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Foreword

These notes are the result of combining two graduate coaasetric Geodesy and Geodetic
Astronomy, taught for many years at Ohio State University to studamtsuing the Master of
Science degree in Geodesy. Since the early 1990s, parts oftwlteseurses have become
irrelevant, anachronistic, and in need of revision. The resulting ¢aurse calledGeometric
Reference Systems, combines the geometrical aspects of terrestrial and tieélesference
systems with an emphasis on modern realizations of these geodetdinate systems. The
adjective,geometric, implies that no attempt is made to introduce the Earth’s griity which
historically (more so than today) formed such an integral paeadetic control. Of course, the
gravity field still holds a prominent place in geodesy andgbigered in other courses. But with
the advent of the Global Positioning System (GPS), it arguably masre specialized role to
play in establishing and realizing our reference systemgictesdt essentially to traditional
vertical control. For this reason, the vertical datum is covered lmjly, since a thorough
understanding (especially with respect to transformationseaet vertical datums) can only be
achieved with a solid background in geopotential modeling.

These notes are fashioned after corresponding texts of the previgges; notably R.H. Rapp’s
lecture notes and P.K. Seidelmann’s supplement to the AstronomitenAt. The present
exposition is largely self-contained, however, and the reader neededatyto these and other
texts in a few instances to obtain an extended discussion. Thefeeence system conventions
recently (2003, 2010) adopted by the International Astronomical Union (lat8) the
International Earth Rotation and Reference Systems Servic&)IE®R/e been added in a way
that emphasizes and illustrates the evolution of referencersystat new satellite and space
observations have wrought. The current (2012) edition of these notesesfhe previous
(2006) edition with several revisions that correct errors or belddrorate some concepts and
that bring the entire content up to date in view of the IERS Conventions of 2010.

Problems are included to help the reader get involved in the densatf the mathematics of
reference systems and to illustrate, in some cases, the numerictd aplee topics.
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Chapter 1

| ntroduction

Geodesy is the science of the measurement and mapping of the Earth’s surface, and being
essentially an application of mathematics it makes use of coordinates and associated reference
systems. The object of this book is to study the various local, regional, and global reference
systems that are in use to describe coordinates of points on the Earth’s surface or in near space
and to relate them to each other as well as to some "absolute” frame, visually, a celestial frame.
Asthe title of the book implies, we deal mostly with the geometry of these systems, although the
physics of the Earth plays a very important part. However, the relevant geophysics and
geodynamics is discussed more comprehensively in other courses on gravimetric geodesy and
geodynamics. Also, we do not treat the mapping of points and their coordinates onto the plane,
that is, map projections. The purpose is mainly to explore the geometric definition of reference
systems and their practical realizations.

To establish coordinates of points requires that we set up a coordinate system with origin,
orientation, and scale defined in such a way that all users have access to these. Only until
recently, the most accessible reference for coordinates from a global perspective was the celestial
sphere of stars that were used primarily for charting and navigation, but also served as a
fundamental system to which other terrestrial coordinate systems could be oriented. Still today,
the celestial reference system is used for that purpose and may be thought of as the ultimate in
reference systems. At the next level, we define coordinate systems attached to the Earth with
various origins (and perhaps different orientations and scale). We thus have two fundamental
tasks before us:

1) to establish an external ("inertial™) coordinate system of our local universe that we
assume remains fixed in the sense of no rotation; and
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2) to establish a coordinate system attached to our rotating and orbiting Earth, and in
so doing to find the rel ationship between these two systems.

In fact, we will develop the terrestrial coordinate system before discussing the celestia
system, since the latter is almost trivial by comparison and the important aspects concern the
transformation between the systems.

1.1 Preliminary Mathematical Relations

Clearly, spherical coordinates and spherical trigonometry are essentia tools for the mathematical
manipulations of coordinates of objects on the celestial sphere. Similarly, for global terrestrial
coordinates, the early map makers used spherical coordinates, although, today, we rarely use
these for terrestrial systems except with justified approximations. It is useful to review the polar
spherical coordinates, according to Figure 1.1, where & is the co-latitude (angle from the pole),
A is the longitude (angle from the x-axis), and r isradial distance of a point. Sometimes the
latitude, ¢, is used instead of the co-latitude — but we reserve @ for the "geodetic latitude”
(Figure 2.5) and use ¢ instead to mean "geocentric” latitude.

X
Figure 1.1: Spherical polar coordinates.

On aunit sphere, the “length” (in radians) of agreat circle arc is equal to the angle subtended
at the center (see Figure 1.2). For a spherical triangle, we have the following useful identities
(Figure 1.2):
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sina _sinb _sinc
sna snf siny’

law of sines: (1.2)

law of cosines.  cosc =cosacosb +sinasinbcosy . (1.2)

If we rotate a set of coordinate axes about any axis through the origin, the Cartesian coordinates
of a given point change as reckoned in the rotated set. The coordinates change according to an
orthogonal transformation, known as a rotation, defined by a 3x3 matrix, e.g., R(a) :

=R(a)|y| . (1.3)

new old

where a is the angle of rotation (positive if counterclockwise as viewed along the axis toward
the origin).

Figure 1.2: Spherical triangle on a unit sphere.

Specificaly (see Figure 1.3), a rotation about the x-axis (1-axis) by the angle, a, is
represented by
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1 0 0
R(a)=|0 cosa sna |; (1.4)
0 -sina cosa

arotation about the y -axis (2-axis) by the angle, £, isrepresented by

cosf 0 -sing
R(B)=| 0 1 o0 | (15)
snfg 0 cospB

and arotation about the z-axis (3-axis) by the angle, y, isrepresented by

cosy siny O

R(y)=| -siny cosy Of; (1.6)
0 0o 1

where the property of orthogonality yields

R'=R', j=123. (1.7)

J J

The rotations may be applied in sequence and the total rotation thus achieved will always result
in an orthogonal transformation. However, the rotations are not commutative; in genera,

R(a)R(B) 2 R(B)R(a).

z

M

~
\
B

X
Figure 1.3: Rotations about coordinate axes.
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1.2 Reference Systems and Frames

It is important to understand the difference between a reference system for coordinates and a
reference frame since these concepts apply throughout the discussion of coordinate systems in
geodesy. According to the International Earth Rotation and Reference Systems Service (IERS,
see Section 3.3):

A Reference System is a set of prescriptions and conventions together with the
modeling required to define at any time atriad of coordinate axes.

A Reference Frame realizes the system by means of coordinates of definite points
that are accessible directly by occupation or by observation.

A simple example of a reference system is the set of three axes that are aligned with the Earth’s
spin axis, a prime (Greenwich) meridian, and athird direction orthogonal to these two. That is, a
system defines how the axes are to be established (e.g., mutual orthogonality), what theories or
models are to be used (e.g., what we mean by a spin axis), and what conventions are to be used
(e.g., how the x-axis is to be chosen — where the Greenwich meridian is). A simple example of a
frame is a set of points globally distributed whose coordinates are given numbers (mutually
consistent) in the reference system. That is, a frame is the physical realization of the system
defined by actual coordinate values of actual points in space that are accessible to anyone. A
frame cannot exist without a system, and a system is of no practical value without aframe. The
explicit difference between frame and system was articulated fairly recently in geodesy (see, e.g.,
Moritz and Mueller, 1987, Ch.9)*, but the concepts have been embodied in the terminology of a
geodetic datum that can be traced to the eighteenth century and earlier (Torge, 1991% Rapp,
1992%). Indeed, the definition of a datum today refers specifically to the conventions that
establish how the system is attached to the Earth — its origin, its orientation and its scale. In this
sense the definition of a datum has not changed. The meaning of a datum within the context of
frames and systems is explored in more detail in Chapter 3.

! Moritz, H. and I.I. Mueller (1987): Earth Rotation, Theory and Observation, Ungar Publ. Co., New Y ork

2 Torge, W. (1991): Geodesy, Second Edition. W. deGruyter, Berlin.

% Rapp, R.H. (1992): Geometric Geodesy, Part II. Lecture Notes; Department of Geodetic Science and Surveying,
Ohio State University. http://hdl.handle.net/1811/24409
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1.3 The Earth’s Shape

The Figure of the Earth is defined to be the physical (and mathematical, to the extent it can be
formulated) surface of the Earth. It isrealized by a set of (control) points whose coordinates are
determined in some well defined coordinate system. The redlization of the system applies
traditionally to land areas, but is extended today to include the ocean surface and ocean floor
with appropriate methods for their realizations.

The first approximation to the figure of the Earth is a sphere; and the coordinates to be used
would naturally be the spherical coordinates, as defined above. Even in antiquity it was
recognized that the Earth must be (more or less) spherical in shape. The first actual numerical
determination of the size of the Earth is credited to the Greek scholar Eratosthenes (276 — 195
B.C.) who noted that at a particular time of year when the sun is directly overhead in Syene
(today’s Aswan) it makes an angle, according to his measurement, of 7°12' in Alexandria®.
Further measuring the arc length between the two cities, he used simple geometry (Figure 1.4):

R=—, (18)

to arrive at aradius of R=6267 km, which differs from the actual mean Earth radius by only
104 km (1.6%) (scholars think that it may be a lucky result, considering the various assumptions
that were made®).

* which, however, is dlightly (3°) west of Aswan in longitude.
® see, e.g., http://en.wikipedia.org/wiki/History of _geodesy
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Alexandria, -<---~
R S i

Figure 1.4: Eratosthenes’ determination of Earth’s radius.

A few other determinations were made, but not until the middle of the Renaissance in Europe
(16th century) did the question seriously arise regarding improvements in determining Earth’s
size. Using very similar, but more elaborate procedures, several astronomers and scientists made
various determinations with not always better results. Finally by the time of Isaac Newton (1643
— 1727) the question of the departure from the spherical shape was debated. Various arc
measurements in the 17th and 18th centuries, as well as Newton’s (and others’) arguments based
on physical principles, gave convincing proof that the Earth is ellipsoidal in shape, flattened at
the poles, with approximate rotational symmetry about the polar axis.

The next best approximation to the figure of the Earth, after the ellipsoid, is known as the
geoid, the equipotentia surface of the Earth’'s gravity field that closely approximates mean sea
level. An equipotential surface is a surface on which the gravity potentia is a constant value.
While the mean Earth sphere deviates radially by up to 14 km (at the poles) from a mean Earth
ellipsoid (a surface generated by rotating an ellipse about its minor axis, see Chapter 2), the
difference between the mean Earth ellipsoid and the geoid amounts to no more than 110 m, and
in a root-mean-square sense by only 30 m. Thus, at least over the oceans (over 70% of Earth’s
surface), the ellipsoid is an extremely good approximation (5 parts per million) to the figure of
the Earth. Although this is not sufficient accuracy for geodesists, it serves as a good starting
point for many applications; the ellipsoid is also the mapping surface for most national and
international control surveys. Therefore, we will study the geometry of the ellipsoid in some
detail in the next chapter.
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1.4 Problems

1. Write both the forward and the reverse relationships between Cartesian coordinates, (x,y, z),
and spherical polar coordinates, (r,6,1).

