutions returned by FEA.  This is important because it proves that the FEA solutions are 

accurate to laminate theory. 

Table 13: Theoretical stress results throughout each ply of a quasi-isotropic layup 

Quasi-isotropic 

Layer number Stress X psi Stress Y psi Stress XY psi 

One -64531 17509 0 

Two 32285 58885 36870 

Three 32285 58885 -36870 

Four -79.242 229440 0 

Five 32285 58885 -36870 

Six 32285 58885 36870 

Seven -64531 17509 0 
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Table 14: Theoretical stress results throughout each ply of a cross-ply layup 

Cross-ply 

Layer number Stress X psi Stress Y psi Stress XY psi 

One -2432 12372 0 

Two  3242 150170 0 

Three -2432 12372 0 

Four 3242 150170 0 

Five -2432 12372 0 

Six 3242 150170 0 

Seven -2432 12372 0 

4.4 Results Summary 

The results shown throughout the previous three sections of this chapter were reduced to three 

plots of the stresses through the thickness of the laminate.  A plot of the stress through a 

unidirectional layup is seen in Figure 10. 

 

Figure 10: Stresses through the thickness of a unidirectional layup 
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Figure 10 shows that the only stress present throughout the unidirectional lay-up is in the y 

direction.  Stress only exists in the y direction because each layer is oriented perpendicular to the 

direction of loading.  This would also be true if the all of the layers were oriented parallel to the 

direction of loading.  For the tension tests discussed in this document, the only time that stress 

will simultaneously be present in the x, y, and xy directions will be in the multi-directional 

layups.  The plot of the stress through the thickness of a quasi-isotropic lay-up can be seen in 

Figure 11 and for a cross-ply this plot is seen in Figure 12.   

Shear and lateral stresses will never exist in any type of unidirectional layup where the loading is 

parallel or perpendicular to the fiber directions.  This is seen mathematically in the [ ̅] matrix.  If 

the fibers are oriented at 0 or 90 degrees the shear terms,  ̅   and  ̅  , go to zero.  Any other 

case where the fibers aren’t parallel or perpendicular to the loading direction the shear terms 

wouldn’t be zero; therefore, there will be shear stresses through the part. 

The stresses throughout the thickness of a quasi-isotropic lay-up are much more interesting than 

the stresses through a unidirectional lay-up.  As is seen in Figure 11, the stress in the y direction 

of the center ply is much higher than any of the other plies.  This is expected because the center 

ply is oriented with the fibers parallel to the direction of loading.  Since strains are considered to 

be equal in every ply and the center ply is has the highest stiffness in the direction of loading, the 

center ply should therefore have the highest stress.  Figure 11 also shows that the stresses in ply 

1 are equal to stresses in ply 7, stresses in ply 2 are equal to stresses in ply 6, and stresses in ply 3 

are equal to stresses in ply 5.  This symmetry condition can be applied to simplify each of the 

models.  The same symmetry condition is shown by the unidirectional and cross-ply lay-ups. 
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Figure 11: Stresses through the thickness of a quasi-isotropic layup 

 

Figure 12: Stresses through the thickness of a cross-ply layup 
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The stresses seen throughout the thickness of the cross-ply lay-up are also expected.  Since the 

fiber orientations alternate back and forth between being perpendicular and parallel with the 

direction of loading, it is expected the stress in the y direction should go from low to high 

because of the large variation of the stiffness in the direction of loading.  It is also seen that the 

stress in the xy direction is also zero.  This is because the direction of loading is always parallel 

to a principal direction of a respective ply. 

The average stress throughout the thickness of a respective lay-up can also be used to further 

verify the results.  The following equation can be used to check the average stress. 

   
 

 
 

Where, in the case of this simulation 

           

                     

Therefore, 

             

The stress value shown is equal to the average stress in the y direction throughout each 

respective laminate.  The average stresses in the y-direction for each lay-up are shown in Table 

15 
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Table 15: Average stress comparison 

Average Stress in the y-direction 

Unidirectional Quasi-isotropic Cross-ply 

71429 psi 71429 psi 71429 psi 

 

As is seen in the above table, the average stress for each lay-up is equal to 71429 psi.  It is also 

important to note that the stresses in the x and xy directions average to zero for each lay-up.   
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5 Application of FEA to complex geometries 

Since the finite element code has been proved to be accurate to theory it is plausible to begin 

solving tension tests of more complex geometries.  Two more complex geometries are shown 

throughout this chapter; they are a holed specimen and a notched specimen. 