2. Write the law of cosines for the spherical triangle, analogous to (1.2), when the left side is
cosb. Also, write the law of cosines for the triangle angles, instead of the triangle sides (consult
abook on spherical trigonometry).

3. Show that for small rotations about the x-, y-, and z-axes, by corresponding small angles,
a, [,and y, the following approximation holds:

1 y -pB
R(VR(AR(a)=|-yv 1 a |; (1.9)
L —a 1

and that thisis independent of the order of the rotation matrices.

4. Determine the magnitude of the angles that is alowed so that the approximation (1.9) does
not cause errors greater than 1 mm when applied to terrestrial coordinates (use the mean Earth
radius, R=6371km).

5. Research the length of a “stadium”, as mentioned in (Rapp, 1991, p.2)°, that was used by
Eratosthenes to measure the distance between Syene and Alexandriaa How do different
definitions of this unit in relation to the meter change the value of the Earth radius determined by
Eratosthenes? Also, research the various assumptions made by Eratosthenes in arriving at his
result.

® Rapp, R.H. (1991): Geometric geodesy, Part I. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University. http://hdl.handle.net/1811/24333
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Chapter 2
Coordinate Systems in Geodesy

Coordinates in geodesy traditionally have conformed to the Earth’s shape, being spherical or a
type of elipsoidal coordinates for regional and globa applications, and Cartesian for local
applications where planar geometry suffices. Nowadays, with satellites providing essentia
reference systems for coordinates, the Cartesian type is as important and useful for global
geospatial referencing. Because the latitude/longitude concept will always have the most direct
appeal for terrestrial applications (surveying, near-surface navigation, positioning and mapping),
we consider in detail the coordinates associated with an ellipsoid. In addition, since astronomic
observations have a profound historical significance in defining and realizing our reference
systems and should be in the knowledge bank of any geodesist, both natural (astronomic) and
celestial coordinates are covered. Local coordinates are based on the local vertical and deserve
special attention not only with respect to the definition of the vertical but in regard to their
connection to globa coordinates. In all cases the coordinate systems are orthogonal, meaning
that surfaces of constant coordinates intersect always at right angles. Some Cartesian coordinate
systems, however, are left-handed, rather than the usual right-handed, and this will require extra
(but not burdensome) care.

2.1 The Ellipsoid and Geodetic Coordinates

We treat the ellipsoid of revolution, its geometry, associated coordinates of points on or above
(below) it, and geodetic problems of positioning and establishing networks in an elementary
way. The motivation is to give the reader a more practical appreciation and utilitarian approach
rather than a purely mathematical treatise of ellipsoida geometry (especially differentia
geometry), as well as awindow into past geodetic practices. The reader may argue that even the

Geometric Reference Systems 2-1 Jekeli, January 2012



present text is rather mathematical, which, however, cannot be avoided (and no apologies are
made), and, that forays into historical methods have little bearing on modern geodesy, but they
offer a deeper appreciation for the marvels of satellite-based geodetic control.

2.1.1 BascEllipsoidal Geometry

It is assumed that the reader is familiar at least with the basic shape of an elipse (Figure 2.1).
The ellipsoid for geodetic applications is formed by rotating an ellipse about its minor axis,
which for present visualization we assume to be parallel to the Earth’s spin axis. This creates a
surface of revolution that is symmetric with respect to the polar axis and the equator. Because of
this symmetry, we often depict the ellipsoid ssimply as an €elipse (Figure 2.1). The basic
geometric construction of an ellipse is as follows: for any two points, F, and F,, caled focal
points, the ellipse is the locus (path) of points, P, such that the sum of the distances PF,+ PF, is
a constant.

Figure 2.1: The ellipsoid represented as an ellipse.

Introducing a coordinate system (x,z) with origin halfway on the line FF, and z-axis
perpendicular to F,F, , we seethat if P ison the x-axis, then that constant is equal to twice the
distance from P to the origin; thisis the length of the semi-major axis; call it a:

PF,+PF, =2a. (2.1)
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Moving the point, P, to the z-axis, and letting the distance from the origin point to either focal
point (F, or F,) be E, wealso find that

E=+va’+b?, (2.2

where b is the length of the semi-minor axis. E is called the linear eccentricity of the ellipse
(and of the ellipsoid). From these geometrical considerations it is easy to prove (left to the
reader), that the equation of the ellipseis given by

N

¥+F:1. (2.3)

An aternative geometric construction of the ellipse is shown in Figure 2.2, where points on
the ellipse are the intersections of the projections, perpendicular to the axes, of points sharing the

same radius to concentric circles with radii, a and b, respectively. The proof is asfollows:

Let X,z,s bedistances as shownin Figure 2.2. Now

2 2
AOCB~/A0DA = 2= = Z=5.
b a b a
2 2 2 2 2
but x* +s®> =a?; hence 0:%—%=%+%—1. QED
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Figure 2.2: Ellipse construction.

We see that the elipse, and hence the éllipsoid, is defined by two essential parameters. a
shape parameter and a size (or scale) parameter (unlike the circle or sphere that requires only one
parameter, the radius which specifiesits size). In addition to the semi-magjor axis, a, that usually
serves as the size parameter, any one of a number of shape parameters could be used. We have
already encountered one of these, the linear eccentricity, E. The following are also used; in
particular, the flattening:

f=22, (2.4)

e=—; (2.5

e=Y2 9 (2.6)
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Note that the shape parameters (2.4), (2.5), and (2.6) are unit-less, while the linear eccentricity,
(2.2) has units of distance. We aso have the following useful relationships among these
parameters (which are |eft to the reader to derive):

e =2f-f2, (2.7)

E =ae, (2.8)

> e’ 2 e > 2

€ :m, e :1—32’ (1_e )(1+e ) =1, (29)
g2

e'2=2f f (2.10)

When specifying a particular elipsoid, we will, in general, denote it by the pair of
parameters, (a,f). Many different elipsoids have been defined in the past. The current
internationally adopted mean Earth ellipsoid is part of the Geodetic Reference System of 1980
(GRS80) and has parameter values given by

a=6378137 m

(2.11)
f =1/298.257222101

From (Rapp, 1991, p.169)*, we have Table 2.1 of ellipsoids defined in modern geodetic history.
The parameter estimates of the best-fitting ellipsoid (in the mean tide system) were published in
2004% as

a=6378136.72+0.1m

(2.12)
1/ f =298.25231+0.00001

Note that these values do not define an adopted ellipsoid; they include standard deviations and
merely give the best determinable values based on current technology. On the other hand,
certain specialized observing systems, like the TOPEX satellite altimetry system, have adopted
ellipsoids that differ from the standard ones like GRS80 or WGS84. It is, therefore, extremely

! Rapp, R.H. (1991): Geometric geodesy, Part |. Lecture Notes; Department of Geodetic Science and Surveying,
Ohio State University. http://hdl.handle.net/1811/24333

2 Groten, E. (2004): Fundamental parameters and current (2004) best estimates of the parameters of common
relevance to astronomy, geodesy, and geodynamics. Journal of Geodesy, 77(10-11), 724-797.
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important that the user of any system of coordinates or measurements understands what €ellipsoid
isimplied. It isnoted that the IERS (2010)® recommends the use of the GRS80 llipsoid.

Table 2.1: Terrestria Ellipsoids.

Ellipsoid Name (year computed) semi-major axis, a [m] | inverseflattening, 1/ f
Airy (1830) 6377563.396 299.324964
Everest (1830) 6377276.345 300.8017

Bessel (1841) 6377397.155 299.152813
Clarke (1866) 6378206.4 294.978698
Clarke (1880) 6378249.145 293.465
Modified Clarke (1880) 6378249.145 293.4663
International (1924) 6378388. 297.

Krassovski (1940) 6378245. 298.3

Mercury (1960) 6378166. 298.3

Geodetic Reference System (1967), GRS67 | 6378160. 298.2471674273
Modified Mercury (1968) 6378150. 298.3

Australian National 6378160. 298.25

South American (1969) 6378160. 298.25

World Geodetic System (1966), WGS66 6378145. 298.25

World Geodetic System (1972), WGS72 6378135. 298.26

Geodetic Reference System (1980), GRS80 | 6378137. 298.257222101
World Geodetic System (1984), WGS84 6378137. 298.257223563
TOPEX/Poseidon (1992) (IERS recomm.)* | 6378136.3 298.257

3 Petit, G., Luzum, B. (2010): IERS Conventions (2010). IERS Technical Note No.36, Verlag des Bundesamts fiir

Kartographie und Geodasie, Frankfurt am Main.

* McCarthy, D.D. (ed.) (1992): IERS Standards. |ERS Technical Note 13, Observatoire de Paris, Paris.
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2111 Problems

1. From the geometrical construction described prior to equation (2.3), derive the equation for
an elipse, (2.3). [Hint: For apoint on the ellipse, show that

\/(x+ E)2 +7° +\/(x—E)2 +7° =2a.

Square both side and show that

2a° - x* -E* -7 :\/(x +E)2 +22\/(x —E)2 +7° .

Finally, square both sides again and reduce the result to find (2.3).]
What would the equation be if the center of the ellipse were not at the origin of the coordinate
system?

2. Derive equations (2.7) through (2.10).

3. Consider the determination of the parameters of an ellipsoid, including the coordinates of its
center, with respect to the Earth. Suppose it is desired to find the ellipsoid that best fits through a
given number of points at mean sealevel. Assume that the orientation of the ellipsoid is fixed a
priori so that its axes are parallel to the global, geocentric coordinate frame attached to the Earth.

a What is the minimum number of points with known (x, y, z) coordinates that are needed
to determine the ellipsoid and its center coordinates? Justify your answer.

b) Describe cases where the geometry of a given set of points would not allow
determination of 1) the flattening, 2) the size of the ellipsoid.

¢) What distribution of points would give the strongest solution? Provide a sufficient
discussion to support your answer.

d) Set up the linearized observation equations and the normal equations for a least-squares
adjustment of the ellipsoidal parameters (including its center coordinates).
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2.1.2 Ellipsoidal Coordinates

In order to define practical coordinates of points in relation to the ellipsoid, we consider the
ellipsoid with conventional (x, Y, z) axes whose origin is at the center of the ellipsoid. We first
define the meridian plane for a point as the plane that contains the point, as well as the minor
axis of the ellipsoid. For any particular point, P, in space, its longitude is given by the angle in
the equatorial plane from the x-axis to the meridian plane. This is the same as the spherical
longitude (due to the rotational symmetry); see Figure 1.1. For the latitude, we have a choice.
The geocentric latitude of P isthe angle, ¢, at the origin and in the meridian plane from the
equator to the radial line through P (Figure 2.3). Note, however, that the geocentric latitude is
independent of any defined ellipsoid and is identical to the complement of the polar angle
defined earlier for the spherical coordinates.

Consider the elipsoid through P that is confocal (sharing the same focal points) with the
elipsoid, (a, f); that is, it has the same linear eccentricity, E. Its semi-minor axisis u (Figure
2.4), which can aso be considered a coordinate of P. We define the reduced latitude, S, of P
as the angle at the origin and in the meridian plane from the equator to the radia line that
intersects the projection of P, along the perpendicular to the equator, at the sphere of radius,
v=\E*+Uu? .

Finally, we introduce the most common latitude used in geodesy, appropriately called the
geodetic latitude. Thisisthe angle, ¢, in the meridian plane from the equator to the line through
P that is also perpendicular to the basic ellipsoid (a, f ) ; see Figure 2.5. The perpendicular to
the ellipsoid is also called the normal to the ellipsoid. Both the reduced latitude and the geodetic
|atitude depend on the underlying elipsoid, (a, f).

Y a

X
Figure 2.3: Geocentric latitude.
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- sphere (radius = V)

1 \/ellipsoid (v,l—\/l—Ez/vz)

ellipsoid (a, f)

¥ a

< v > X

Figure 2.4: Reduced |atitude. Ellipsoid (a, f) and the ellipsoid through P have the same E.

X
Figure 2.5: Geodetic latitude.

In order to find the relationship between these various latitudes, we determine the (x, z)
coordinates of P in terms of each type of latitude. It turns out that this relationship is
straightforward only when P is on the elipsoid; but for later purposes, we derive the Cartesian
coordinates in terms of the latitudes for arbitrary points. For the geocentric latitude, ¢, ssimple
trigonometry gives (Figure 2.3):

X=rcosy, z=rsny. (2.13)

For the reduced latitude, simple trigonometric formulas applied in Figure 2.4 as in Figure 2.2
yield:

X=VCosf, z=using. (2.14)
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For the geodetic latitude, consider first the point, P, on the elipsoid, (a, f). From Figure
2.6, we have the following geometric interpretation of the derivative, or slope, of the ellipse:

-z

tan(90° - ¢) o (2.15)
Theright side is determined from equation (2.3):

v :bz(l—x—zJ = 22dz:—2b—zxdx = E=b—2§; (2.16)

a a -dx a“z

and, when substituted into equation (2.15), thisyields

b*x?sin® p=a*z* cos’ @. (2.17)
We also have from equation (2.3):

b?x? +a’z® =a’b’. (2.18)
Now, multiply equation (2.18) by —b*sin® ¢ and add it to equation (2.17), thus obtaining

zz(a2 cos’ g+ b?sin? qo) =b*sin? ¢, (2.19)
which reduces to

- a(1-¢)sng (2.20)

JI-&sn’g

X
Figure 2.6: Slope of ellipsoid.
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With a similar procedure, multiplying equation (2.18) by a® cos® ¢, adding it to equation (2.17),
and simplifying, one obtains (the reader should verify this):

x=__2c0s¢ (2.21)

J1-€’sin®g

To find the (x,z) coordinates of a point above (or below) the ellipsoid, we need to introduce
a height coordinate, in this case the ellipsoidal height, h, above the ellipsoid (it is negative, if P
is below the ellipsoid); h is measured along the perpendicular (the normal) to the ellipsoid
(Figure 2.6). It is a simple matter now to express (x,z) in terms of geodetic latitude and
ellipsoidal height:

all1-¢€*)sin
qo_acosp oo, 80-g)sng

J1-€’sin®g J1-€’sin’ @

It is easy to find the relationship between the different latitudes, if the point is on the ellipsoid
(h=0). Combining equations (2.13), (2.14), both specialized to the basic ellipsoid (u=b), with
equations (2.20) and (2.21), we obtain the following relationships among these three latitudes,
using the ratio z/x:

+hsin ¢. (2.22)

2

tant//:gtan,[i:%tan @, (2.23)

which also shows that
Yysp<o. (2.24)

Again, we note that the relationship (2.23) holds only for points on the ellipsoid. For arbitrary
points in space the problem is not straightforward and is connected with the problem of finding
the geodetic latitude from given rectangular (Cartesian) coordinates of the point (see Section
2.15).

The ellipsoidal height, geodetic latitude, and longitude, (h,@A), constitute the geodetic
coordinates of a point with respect to a given ellipsoid, (a, f). It is noted that these are
orthogonal coordinates, in the sense that surfaces of constant h, @, and A are orthogonal to each
other. However, mathematically, these coordinates are not that useful, since, for example, the
surface of constant h is not a ssmple shape (it is not an ellipsoid). Instead, the triple of
ellipsoidal coordinates, (u,ﬂ,/l), also orthogonal, is more often used for mathematical
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developments; but, of course, the height coordinate (and also the reduced latitude) is less
intuitive and, therefore, less practical.
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2121 Problems

1. Derive the following expressions for the differences between the geodetic latitude and the
geocentric, respectively, the reduced latitudes of points on the ellipsoid:

e’sin2g

tan (§0— (//) = 2(1—32 S ¢) , (2.25)
_ . hsin2g
tan(g-£) = 1+ncos2¢p’ (2.26)

where n=(a-b)/(a+b). (Hint: see Rapp, 1991, p.26.)°

2. Cadculate and plot the differences (2.25) and (2.26) for all latitudes, 0< ¢<90° using the
GRS80 €lipsoid parameter values.

3. Show that the difference (- /) is maximum when @= %cos‘1 (-n).

4. Mathematicaly and geometrically describe the surfaces of constant u, £, and, A,
respectively. As the linear eccentricity approaches zero, what do these ellipsoidal coordinates
and surfaces degenerate into?

® Rapp, R.H. (1991): Geometric geodesy, Part I. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University. http://hdl.handle.net/1811/24333
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2.1.3 Elementary Differential Geodesy

In the following we derive differentia elements on the surface of the elipsoid and, in the
process, describe the curvature of the ellipsoid. The differential elements are used in developing
the geometry of geodesics on the elipsoid and in solving the principal problems in geometric
geodesy, namely, determining coordinates of points on geodesics.

2131 Radii of Curvature

Consider a curve on a surface, for example a meridian arc or a parallel circle on the ellipsoid, or
any other arbitrary curve. The meridian arc and the parallel circle are examples of plane curves,
curves that are contained in a plane that intersects the surface. The amount by which the tangent
to the curve changes in direction as one moves along the curve indicates the curvature of the
curve. We define curvature geometrically as follows:

The curvature, y, of aplane curve isthe absolute rate of change of the slope angle of
the tangent line to the curve with respect to arc length along the curve.

If a isthedopeangleand s isarclength, then

da

daf (2.27)

X:

With regard to Figure 2.7a, let A be the unit tangent vector at a point on the curve; A identifies
the slope of the curve at that point. Consider also the plane that locally contains the
infinitesimally close neighboring tangent vectors; that is, it contains the direction in which A
changes due to the curvature of the curve. For plane curves, this is the plane that contains the
curve. The unit vector that is in this plane and perpendicular to A, caled u, identifies the
direction of the principal normal to the curve. Note that the curvature, as given in equation
(2.27), has units of inverse-distance. The reciprocal of the curvature is called the radius of
curvature, p:

p== (2.28)

The radius of curvature is a distance along the principal normal to the curve. In the special case
that the curvature is a constant, the radius of curvature is also a constant and the curveis (the arc
of) acircle. We may think of the radius of curvature at a point of an arbitrary curve as being the
radius of the circle tangent to the curve at that point and having the same curvature.
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A curve on the surface may also have curvature such that it cannot be embedded in a plane.
A corkscrew is such a curve. Geodesics on the ellipsoid are geodetic examples of such curves.
In this case, the curve has double curvature, or torsion. We will consider only plane curves for
the moment.

ds

&

u
a) b)

Figure 2.7: Curvature of plane curves.

Let z=2(x) describe the plane curve in terms of space coordinates (x,z). In terms of arc
length, s, we may write x=x(s) and z=z(s). A differential arclength, ds, isgiven by

ds=+dx* +ds” . (2.29)

This can be re-written as

ds= ‘/1+($j dx. (2.30)

Now, the tangent of the slope angle of the curve is exactly the derivative of the curve, dz/dx;
hence

a= tan‘l(gJ : (2.31)
dx

Using equations (2.27) and (2.30), we obtain for the curvature
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_|da| _|dal|dx
ds| |dx||ds
_ 1 a7 1 (2.32)
- 2| dx? >
1 2] 19 (%)
dx dx
so that, finally,
d’z
dx?
X = e 77 - (2.33)
1+(Zj
[ dx
For the meridian ellipse, we have from equations (2.15) and (2.16):
2
dz__b x__cosg. (2.34)
dx a“z sng

and the second derivative is obtained as follows (the details are left to the reader):

d?2z  b?1(. a?(dzY
Fri ?z[“?(&j ] (2.3

Making use of equations (2.19), (2.34), and (2.35), the curvature, equation (2.33), becomes

bi\/az cos’ p+b*sin® ga? cos? p+b?sin® @
_a’ b’sing b’sin® @

oS o)
(1+ 40) (2.36)

sng

This is the curvature of the meridian elipse; its reciprocal is the radius of curvature, denoted
conventionally as M :
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a@—é)
(1—ezsin2 qo)

M =

32 (2.37)

where equation (2.5) was used. Note that M is a function of geodetic latitude (but not
longitude, because of the rotational symmetry of the ellipsoid). Using the expression (2.27) for
the curvature, we find that

1

M

_|dg
= d‘j , (2.38)

since the slope angle of the ellipseis 90° — @ (see Figure 2.6); and, hence, since M >0 (always)

dS eigion = M@, (2.39)

which is the differential element of arc along the meridian. The absolute value is removed with
the convention that if dg>0, then ds>0; and, if dg<0, then ds<O0.

The radius of curvature, M , is the principal normal to the meridian curve; and, therefore, it
lies along the normal (perpendicular) to the ellipsoid (see Figure 2.8). At the pole (¢=90°) and
at the equator (@=0°) it assumes the following values, from equation (2.37):

M :a(l—ez) <a

equator
- (240
M pole = —2 >a
1-¢€

showing that M increases monotonicaly from equator to either pole, where it is maximum.
Thus, aso the curvature of the meridian decreases (becomes less curved) as one moves from the
equator to the pole, which agrees with the fact that the ellipsoid is flattened at the poles. The
length segment, M , does not intersect the polar axis, except at @=90°. We find that the
"lower" endpoint of the radius falls on a curve as indicated in Figure 2.8. The values 4 and 4,
are computed as follows

A=a-Mg,, =a —a(l —e2) =ae’

4, =M, —b =+ -b =be” (2.41)

o|lo|w

Using values for the ellipsoid of the Geodetic Reference System 1980, equation (2.11), we find
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4 =42697.67 m

(2.42)
4, =42841.31m

4,

Figure 2.8: Meridian radius of curvature.