5.1 Hole tension test 

The holed specimen modeled in this section has the same dimensions, constraints, and load as 

the model discussed in chapter 3.  The only differences are, an element edge sizing of 0.05, and a 

one inch diameter hole drilled through its center.  The lay-up for this test was selected as quasi-

isotropic.  An image of the mesh used in ANSYS is shown in Figure 13. 

 

Figure 13: Mesh used for the tension simulation of a holed specimen 
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Solutions for the stresses in the y direction are shown in the following figures.  To simplify the 

problem some of the previously discussed symmetry conditions were accounted for.  Therefore, 

the stresses in layers one and seven are shown in Figure 14, stresses in layers two and six are 

shown in Figure 15, stresses in layers three and five are shown in Figure 16, and the stresses in 

layer four are shown in Figure 17.  The discontinuity in the material causes the stresses to vary 

greatly at all locations throughout a single ply. (All contour plots show the stresses as psi.) 

 

Figure 14: Stress in the y direction in layers 1 and 7 of a holed specimen in tension 
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Figure 15: Stress in the y direction in layers 2 and 6 of a holed specimen in tension 

The contour plots shown for each layer of the holed specimen display some peculiar behaviors.  

In the unidirectional ply shown in Figure 14 it is seen that there are triangular shaped regions 

near the constrained and loaded edges.  These triangular regions contain an average stress 

between 150 ksi and 200 ksi.  Outside of these regions the stress then drops to -18 ksi until it 

begins to increase again in the presence of the hole.  Figure 14 can then be compared to Figure 

17, which is the 90 degree ply.  The 90 degree ply also shows triangular contours at the loaded 

and constrained edges.  Only in these triangles the stress is lower than the regions directly 

outside of the triangle.  The contour shapes in Figure 14 and Figure 17 show similar trends, but 
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the contours are inverted as far as their relative magnitudes.  This should be expected since the 

first ply is loaded perpendicular to the fiber direction and the fourth ply is loaded parallel to the 

fiber direction.  The material has the lowest stiffness in the direction perpendicular to the fibers 

and the highest stiffness parallel to the fibers.  It is also seen, in Figure 15 and Figure 16, that the 

45 degree and -45 degree ply tend to transfer the stress at an angle.  This should also be expected 

because the orthotropic material properties. 

 

Figure 16: Stress in the y direction in layers 3 and 5 of a holed specimen in tension 
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Figure 17: Stress in the y direction in layer 4 of a holed specimen in tension 

5.2 Notch tension test 

The notched specimen modeled in this section has the same dimensions, constraints, and load as 

the model discussed in chapter 3.  The only differences are, an element edge sizing of 0.05, and 

two notches cut out of each side of the specimen.  The lay-up for this test was selected as quasi-

isotropic.  An image of the mesh used in ANSYS is shown in Figure 18. 
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Figure 18: Mesh used for the tension simulation of a notched specimen 

Solutions for the stresses in the y direction are shown in the following figures.  To simplify the 

problem the previously discussed symmetry conditions were accounted for.  Therefore, the 

stresses in layers one and seven are shown in Figure 19, stresses in layers two and six are shown 

in Figure 20, stresses in layers three and five are shown in Figure 21, and the stresses in layer 

four are shown in Figure 22.  The discontinuity in the material causes the stresses to vary greatly 

at all locations throughout a single ply.   
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Figure 19: Stress in the y direction in layers 1 and 7 of a notched specimen in tension 

In the case of the notched specimen it is also important to note that the stress concentration at the 

point of the notch is artificial.  This is because in reality there is no such thing as perfectly sharp 

edge, which is what the FEA software sees the notch point as.  To combat this problem, in the 

future, a slight radius will be added to the notch point.  With the added radius the mesh will also 

be refined in the region of the notch in order to capture the high stress gradient that is occurring 

in this region.  With mesh refinement an artificial stress concentration may still be present.  Its 

presence will be obvious because the stress magnitude will trend to infinity as the mesh becomes 

finer.  If this is the case the surrounding stress values should be used as the maximum stress.  
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Figure 20: Stress in the y direction in layers 2 and 6 of a notched specimen in tension 
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Figure 21: Stress in the y direction in layers 3 and 5 of a notched specimen in tension 
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Figure 22: Stress in the y direction in layer 4 of a notched specimen in tension 
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6 Conclusions 

The purpose of the research discussed throughout this thesis was to investigate and determine the 

composite modeling capabilities of commercial FEA software.  The selected software packages 

were ANSYS and Abaqus, chosen because of their availability at The Ohio State University.  