So far we have considered only the meridian curve. At any point on the ellipsoid, we may
consider any other curve that passes through that point. In particular, imagine the class of curves
that are generated as follows. At a point on the ellipsoid, let & be the unit vector defining the
direction of the normal to the surface. By the symmetry of the ellipsoid, ¢ lies in the meridian
plane. Now consider any plane that contains & ; it intersects the ellipsoid in a curve known as a
normal section ("normal” because the plane contains the normal to the ellipsoid at a point) (see
Figure 2.9). The meridian curve is a specia case of a normal section; but the parallel circleis
not a normal section; even though it is a plane curve, the plane that contains it does not contain
thenormal, . We note that a normal section on asphereisagreat circle. However, we will see
below that normal sections on the ellipsoid do not indicate the shortest path between points on
the ellipsoid — they are not geodesics (great circles are geodesics on the sphere).
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parallel circle

normal section

Figure 2.9: Normal section (shown for the prime vertical).

The normal section drawn in Figure 2.9, another special case, is the prime vertical normal
section — it is perpendicular to the meridian. Note that while the prime vertical normal section
and the paralléel circle have the same tangent where they meet, they have different principal
normals. The principal normal of the parald circle (its radius of curvature) is paralel to the
equator, while the principal normal of the prime vertical normal section (or any normal section)
isthe normal to the ellipsoid — but at this point only!

In differential geometry, there is the following theorem due to Meusnier (e.g., McConnell,
1957)°

Theorem: For all surface curves, C, with the same tangent vector at a point, each having
curvature, X., a that point, and the principal normal of each making an angle, 4., with the
normal to the surface, thereis

Xc Cosé. = constant . (2.43)

Xc cos@. iscalled the normal curvature of the curve, C, at apoint. Of all the curves that share
the same tangent at a point, one is the normal section. For this normal section, we clearly have,
6. =0°, since its principal normal is aso the normal to the ellipsoid at that point. Hence, the
constant in equation (2.43) is

constant = Xnormal section * (244)

The constant is the curvature of that normal section at the point.
For the prime vertical normal section, we define

® McConnell, A.J. (1957): Applications of Tensor Analysis. Dover Publ. Inc., New Y ork.

Geometric Reference Systems 2-19 Jekeli, January 2012



(2.45)

X prime vertical normal section

1
N 1
where N is the radius of curvature of the prime vertical normal section at the point of the
ellipsoid normal. The parallél circle through that point has the same tangent as the prime vertical
normal section, and its radius of curvatureis p =1/ X a4 crae - Theangle of its principal normal,

that is, p, with respect to the ellipsoid normal is the geodetic latitude, @ (Figure 2.6). Hence,
from equations (2.43) - (2.45):

icosqa: 1 , (2.46)
p N
which implies that

p =N cosg, (2.47)

and that N isthelength of the normal to the ellipsoid from the point on the ellipsoid to its minor
axis (see Figure 2.10).

Figure 2.10: Prime vertical radius of curvature.

The x-coordinate of apoint on the ellipsoid whose y -coordinate is zero is given by equation
(2.21); but thisisalso p. Hence, from equation (2.47)
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N=— & (2.48)

J1-€’sin’g

From Figure 2.10 and equation (2.20), we also find that the point of intersection of N with the
minor axisisthe following distance from the ellipsoid center:

A=Nsing-z=Ne’sin ¢. (2.49)

At the equator (¢=0°) and at the poles (¢=x90°), the prime vertical radius of curvature
assumes the following constants, according to equation (2.48):

a (2.50)

and we seethat N increase monotonically from the equator to either pole, where it is maximum.
Note that at the pole,
N

M (251)

pole = pole !

since all normal sections at the pole are meridians. Again, theincreasein N polewards, implies
a decrease in curvature (due to the flattening of the ellipsoid). Finaly, N, =2a agrees with
the fact that the equator, being the prime vertical normal section for points on the equator, is a
circlewith radius, a.

Making use of the basic definition of curvature as being the absolute change in slope angle
with respect to arc length of the curve, equation (2.27), we find for the parallé circle

1

P

dA

s ; (2.52)

and, therefore, again removing the absolute value with the convention that if dA <0 (dA>0),
thenalso ds<0 (ds>0), we obtain:

dSparal|e| circle =N COS(Dd /‘ = dsprimeveni(:al normal section ? (253)

where the second equality holds only where the parallel circle and the prime vertica normal
section are tangent.
From equations (2.37) and (2.48), it is easily verified that, always,

Geometric Reference Systems 2-21 Jekeli, January 2012



M<N. (2.54)

Also, at any point M and N are, respectively, the minimum and maximum radii of curvature
for al norma sections through that point. M and N are known as the principal radii of
curvature at a point of the élipsoid. For any arbitrary curve, the differential element of arc,
using equations (2.39) and (2.53), is given by

ds= \/M ?dg? + N?cos® gdA? . (2.55)

To determine the curvature of an arbitrary normal section, we first need to define the
direction of the normal section. The normal section azimuth, «a, is the angle measured in the
plane tangent to the ellipsoid at a point, clockwise about the normal to that point, from the
(northward) meridian plane to the plane of the normal section. Euler’s formula gives us the
curvature of the normal section having normal section azimuth, a , in terms of the principal radii
of curvature:

_ 1 _sin’a +COSZG

TN = (2.56)

Xa

We can use the radius of curvature, R,, of the normal section in azimuth, &, to define a
mean local radius of the ellipsoid. Thisis useful if locally we wish to approximate the ellipsoid
by a sphere —thislocal radius would be the radius of the approximating sphere. For example, we
have the Gaussian mean radius, which is the average of the radii of curvature of all normal
sections at a point:

1 1 da
= da :_J.
Rs 217 0 R ’
N M (2.57)

as shown in (Rapp, 19917, p.44; see also Problem 2.1.3.4.-1.). Note that the Gaussian mean
radius is a function of latitude. Another approximating radius is the mean radius of curvature,
defined from the average of the principal curvatures:

" Rapp, R.H. (1991): Geometric Geodesy, Part |. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, Columbus, Ohio. http://hdl.handle.net/1811/24333
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_ 1
R’“_l(l 1)'

I =4+ =

2N M

For the sake of completeness, we define here other radii that approximate the ellipsoid, but
these are global, not local approximations. We have the average of the semi-axes of the
ellipsoid:

(2.58)

R=%(a+a+b); (2.59)

the radius of the sphere whose surface area equal s that of the ellipsoid:

- |
R= |2 (260)

where 2 isthe area of the ellipsoid, given by (Rapp, 1991, p.42; see dso Problem 2.1.3.4.-4.)

z=2nb2( 1 +i|n1Lej; (2.61)
-e° 2e 1l+e
and, the radius of the sphere whose volume equals that of the ellipsoid:
3.,V
=—V | , 2.62
R =] 282
where V isthe volume of the ellipsoid, given by
4 2
Vv :§ﬂa b. (2.63)
Using the values of GRS80, all of these approximationsimply
R=6371km, (2.64)

as the mean Earth radius, to the nearest km.
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2132 Normal Section Azimuth

Consider again anormal section defined at apoint, A, and passing through atarget point, B ; see
Figure 2.11. We note that the points n, and ny, the intersections with the minor axis of the
normals through A and B, respectively, do not coincide (unless, @, = ¢). Therefore, the
normal plane a A that also contains the point B, while it contains the normal at A, does not
contain the normal a B. And, vice versal Therefore, unless ¢, = @, the normal section at A
through B is not the same as the normal section at B through A. In addition, the normal
section at A through a different target point, B', along the normal at B, but at height hy., will
be different than the normal section through B (Figure 2.12). Note that in Figure 2.12, ABn,
and AB'n, define two different planes containing the normal at A.

Both of these geometries (Figures 2.11 and 2.12) affect how we define the azimuth at A of
the (projection of the) target point, B. If a,; isthe normal section azimuth of B a A, and
a',s istheazimuth, at A, of the "reverse” normal section coming from B through A, then the
difference between these azimuthsiis given by Rapp (1991, p.59)°:

2

, e . s 1 s

A~ ' a5 zgsmaAB (N—j cos’ qu(cosaAB —EN—tan quj, (2.65)
A A

where s is the length of the normal section. This is an approximation where higher powers of
s/N, are neglected. Furthermore, if &,y isthe normal section azimuth of B' a A, where B'
is at a height, h,., aong the ellipsoid normal at B, then Rapp (1991, p.63, ibid.) gives the
difference:

Qpg —Q pp = %e'z CoS” @, SINA (cosaAB —%Nitan wAj : (2.66)
A A

Note that the latter difference is independent of the height of the point A (the reader should
understand why!).

8 Rapp, R.H. (1991): Geometric Geodesy, Part |. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, Columbus, Ohio. http://hdl.handle.net/1811/24333
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normal section
at A through B

normal section
at B through A

Figure 2.12: Normal sections for target points at different heights.

2.1.3.3 Geodesics

Consider the following problem: given two points on the surface of the ellipsoid, find the curve
on the ellipsoid connecting these two points and having the shortest length. This curve is known
as the geodesic (curve). Geodesics on a sphere are great circle arcs and these are plane curves,
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but, as already mentioned, on the ellipsoid, geodesics have double curvature —they are not plane
curves and their geometry is more complicated. We will find the conditions that must be
satisfied by geodetic coordinates of points on a geodesic. The problem can be solved using the
calculus of variations, as follows.

Let ds be the differential element of arc of an arbitrary curve on the ellipsoid. In terms of
differential latitude and longitude, we found the relationship, equation (2.55), repeated here for
convenience:

ds= \/M ?d¢? + N?cos® gdA? . (2.67)

If a isthe azimuth of the curve at a point then the element of arc at that point may also be
decomposed according to the latitudinal and longitudinal elements using equations (2.39) and
(2.53):

dscosa = Mdg

2.68
dssina =N cosgd A (268)
Let | denote the length of a curve between two points, P and Q, on the ellipsoid. The geodesic
between these two pointsisthe curve, s, that satisfies the condition:

Q
| :j ds . min. (2.69)
P

The problem of finding the equation of the curve under the condition (2.69) can be solved by
the method of the calculus of variations. This method has many applications in mathematical
physics and general procedures may be formulated. In particular, consider the more general
problem of minimizing the integral of some function, F(x,y(x),y'(x)), where y' is the
derivative of y with respect to x:

| = J' Fdx — min. (2.70)

It can be shown® that the integral in equation (2.70) is minimized if and only if the following
differential equation holds

2% oo, (271)

Thisis Euler’s equation. Note that both total and partial derivatives are used in equation (2.71).
It is an equation in y(x) . A solution to this equation (in essence, by integration) provides the
necessary and sufficient conditions on y(x) that minimize the integral (2.70).

In our case, by comparing equations (2.69) and (2.70), we have

° Arfken, G. (1970): Mathematical Methods for Physics. Academic Press, New Y ork.
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Fdx =ds; (2.72)
and, we will identify the points on an arbitrary curve by

p=¢A). (2.73)
That is, we choose A to be the independent variable of the functional description of the curve on

the dlipsoid (i.e,, y=¢ and x=A in the more general formulation above). From equation
(2.67), we have

ds:\/Mqua2 +N? cos” gdA? =\/M2(g—fj +(N cosqa)2 dA; (2.74)
so that
F =\/M2(j—fj +(Ncosg)” =F (@ ¢), (2.79)

where ¢'=d g/d A.
Immediately, we see that in our case F does not depend on A explicitly:

oF
~—=0. 2.76
3 (2.76)

Now let F be that function that minimizes the path length; that is, F must satisfy Euler's
equation. From equation (2.76) we can get afirst integral of Euler’s equation (2.71); it will be
shown that it is given by

F- qo'a—Fl =constant . (2.77)
0@

To prove this, we work backwards. That is, we start with equation (2.77), obtain something
we know to be true, and finally argue that our steps of reasoning can be reversed to get equation
(2.77). Thus, differentiate equation (2.77) with respect to A :

d oF
—| F-¢'— |=0. 2.78
dA [ aw'j (2.78)

Explicitly, the derivative is

dF oF . d oF
- _ nFro_ - =O. 2.79
i Y or Yaiag (2.79)
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Now, by the chain rule applied to F()l,w(A),w'(A)),weget
dF _oF aF
(2.80)

because of equation (2.76). Substituting equation (2.80) into equation (2.79) yields

oF d oF
—-——1=0. 2.81
q’(aqo dij (289

Since, in general, ¢'# 0, we must have

OF _d oF _ (2.82)
dp dAdg¢g

But this is Euler’s equation, assumed to hold for our particular F. That is, the F defined by
eguation (2.77) aso satisfies Euler’s equation. The process can be reversed to get equation
(2.77) from equation (2.82); therefore, equations (2.77) and (2.82) are equivalent in this case and
equation (2.77) is a first integral of Euler’s equation (it has now been reduced to a first-order
differential equation).

From equation (2.75), we see that

oF _ Mgo

(2.83)
¢ \/ M 2@+ (N cos ¢)
Substituting this into equation (2.77) yields
2 2
F- qo——\/M qd+Ncos¢) Mw
\/ M 2@+ (N cos @
N 2 (2.84)
( cosqo) = constant
\/ M 2@+ (N cos @

The last equation is the condition on ¢(A) that must be satisfied for points having coordinates
(@A) that are on the geodesic.
The derivative, ¢', can be obtained by dividing the two equations (2.68):

dqo N cos¢

ota . 2.85
dA M (289
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Substituting this derivative which holds for an arbitrary curve into the condition (2.84) which
holds only for geodesics, we get

N cosg)’
( ¢)2 = \/ N iosqo = constant . (2.86)
cot“a+1
\/M Z(I\I:/Iosqocot aj +(N cosqo)2
The last equality can be simplified to
N cosgsina = constant . (2.87)

This is the famous equation known as Clairaut’s equation. All points on a geodesic must satisfy
thisequation. That is, if C isageodesic curve on the ellipsoid, where @ is the geodetic latitude
of an arbitrary point on C, and «a isthe azimuth of the geodesic at that point (i.e., the angle with
respect to the meridian of the tangent to the geodesic at that point), then ¢ and a are related
according to equation (2.87). Note that Clairaut’s equation by itself is not a sufficient condition
for a curve to be a geodesic; that is, if points on a curve satisfy equation (2.87), then this is no
guarantee that the curve is a geodesic (e.g., consider an arbitrary parale circle). However,
Clairaut’s equation combined with the condition ¢'# 0 is sufficient to ensure that the curve is a
geodesic. This can be proved by reversing the arguments of equations (2.77) — (2.87) (see
Problem 8, Section 2.1.3.4).
From equations (2.47) and (2.14), specialized to u=b, wefind

= N cos
P ¢ (2.89)
=acospf
and thus we have another form of Clairaut’s equation:
cosfsing = constant . (2.89)

Therefore, for points on a geodesic, the product of the cosine of the reduced latitude and the sine
of the azimuth is always the same value. We note that the same equation holds for great circles
on the sphere, where, of course, the reduced latitude becomes the geocentric latitude.
Substituting equation (2.88) into equation (2.87) gives
psina = constant . (2.90)
Taking differentials leads to
snadp+ pcosa da =0. (2.91)

With equations (2.88) and (2.68), equation (2.91) may be expressed as
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da=—® 44 (2.92)
cosa ds

Again, using equation (2.68), thisis the same as

da=-—>_dJ. (2.93)
M

It can be shown, from equations (2.37) and (2.48), that

dp

dqozdi(N cosg) =-Msin ¢. (2.94)

Putting this into equation (2.93) yields another famous equation, Bessel’ s equation:
da =singd A. (2.95)

This also holds only for points on the geodesic; it is both a necessary and a sufficient condition
for a curve to be a geodesic. Again, the arguments leading to equation (2.95) can be reversed to
show that the consequence of equation (2.95) is equation (2.87), provided ¢'# 0 (or, cosa #0),
thus proving sufficiency.

Geodesics on the ellipsoid have a rich geometry that we cannot begin to explore in these
notes. The interested reader is referred to Rapp (1992)*° and Thomas (1970)'*. However, it is
worth mentioning some of the facts, without proof.

1) Any meridian isageodesic.

2) The equator is a geodesic up to a point; that is, the shortest distance between two points on
the equator is aong the equator, but not always. We know that for two diametrically opposite
points on the equator, the shortest distance is along the meridian (because of the flattening of the
ellipsoid). So, starting from a given point on the equator, the equator serves as the geodesic to
another point on the equator. But for end-points on the equator beyond some critical point, the
geodesic jumps off the equator and runs along the elipsoid with varying latitude, until for
diametrically opposite equatoria points, the meridian isthe geodesic.

3) Except for the equator, no other parallel circleis ageodesic (see Problem 2.1.3.4-7.).

4) In general, a geodesic on the ellipsoid is not a plane curve; that is, it is not generated by the
intersection of a plane with the ellipsoid. The geodesic has double curvature, or torsion.

5) It can be shown that the principal normal of the geodesic curve is also the normal to the
ellipsoid at each point of the geodesic (for the normal section, the principal normal coincides

19 Rapp, R.H. (1992): Geometric Geodesy, Part I1. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, Columbus, Ohio. http://hdl.handle.net/1811/24409

" Thomas, P.D. (1970): Spheroidal geodesics, reference systems and local geometry. U.S. Naval Oceanographic
Office, SP-138, Washington, DC.
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with the normal to the ellipsoid only at the point where the normal is in the plane of the normal
section).

6) Following a continuous geodesic curve on the ellipsoid, we find that it reaches maximum and
minimum latitudes, @, = — @, like agreat circle on a sphere, but that it does not repeat itself
on circumscribing the ellipsoid (like the great circle does), which is a consequence of its not
being a plane curve; the meridian ellipse is an exception to this.

7) Rapp (1991, p.84) gives the following approximate formula for the difference between the
normal section azimuth and the geodesic azimuth, & ,; (see Figure 2.13):

. e’ s ) 2 1s
g —0pp Z?SnaAB N_ COS” @, | COSA pg —ZN—tanqu

A

A

(2.96)

sections

between A and B
Figure 2.13: Normal sections versus geodesic on the ellipsoid.
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2134  Problems

1. Split the integral in equation (2.57) into four integrals, one over each quadrant, and consult a
Table of Integrals to prove the resullt.

2. Show that the length of a parallel circle arc between longitudes A, and A, isgiven by

L =(A, -=A,) N cosg. (2.97)

3. Find an expression for the length of a meridian arc between geodetic latitudes ¢ and @ .
Can the integral be solved analytically?

4. Show that the area of the ellipsoid surface between longitudes A, and A, and geodetic
latitudes ¢ and ¢ isgiven by

cosg

(g, @, A,A,)=b%(1, -A,) | ————do. 2.98
(4. 9.4.4,) =0 (A, =A,) (- sintg) ¢ (2.98)

S

Then consult a Table of Integrals to show that this reduces to

In

. . %
ol i) 2%9)
l1-e"sing 2e 1—esmqoq1

(e .4 2)="(4-4)

(where e isthefirst eccentricity, not the exponential). Finally, prove equation (2.61).

5. Consider two points, A and B, that are on the same paralléel circle.

a) What should be the differences, a,, —a ',z and a,; —a .5, given by equations (2.65)
and (2.66), and why?

b) Show that in spherical approximation the parenthetical term in equations (2.65) and
(2.66) is approximately zero if the two points, A and B, are on the same paralel, and if the
distance s is not large (hint: use the law of cosines on spherical triangle ABO, where O is the
north pole, to show that approximately
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. . S . S
sSng, =9n @COSN—+COS (QSII’IN—COSO'AB.
A A

Then solve for cosa,; and use small-angle approximations to second order for the sine and

cosine).

6. Suppose that a geodesic curve on the ellipsoid attains a maximum geodetic latitude, @, -
Show that the azimuth of the geodesic as it crosses the equator is given by

aequao,:sin{ 005 G J (2.100)

J1-€’sin’ g

7. Using Bessal’s equation show that a parallel circle arc (except the equator) can not be a
geodesic.

8. Provethat if ¢'# 0 then equation (2.87) is a sufficient condition for a curve to be a geodesic,
i.e.,, equations (2.77) and hence (2.69) are satisfied. That is, if all points on a curve satisfy
equation (2.87) , the curve must be a geodesic.

Geometric Reference Systems 2-33 Jekeli, January 2012



2.1.4 Direct/ InverseProblems

There are two essentia problems in the computation of coordinates, directions, and distances on
aparticular given ellipsoid (see Figure 2.14):

The Direct Problem: Given the geodetic coordinates of a point on the ellipsoid, the geodesic
azimuth to a second point, and the geodesic distance between the points, find the geodetic
coordinates of the second point, as well as the back-azimuth (azimuth of the first point at the
second point), where all azimuths are geodesic azimuths. That is,

given: g, A, a,,8,; find: @,4,.,4,.