The research provided insight on the mechanical responses orthotropic material and how to 

properly construct FEA models of CFRPs in each of the aforementioned software packages. 

6.1 Contributions 

This research will help add to the knowledge base of FEA of composite materials.  It proves that 

FEA is accurate to current laminate theory and the results are independent of the software 

package used to obtain them.  Therefore, only one software package can be selected based on 

ease of use instead of its accuracy. 

6.2 Additional Applications 

The approach discussed for modeling composites is applicable to many situations.  It could be 

applied to geometries like the ones discussed in chapter 5.  This approach is also not limited to 

tension tests.  Samples that under go transverse loads can also be modeled quite easily using 

these methods.   

Three dimensional parts can also be modeled using shell sections.  For example the shell sections 

can be applied to an airplane fuselage, a wing, body panels on automobiles, automobile hoods, 

etc.  As long as the part is thin enough it can be meshed using shells.  
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6.3 Future Work 

Modeling composite materials is more difficult than modeling traditional materials.  Therefore, 

predicting the point at which a CFRP will fail is also more difficult.  ANSYS and Abaqus do 

have built in failure theories that can be used with the shell sections, but they will not show any 

detail about the failure.  For example, one type of failure of a composite laminate is known as 

delamination.  Delamination occurs when the plies of the laminate begin to separate from each 

other.  Shell sections would not be able to accurately predict this type of failure because they are 

not detailed enough to show how the plies will interact with each other.  To model this type of 

failure another method must be used.  Since part of the future work will be predicting a failure of 

a CFRP it will be important to learn how to model delamination. 

Knowledge gained form this project will also be used to create models that attempt to match 

experimental tests.  Matching experimental test results would help further validate FEA and help 

develop more accurate techniques of modeling composites.  This knowledge could then be used 

to optimize the design process of composite parts. 

6.4 Summary 

This project has investigated and compared the modeling capabilities of ANSYS and Abaqus, 

compared the mechanical reactions of three different lay-up patterns, and verified all of this with 

current laminate theory.  Following verification the discussed techniques were applied to 

simulate tension tests of a holed and notched specimen.  The modeling techniques discussed 

throughout this document increase the knowledge base of modeling composite materials and can 

be implemented to help verify experimental tests and design parts for aircraft or automobiles. 
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Appendix A 

clc 
clear all 
close all 
format long 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%laminate information 
%theta=[0;0;0;0;0;0;0];%uni-directional 
theta=[0;45;-45;90;-45;45;0];%quasi-isotropic 
%theta=[0;90;0;90;0;90;0];%cross-ply 
ply_thickness=0.005; 
number_of_plys=length(theta); 
ply_thickness=ply_thickness*ones(number_of_plys,1); 
width=2; 
%material properties 
E_1=18e6; 
E_2=1.5e6; 
G_12=0.8e6; 
v_12=0.3; 
%loading 
N=[0;5000;0]/width; 
M=[0;0;0]/width; 
%Maximum tensile stress values 
X=2723e6; 
Y=111e6; 
S=68e6; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%creating the Q matrix 
v_21=E_2*v_12/E_1; 
Q11=E_1/(1-v_12*v_21); 
Q22=E_2/(1-v_12*v_21); 
Q12=v_12*E_2/(1-v_12*v_21); 
Q66=G_12; 
Q=[Q11,Q12,0;Q12,Q22,0;0,0,Q66]; 
m=cosd(theta); 
n=sind(theta); 
h=sum(ply_thickness); 
A=zeros(3,3); 
B=zeros(3,3); 
D=zeros(3,3); 
z(1,:)=(-h/2)+ply_thickness(1)/2; 
for i=2:number_of_plys 
    z(i,:)=z(i-1)+ply_thickness(i-1)/2+ply_thickness(i)/2; 
end 
for i=1:number_of_plys 

     
    T_strain(:,:,i)=[m(i)^2,n(i)^2,m(i)*n(i); 
                     n(i)^2,m(i)^2,-m(i)*n(i); 
                    -2*m(i)*n(i),2*m(i)*n(i),m(i)^2-n(i)^2]; 

     
    T_stress(:,:,i)=[m(i)^2,n(i)^2,2*m(i)*n(i); 
                     n(i)^2,m(i)^2,-2*m(i)*n(i); 



51 

 

                    -m(i)*n(i),m(i)*n(i),m(i)^2-n(i)^2]; 