The Inverse Problem: Given the geodetic coordinates of two points on the ellipsoid, find the
geodesic forward- and back-azimuths, as well as the geodesic distance between the points. That
is,

given: ¢,A,¢,A,; find: a,,a,,s,.

The solutions to these problems form the basis for relating traditional geodetic observations of
angles and distances to the establishment of a horizontal control network of point coordinates for
aregion. That is, they provide for the solution of general ellipsoidal triangles', analogous to the
relatively simple solutions of spherical triangles, which constitute the elements of atriangulation
network on the mapping surface, the elipsoid.  There are many solutions that hold for short
lines (generally less than 100 — 200 km) and are based on some kind of approximation; in fact,
one solution to the problem is developed by approximating the ellipsoid locally by a sphere.
None of these developments is simpler in essence than the exact (iterative, or series) solution
which holds for any length of line. The latter solutions are fully developed in (Rapp, 1992)*.
However, we will consider only one of the approximate solutions in order to obtain some tools
for simple applications. In fact, today with GPS the direct problem as traditionally solved or
utilized is hardly relevant in geodesy. The indirect problem is still quite useful as applied to
long-range surface navigation and guidance (e.g., for oceanic commercial navigation).

12 Ehlert, D. (1993): Methoden der ellipsoidischen Dreiecksberechnung. Report no.292, Institut fiir Angewandte
Geodésie, Frankfurt a. Main, Deutsche Geodétische Kommission.

3 Rapp. R.H. (1992): Geometric Geodesy, Part I1. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, Columbus, Ohio. http://hdl.handle.net/1811/24409
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Pole

geodetic meridians

Pl
Figure 2.14: Ellipsoidal geometry for direct and inverse geodetic problems.

One set of solutions of these problems is the Legendre-series solution, first developed by
Legendre and published in the Mémoires of the Paris Academy (1806)**. We assume that the
geodesic is parameterized by the arc length, s:

p=¢s), A=As), a=a(s). (2.102)

a istheforward azimuth at any point on the geodesic. Let @ denote the back-azimuth; we have
a =a +rr. Then, aTaylor series expansion formally yields:

_.d 1d°¢g .
2= Wd_ﬂl s, +Ed_s'ft K (2.102)
. .dAa 1d%| , _
AZ _Al +E1512 +5E1512 +..- (2103)
_ 1 d%a

s, + S+ (2.104)

a
a,=aq,+mr +d—
S

221 de? .

14 Jordan, W. (1962): Handbook of Geodesy, vol.3, part 2. English translation of Handbuch der Vermessungskunde
(1941), by Martha W. Carta, Corps of Engineers, United States Army, Army Map Service.
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The derivatives in each case are obtained from the differential elements of a geodesic and
evaluated at point B,. The convergence of the series is not guaranteed for all s,, but it is
expected for s, < R (mean radius of the Earth), although the convergence may be slow.

We recall the equations (2.68):

dscosa = Mdg
(2.105)
dssina = N cosgd A

which hold for any curve on the ellipsoid; and Bessdl’ s equation (2.95):

da =singd A1, (2.106)

which holds only for geodesics. Thus, from equation (2.105)

d—‘" = 2054 (2.107)
dsl, M, ’

and

da
ds

_ sna,

_ (2.108)
1 N;cosg

Now, substituting dA, given by equation (2.105), into equation (2.106), we find

da
ds

_sina,

1 Nl

tang. (2.109)

For the second derivatives, we need (derivations are |eft to the reader):

dM _ 3MIN’¢’singcos ¢,

2.110
P " (2110)

N _ Me" sin gcos ¢; (2.111)
de

i(N cosg) = -M sin . (2.112)
do
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Using the chain rule of standard calculus, we have

d? 2¢ d (cosaj 1 .nada cosgf dm dqo (2113)
ds® ds\ M M ds M? dgds’
which becomes, upon substituting equations (2.107), (2.109), and (2.110):
2 ) 2
d gol __sn altanq 3e°N/ coszalszchosqq (2.114)
ds?|, M;N, a’M:
Similarly, for the longitude,
2 : .
d ? _df sna )_ cosa do —sma éN cosg) d_go (2.115)
ds® ds\ Ncosg) Ncosgds N?cos® gd ds

which, with appropriate substitutions as above, leads after simplification (left to the reader) to

2/]| 2sina, cosa,
ds® ‘1 N/ cosg

Ltang. (2.116)

Finally, for the azimuth

N

tan p— - , 2.117
ds* ds ds N2 ¢d_¢ds N (ad_s ( )

d’a _ d(smatanwj:cosa do s de_go+S|naseC2 do
that with the substitutions for the derivatives as before and after considerable simplification (left
to the reader) yields

d a| smalcosal(

o 1+2tan® g +e” cos’ Q) (2.118)

1 1

Clearly, higher-order derivatives become more complicated, but could be derived by the same
procedures. Expressions up to fifth order, also given below, are found in (Jordan, 1941)*
(Rapp, 1991)™.

15 Jordan, W. (1962): Handbook of Geodesy, vol.3, part 2. English translation of Handbuch der Vermessungskunde
(1941), by Martha W. Carta, Corps of Engineers, United States Army, Army Map Service.

16 Rapp, R.H. (1991): Geometric Geodesy, Part |. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, Columbus, Ohio. http://hdl.handle.net/1811/24333
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With the following abbreviations

vz%sinal, us= ,S\f cosa,, n’=e’cos’qy, t=tang, (2.119)

1 1

the final solution to the direct problem up to fifth order in s,,/N, is thus given as follows, the
details of which are left to the reader (see also Problem 3, Section 2.1.41).

ﬁr—_,]?:u—%vzt—s uwnt Vu(1+3t2 n? ;) 23/7 (1)
+§t(1+3t2 +n? 9/72t2) v (4 +6t* 137° -o7°t? ) U 7t (2.120)
il(J)(1+30t2 +451%) - Vzgs(z +15t2 +15t*)

2
(4, —A) cos@ =v +uvt —gtz +vu?(1 +3t2 +,72)

v;u t(1+3° + )+—t(2 3% 41?) (2.121)
V

V5

—t2(1+3t2)+f(2+15t +15t*) u”

- (1 +20t2 +30t4)

6_72—(0'1 +7T) =vt +%(1+2t2 +/]2) —gt(l +2‘[2 4172) +V%2t(5 _|_6t2 +72 _474)

3
Vs: (1+20t> + 241" +27% +87% ) i (5 ¥28t° +24t" 4677 487 °t?)
Vu? 2 4 w* 2 4
t(58 +280t> +240t") +_—t(61 +180t> +120t")
120 120

+it(1+ 20t2 +24t4) -
120
(2.122)

The inverse solution can be obtained from these series by iteration. We write equations
(2.120) and (2.121) as

Ap=q@ - @:(1 +/72)u +0Q, (2.123)

M=), - = A, (2.124)

cos¢
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where dp and 1 are the residuals with respect to the first-order terms. Now, solving for u and
v we have

u= AK_”?(D v=cosg (44 -A); (2.125)

and, with equation (2.119), the equation for the forward-azimuth is

a, = tan'lﬁ = tan'l((l +17%) cosg

A41-9 j . (2.126)

Ap-op

For the geodesic distance, we have a couple of choices, e.g., if a; #0, then from equations
(2.119) and (2.125)

_ N;cosg

_ (a1 -). (2.127)
sna,

2

Both equations (2.126) and (2.127) are solved together by iteration with starting values obtained
by initidly setting dp= 5¢” =0 and 3 = 54 =0:

(0) _ 41 2 pay) (0) _ N, cosg
a;’ =tan ((1+/7 )cosq—ij, S, sinal(o) 41 (2.128)
Then
51079
() — gt 2 AN -0/ (j):NICOS(q (i) L
a;’ =tan ((1+/7 )Cosﬂ—Aqo—Jqf»j‘l)j’ ) —sin ij_l)(m oA ) ] =1,2,....(2.129)

Note that the updates d@'™? and 1™ are computed using both s and a!'™; and,
therefore, the iteration must be done in concert for both s, and a;. Also, @, iscomputed using
the solution of the direct problem, (2.122), once a,, u, and v have been determined through the
iteration. The correct quadrant of the azimuth should be determined by inspecting the signs of u
and v.

The iteration continues until the differences between consecutive values of s, and a; are
smaller than some pre-defined tolerance. Note however, that the accuracy of the result depends
ultimately on the number of termsretained in dp and oA . Rapp (1991) reports that the accuracy
of the fifth-order solutionsis about 0.01 arcsec in the angles for distances of 200 km. Again, it is
noted that exact solutions exist, which are only marginally more complicated mathematically, as
derived in Rapp (1992).

Geometric Reference Systems 2-39 Jekeli, January 2012



2141  Problems
1. Derive equations (2.110) through (2.112).
2. Derive equations (2.116) and (2.118).

3. Derive equations (2.120) through (2.122) up
to second order in products of u and v.

4. Consider an dlipsoidal triangle, 4123, with
sides being geodesics of arbitrary length. The
following are given: lengths of sides, s, and
S5, the angle, 3, the latitude and longitude of
point 1, (@,4,), and the azimuth, a;, (see the
Figure at the right and note the minor change in
notation from the main text). Provide a detailed
procedure (i.e., what problems have to be solved
and provide input and output to each problem
solution) to determine the other two angles, £, ,
B;, and the remaining side of thetriangle, s,;.

Pole

5. Provide an algorithm that ensures proper quadrant determination for the azimuth in the direct

and inverse problems.

6. For two points on an ellipsoid, with known coordinates, give a procedure to determine the
constant in Clairaut’s equation for the geodesic connecting them.
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2.15 Transformation Between Geodetic and Cartesian Coordinates

We wish to transform from the geodetic coordinates, (¢, A, h), for pointsin space and related to
the ellipsoid, (a, f), to Cartesian coordinates, (x,y,z), and vice versa. It is assumed that the
Cartesian origin is at the ellipsoid center and that the Cartesian coordinate axes are mutually
orthogonal along the minor axis and in the equator of the ellipsoid. Referring to Figure 2.15a,
we see that

X = pcosA

y= psind (2.130)
where p= \/XZTyZ . Since also (compare with equation (2.47))

p=(N+h)cosg (2.131)
from Figure 2.15b, it is easily seen that

x = (N +h)cosgcos A, (2.132)

y=(N +h)cosgsinA. (2.133)
Now, from equations (2.22) and (2.48), we also have:

z:(N(l—e2)+h)sinqo. (2.134)

In summary, given geodetic coordinates, (¢, A,h), and the ellipsoid to which they refer, the
Cartesian coordinates, (x, Y, z) , are computed according to:

(N +h)cosgcosA
=| (N +h)cosgsina |.. (2.135)

(N(l—e2)+h)sinqo

N < X

It is emphasized that the transformation from geodetic coordinates to Cartesian coordinates
cannot be done using equation (2.135) without knowing the ellipsoid parameters, including the
presumptions on the origin and orientation of the axes. These obvious facts are sometimes
forgotten, but are extremely important when considering different geodetic datums and reference
systems.
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(N+h)sing

e’Nsing

a)

b)

Figure 2.15: Geodetic latitude vs. Cartesian coordinates.

The reverse transformation from Cartesian to geodetic coordinates is somewhat more
complicated. The usual method is by iteration, but closed formulas also exist. The longitude is

easily computed from equations (2.130):

(2.136)

The problem is in the computation of the geodetic latitude, but only for h#0. From Figure

2.15b, wefind

(N+h)sing

From equation (2.134), thereis

tang=

N +h)sing=z+Ne’sin ¢;
(N+h)

and, therefore, equation (2.137) can be re-written as

P
o=tan™ z 1+e Nsng ,
[X2+y2 Z
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for z#0. If z=0, then, of course, ¢=0. Formula (2.139) isiterated on @, with starting value
obtained by initially setting h=0 in equation (2.134) and substituting the resulting
z=N (1—e2)sin¢ into equation (2.139):

0) — -1 z €’
qa( tan (\/W(“l—ezj} (2.140)

Then, the iterations proceed as follows:

. 2N D) g oD
(0(’)=tan1[\/%{1+e NU" sing D j=12,..., (2.141)
X“+y z

where NU™ s the prime vertical radius of curvature for the latitude, qﬁ'l). The iteration
continues until the difference between the new and old values of @ isless than some pre-defined
tolerance. This procedure is known as the Hirvonen/Moritz algorithm. Rapp (1991, p.123-
124)*" gives another iteration scheme developed by Bowring that converges faster. However, the
scheme above is also sufficiently fast for most practical applications (usually no more than two
iterations are required to obtain mm-accuracy), and with today’s computers the rate of
convergence is not an issue. Finally, a closed (non-iterative) scheme has been developed by
several geodesists; the one currently recommended by the International Earth Rotation and
Reference Systems Service (IERS) is given by Borkowski (1989)*. In essence, the solution
requires finding the roots of a quartic equation.

Once ¢ is known, the ellipsoid height, h, can be computed according to severa formulas.
From equations (2.131), we have

2 2
h=YX**Y N, pzo0° (2.142)

cos@

and, from equation (2.134), thereis

h=—2_-N(1-¢), p=0°. (2.143)
sing

Y Rapp, R.H. (1991): Geometric Geodesy, Part |. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, Columbus, Ohio. http://hdl.handle.net/1811/24333

8 Borkowski, K.M. (1989): Accurate algorithms to transform geocentric to geodetic coordinates. Bulletin
Géodésique, 63, 50-56.
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From Figure 2.16 and using simple trigonometric relationships (left to the reader), we find a
formulathat holds for all latitudes:

h=(p-acosf,)cosg+(z-bsin B)sin ¢, (2.144)

where £, isthe reduced latitude for the projection, R, of P onto the ellipsoid aong the normal,
and, therefore, can be determined from equation (2.23).

p=yX +y? P

acosf, 4
Po | \/?

bsing,

Figure 2.16: Determination of h from (x,y,z) and ¢.
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2151  Problems
1. Derive equation (2.144).

2. Show that the Cartesian coordinates, (x, Y, z), can be computed from given elipsoidal
coordinates, (3, 4,u), according to

X =+/u® + E? cos cos A
y=+Uu?+E? cosfSsinA (2.145)

z=usng

3. Show that the elipsoidal coordinates, (3,4,u), referring to an ellipsoid with linear
eccentricity, E, can be computed from given Cartesian coordinates, (x, Y, z) , according to

A=tantY
X

uz(l(rz—Ez)%\/(rz +E?) —4E2p2j]/2 (2.146)

2
zJu? +E?

up

L=tan™

where r’=x>+y*+z*> and p*>=x*+y*. [Hint: Show that p° :(u2 +E2)cosz,8 and
z? =u?sin? B; and use these two equations to solve for u® andthen 3]
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2.2 Astronomic Coordinates

Traditionaly, for example with a theodolite, we make angular measurements (horizontal angles,
directions, and vertical angles) with respect to the direction of gravity at a point, that is, with
respect to the tangent to the local plumb line. The direction of gravity at any point is determined
naturally by the Earth’s somewhat arbitrary mass distribution and the plumb line is defined by
this direction. The direction of gravity changes from point to point, even along the vertical,
making the plumb line a curved line in space, and we speak of the tangent to the plumb line at a
point when identifying it with the direction of gravity. Making such angular measurements as
described above when the target points are the stars with known coordinates, in fact, leads to the
determination of a type of azimuth and a type of latitude and longitude. These latter terrestrial
coordinates are known, therefore, as astronomic coordinates, or also natural coordinates because
they are defined by nature (the direction of the gravity vector) and not by some adopted ellipsoid.

We start by defining a system for these coordinates. The z-axis of this system is defined in
some conventional way by the Earth’s spin axis. Saving the details for Chapters 4, we note that
the spin axis is not fixed relative to the Earth’s surface (polar motion) and, therefore, amean z-
axis, as well as a mean x-axis are defined. The mean axes are part of the IERS Terrestrial
Reference System (ITRS), established and maintained by the International Earth Rotation and
Reference Systems Service (IERS); the ITRS is aso known as a Conventional Terrestrial
Reference System (one that is established by international agreement). The mean pole was
known in the past as the Conventional International Origin (CIO); today, it is more appropriately
referred to as the IERS (International) Reference Pole (IRP). The plane that contains both the
mean z-axisand x-axisisthe mean Greenwich Meridian plane, or also the |ERS (International )
Reference Meridian plane.

We next define the astronomic meridian plane for any specific point, analogous to the
geodetic meridian plane for points associated with the ellipsoid. However, there is one essentia
and important difference. The astronomic meridian plane is the plane that contains the tangent to
the plumb line at a point and is (only) parallel to the z-axis. Recall that the geodetic meridian
plane contains the normal to the ellipsoid, as well as the minor axis of the elipsoid. The
astronomic meridian plane does not, generally, contain the z-axis. To show that this plane
always exists, simply consider the vector at any point, P, that is parallel to the z-axis (Figure
2.17). Thisvector and the vector tangent to the plumb line together form a plane, the astronomic
meridian plane, and it is parallel to the z-axis. We aso recal that the tangent to the plumb line
does not intersect Earth’s center of mass (nor its spin axis) due to the arbitrary direction of
gravity.

Now, the astronomic latitude, @, is the angle in the astronomic meridian plane from the
equator (plane perpendicular to the z-axis) to the tangent of the plumb line. And, the
astronomic longitude, A, isthe angle in the equator from the x-axis to the astronomic meridian
plane. The astronomic coordinates, (@, /), determine the direction of the tangent to the plumb
line, just like the geodetic coordinates, (qo,/l) , define the direction of the ellipsoid normal. The
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difference between these two directions at a point is known as the deflection of the vertical. We
will return to this angle in Chapter 3.

astronomic zenith

mto plumb line)
P

astronomic meridian plane
(parallel to z-axis)

parallel to z-axis }

X
Figure 2.17: Astronomic meridian plane and astronomic coordinates.

To complete the analogy with previously defined geodetic quantities, we also consider the
astronomic azimuth. The astronomic azimuth is the angle in the astronomic horizon (the plane
perpendicular to the tangent of the plumb line) from the northern half of the astronomic
meridian, easterly, to the plane containing both the plumb line tangent and the target point (the
vertical plane); see Figure 2.19. Finally, the astronomic zenith angle (also known as the zenith
distance) is the angle in the vertica plane from the tangent to the (outward) plumb line
(astronomic zenith) to the target point. We note that heights are not part of the astronomic
coordinates, but that heights may be included in the definition of natural coordinates, where in
this case the height is based on the geopotential; we will treat this later briefly in connection with
vertical datums (Chapter 3).
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2.21 Problems

1. Provide ajustification that, theoreticaly, two distinct points on a surface (like the ellipsoid,
or geoid) could have the same astronomic latitude and longitude, @ and /.

2. Determine which of the following would affect the astronomic coordinates of a fixed point
on the Earth’s surface: i) a trandation of the coordinate origin of the (x, Y, z) system; ii) a
genera rotation of the (x, Y, z) system. Determine which of the following would be affected by
a rotation about the z-axis: astronomic latitude, @; astronomic longitude, A; astronomic
azimuth, A. Justify your answersin al cases.

3. Assume that the ellipsoid axes are parallée to the (x, Y, z) system. Geometricaly determine
if the geodetic and astronomic meridian planes are parallel; provide a drawing with sufficient
discussion to justify your answer. What are the most general conditions under which these two
planes would be parallel?
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222 Loca Terrestrial Coordinates

This set of coordinates forms the basis for traditional three-dimensional geodesy and for close-
range, local surveys. It istheloca system in which we make traditional geodetic measurements
of distance and angles, or directions, using distance measuring devices, theodolites, and
combinations thereof (total station). It is also still used for modern measurement systems, such
as in photogrammetry, for local referencing of geospatial data, and in assigning directions for
navigation. Thelocal coordinate system can be defined with respect to the local ellipsoid normal
(local geodetic system) or the local gravity vector (local astronomic system). The developments
for both are identical, where the only difference in the end is the specification at one point of
latitude and longitude, i.e., the direction of the vertical. Thelocal system is Cartesian, consisting
of three mutually orthogonal axes; however, their principal directions do not always follow
conventional definitions (in surveying the directions are north, east, and up; in navigation, they
are north, east, and down, or north, west, and up).

For the sake of practical visualization, consider first the local astronomic system (Figure
2.18). Thethird axis, w, is aligned with the tangent to the plumb line at the local origin point,
P, which is aso the observer’s point. The first axis, u, isorthogona to w and in the direction
of north, defined by the astronomic meridian. And, the second axis, v, is orthogonal to w and
u and points east. Note that (u,v,w) are coordinates in aleft-handed system. Let Q be atarget
point and consider the coordinates of Q inthislocal astronomic system.

w (astronomic zenith)

u

(north)
v (east)
8
y

(o))

Ao N
X

Figure 2.18: Local astronomic system, (u,v,w).
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Figure 2.19: Local astronomic coordinates and measured quantities.

With reference to Figure 2.19, the measured quantities are the distance from P to Q,
denoted by c,,; the astronomic azimuth of Q a P, denoted A,, (we will discuss later in
Section 2.3 how to measure azimuths using astronomic observations); and the vertical angle of
Q a P, denoted, V,,. Thelocal Cartesian coordinates of Q in the system centered at P are
given in terms of these measured quantities by

Upg = Cpg COSVpg COS Ay,
Vpg = Cpg COSVpg SIN A, (2.147)
Wpo = Cpg SINVpg

%

Figure 2.20: The relationship between (u,v,w) and (|| x,| .|l 2).