     
    Q_bar(:,:,i)=inv(T_stress(:,:,i))*Q*T_strain(:,:,i); 

     
    A=A+Q_bar(:,:,i)*ply_thickness(i); 
    B=B+Q_bar(:,:,i)*(ply_thickness(i)*z(i)); 
    D=D+Q_bar(:,:,i)*(ply_thickness(i)*z(i)^2+ply_thickness(i)^3/12); 

  
end  
STRAIN=inv(A)*N; 
KAPPA=inv(D)*M; 
for i=1:number_of_plys 
    sig_g(:,i)=Q_bar(:,:,i)*STRAIN; 
    sig_p(:,i)=T_stress(:,:,i)*sig_g(:,i); 
end 
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Appendix B 
%Undergraduate Thesis 
%Code Provided By Brooks Marquette 
%Modified by Brice Willis 
%7 ply tesion test 
%uni-directional 
clc 
clear all 
close all 
%inputs start 
%please enter the following values specific to the lamina of interest 
tply=0.005; %ply thickness 
Plynumber=7;%number of plys 
tply=tply*ones(Plynumber,1);%Will need to specify individual plies if 

different thickness 
%enter the orientation of each ply in order from 1 to n 
%theta=[90;90;90;90;90;90;90]; 
%theta=[0;0;0;0;0;0;0]*pi/180;%uni-directional 
theta=[0;45;-45;90;-45;45;0]*pi/180;%quasi-isotropic 
%theta=[0;90;0;90;0;90;0]*pi/180;%cross-ply 
%elastic parameters taken from Feraboli 
E1=18e6; 
E2=1.5e6; 
G12=0.8e6; 
%Vf=0.7; 
v12=0.3; 
v21=E2*v12/E1; 
w=2; %Width of sample 
N=[0;5000;0]/w; %Tensile applied Stess 
M=[0;0;0]/w; %Bending Moment Stress 
%inputs end 

  
h=sum(tply); 
A=zeros(3,3); 
B=zeros(3,3); 
D=zeros(3,3); 

  

for i=1:Plynumber 
 m=cos(theta(i)); 
 n=sin(theta(i)); 

  
 z(1,:)=(-h/2)+tply(1)/2; 
  if i>=2 
     z(i,:)=z(i-1)+tply(i-1)/2+tply(i)/2; 
  end 

    
 % To create Q Bar matrix and ABD matrix 

  
Q11=E1/(1-v12*v21); 
Q22=E2/(1-v12*v21); 
Q12=v12*E2/(1-v12*v21); 
Q66=G12; 
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Q11_=Q11*m^4+2*(Q12+2*Q66)*m^2*n^2+Q22*n^4; 
Q12_=(Q11+Q22-4*Q66)*m^2*n^2+Q12*(m^4+n^4); 
Q22_=Q11*n^4+2*(Q12+2*Q66)*m^2*n^2+Q22*m^4; 
Q16_=-Q22*m*n^3+Q11*m^3*n-(Q12+2*Q66)*m*n*(m^2-n^2); 
Q26_=-Q22*n*m^3+Q11*n^3*m-(Q12+2*Q66)*m*n*(m^2-n^2); 
Q66_=(Q11+Q22-2*Q12)*m^2*n^2+Q66*(m^2-n^2)^2; 
Q_(:,:,i)=[Q11_,Q12_,Q16_;Q12_,Q22_,Q26_;Q16_,Q26_,Q66_];  

  
A=A+Q_(:,:,i)*(tply(i)); 
B=B+Q_(:,:,i)*(tply(i)*z(i)); 
D=D+Q_(:,:,i)*(tply(i)*z(i)^2+tply(i)^3/12); 
end 
Aa=inv(A); 
Dd=inv(D); 
STRAIN=Aa*N; 
KAPPA=Dd*M; 
for i=1:Plynumber*2 

     
    if rem(i/2,1)>0 
        zout(i)=z(round(i/2))-tply(round(i/2))/2; 
    else 
        zout(i)=z(round(i/2))+tply(round(i/2))/2; 
    end 
    STRESS(:,i)=Q_(:,:,round(i/2))*(STRAIN+zout(i)*KAPPA); 

     
end 

  
figure(1) 
plot(zout,STRESS,'linewidth',2) 
title('LAMINATE STRESS') 
xlabel('z(in)') 
ylabel('Stress(psi)') 
grid on 
legend('STRESSX','STRESSY','STRESSXY') 
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