Consider now a Cartesian coordinate system at P that is paralel to the global (x, Y, z)
system (Figure 2.20); denote its axes, respectively, by || X, || y, and || z. Note that the v-axisis
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always in the plane generated by || x and || y since the u,w-planeis perpendicular to the equator
because of the definition of the meridian plane. The Cartesian coordinates of the point Q in this
system are simply

[ Xeq = AXeq =Xy =X
| Yo EAyPQ =Yo " Yp (2.148)
| Zpg = 4255 =25 =2

The relationship between the and (|| X sl z) systems is one of rotation and accounting for the
different handedness of the two systems. We can apply the following transformations to change
from (u,v,w) coordinatesto (|| x,|| |l z) coordinates:

Mg 1 0 0) U
AYeo | =R (180° = /)R, (90°~®,)| 0 1 0| Ve |, (2.149)
4z, 0 0 1){wy

where the right-most matrix on the right side of the equation transforms from a left-handed
system to a right-handed system (only then can the rotation matrices be applied), and the rotation
matrices are given by equations (1.5) and (1.6). The resulting transformation is (left to the reader
to verify):

AXoq —sin@,cos/, —sin/l, cos@, cos/k |( Upg
AYpo |=| —SINPpsinA, cos/l,  cOs@P SN/ || Vg | (2.150)
A4z, Cos@; 0 sn @, Wog

Therefore, substituting equation (2.147), we find

DXeq —sin@,cos/, —sin/l, cos@, cos/L, \( Cp, COSVp, COS A
AYpo |=| —SINPpsin/A, cos/A,  COSP, SN/, || Co COSVpo SINA, |, (2.151)
Az, cos@, 0 sn®, Cpo SINVpq

which gives the transformation from measured quantities, (CPQ,VPQ,ADQ), to Cartesian
coordinate differences in a global system, provided also astronomic latitude and longitude of the
observer’s point are known.

It is remarkable that conventional determinations of astronomic latitude and longitude (see
Section 2.3), as well as of astronomic azimuth, vertical angle, and distance can be used to
determine these relative Cartesian coordinates — this is the basis for traditional three-dimensional
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geodesy, that is, the computation of al three coordinates of points from terrestrial geometric
measurements. We note, again, that these determinations are relative, not absolute, where the
|atter can be obtained only by specifying the coordinates, (., Yy, 2-), of the observer’s point in
the global system. Nowadays, of course, we have satellite systems that provide the three-
dimensional Cartesian coordinates virtually effortlessly in a global system. Historically (before
satellites), however, three-dimensional geodesy could not be realized very accurately because of
the difficulty of obtaining the vertical angle without significant atmospheric refraction error.
Thisis one of the principal reasons that traditional geodetic control for a country was separated
into horizontal and vertical networks, where the latter is achieved by leveling (and is, therefore,
not strictly geometric, but based on the geopotential).

The reverse transformation from (AxPQ,AyPQ,AzPQ) to (CPQ,VPQ,ADQ) is easily obtained
since the transformation matrix is orthogonal. From equation (2.150), we have

Upq -sn@,cos/A, -sin/l, cos®,cos/\, ! AXeq
Voo |=| —SIN@psin/A, cos/l,  cos@,sin/ | | Ay |; (2.152)
Wog cos®, 0 sn®, 4z,

and, with equation (2.147), it is easily verified that

tan A, = Voo _ —AXpo SINA, + Ay, COS/p
% Uy Ao SIND, COSA, =AY SN P, SIN A, + A2, COSD,, |

(2.153)

W,
SNVp, =—2 = i(AxF,Q COS®, COS /}, +Ayp, COSP, SN A, +42,,SiN B, ), (2.153) (2.154)

Cro =y OXq +AY2, +AZ2, . (2.155)

Analogous eguations hold in the case of the local geodetic coordinate system. In this case
the elipsoid normal serves as the third axis, as shown in Figure 2.21, and the other two axes are
mutually orthogona and positioned similar to the axes in the local astronomic system. We
assume that the ellipsoid is centered at the origin of the (x, Y, z) system, and we designate the
local geodetic coordinates by (r , s,t) . Itiseasily seen that the only difference between the local
geodetic and the loca astronomic coordinate systems is the direction of corresponding axes,
specifically the direction of the third axis; and, this is defined by the geodetic latitude and
longitude. This means that the analogues to equations (2.151) and (2.153) through (2.155) for
the local geodetic system are obtained simply by replacing the astronomic coordinates with the
geodetic latitude and longitude, ¢, and A, :
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AXeq —sing,cos A -sinj, €os@ Cos 4 [ Cpg COSVp, COS O
AYpo |=| —SIN@gSIN 4, COSA, €OS@ SN A || Cpg COSVp SIN G, | (2.156)
Az, cos@, 0 sin g Cpo SINVpq

where a,,, isthe normal section azimuth and v, isthe vertical angle in the normal plane of Q.
The reverse relationships are given by

—AXpo SINA, +AYp, COSAL

tand,, = - - : , (2.157)
—AXpo SiNg, COSA, —AYp, SN, SiNA, +427,, COS@,

SiNVp, = i(AIXF,Q COS@, COSA, +A4Yp, COSE SINA, +4Z,, SN (q:) : (2.158)
Crg

Cog = OXeg + Ay +AZ2, . (2.159)

The latter have application, in particular, when determining normal section azimuth, distance,
and vertical angle (in the normal plane) from satellite-derived Cartesian coordinate differences
between points (such as from GPS). Note that the formulas hold for any point, not necessarily
on the dlipsoid, and, again, that it is the normal section azimuth, not the geodesic azimuth in
these formulas.

? t (geodetic zenith)
(north) "
S (east)
p
geodetic meridian
P y
Ap
X
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2221 Problems

1. Derive equation (2.150).

2. Show that the transformation from local geodetic to local astronomic coordinates (same
origin point, P) isgiven by

Upg 1 ~(/ =25)sing, ~(® -@) Mg
Voo |=| (/e =Ap)sing, 1 ~(/A =2 )cos@ || Seq |, (2.160)
Weq (pp_% (/L_/L)COS@ 1 tPQ

where second and higher powers in the differences, (@, -@) and (/,-4,), have been
neglected. (Hint: the coordinates in the two systems have the same Cartesian differences.)

3. Suppose the geodetic coordinates, (@,4,) and (%,)IQ) , of two points on the elipsoid are
given and the distance between them is under 200 km. Develop a procedure to test the
computation of the geodesic azimuths, &,, and &, obtained by the solution to the inverse
geodetic problem (Section 2.1.4). Discuss the validity of your procedure also from a numerical
viewpoint.

4.8) Derivethe following two equalities:

tan —tana looVeo — SpolU
tan(A:Q _ PQ) — ADQ PQ__'PQYPQ SpqUpq . (2.161)
I+tan Apgtanapy  TagUpg +SeoVeqg
b)  Now, show that to first-order approximation, i.e., neglecting second and higher powersin
the differences, (@, @) and (/4. - A,):

: t Mot
tan(ADQ _aPQ) :(/‘P _/]P)Sm% +SPQ—PQ2(¢P _%) _%(AP _AP)COS%- (2.162)
e T Spq 'rq TSeq

(Hint: use equation (2.160).)
c) Finaly, with the same approximation show that

Ao = Qpg = (/e =Ap)SiNg, +((¢P ~@)sin a,, —(/4 —A )cosg cos aPQ)tanvPQ. (2.163)
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The latter is known as the (extended) Laplace condition, which will be derived from a more
geometric perspectivein Section 2.2.3.
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2.2.3 Differences Between Geodetic and Astronomic Quantities

As we will see in Section 2.3, the astronomic latitude, longitude, and azimuth are observable
guantities based on a naturally defined and realized coordinate system, such as the astronomic
system or the terrestrial reference system alluded to in Section 2.2. These quantities also depend
on the direction of gravity a a point (another naturally defined and realizable direction).
However, the quantities we use for mapping purposes are the geodetic coordinates, based on a
mathematically defined ellipsoid. Therefore, we need to develop equations for the difference
between the geodetic and astronomic coordinates (and azimuths), in order to relate observed
guantities to mathematically and geographically useful quantities. These equations will also be
extremely important in realizing the proper orientation of one system relative to the other.

Already in Problem 2.2.2.1-4, the reader was asked to derive the difference between
astronomic and geodetic azimuth. We now do this using spherical trigonometry which also
shows more clearly the differences between astronomic and geodetic latitude and longitude. In
fact, however, the latter differences are not derived, per se, and essentially are just given names,
i.e., the components of the astro-geodetic deflection of the vertical, under the following
fundamental assumption. Specifically, we assume that the two systems, the astronomic (or
terrestrial) and geodetic systems, are parallel, meaning that the minor axis of the ellipsoid is
paralel to the z-axis of the astronomic system and the corresponding x-axes are paralel.
Under this assumption we derive the difference between the azimuths. Alternatively, we could
derive the relationships under more general conditions of non-parallelism and subsequently set
the orientation angles between axes to zero. The result would obviously be the same, but the
procedure is outside the present scope (we give the relevant equationsin Section 3.1).

Figure 2.22 depicts the plan view of a sphere of unlimited radius as seen from outside, along
the tangent to the plumb line or along the local astronomic coordinate axis, w, that is, from the
astronomic zenith. The origin of this sphere could be the center of mass of the Earth or the
center of mass of the solar system, or even the observer’s location. Insofar as the radius is
unspecified, it may be taken as sufficiently large so that the origin, for present purposes, is
immaterial. We call this the celestial sphere; see also Section 2.3. All points on this sphere are
projections of radial directions and since we are only concerned with directions, the value of the
radius is not important and may, as well, be assigned a value of 1 (unit radius), so that angles
between radial directions are equivalent to great circle arcs on the sphere in terms of radian
measure.

Clearly, the circle shown in Figure 2.22 is the (astronomic) horizon. Z, denotes the
astronomic zenith, and Z, is the geodetic zenith, being the projection of the ellipsoidal normal
through the observer, P (see Figure 2.21). As noted earlier, the angular arc between the two
zeniths is the astro-geodetic deflection of the vertical, @ (the deflection of the tangent to the
plumb line from a mathematically defined vertical, the ellipsoid normal). It may be decomposed
into two angles, one in the south-to-north direction, ¢, and one in the west-to-east direction, 7
(Figure 2.23). The projections of the astronomic meridian and the geodetic meridian intersect on
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the celestial sphere because the polar axes of the two systems are parallel by assumption (even
though the astronomic meridian plane does not contain the z-axis, the fact that both meridian
planes are parallel to the z-axisimplies that on the celestial sphere, their projections intersect in
the projection of the north pole). On the horizon, however, there is a difference, 4, between
astronomic and geodetic north.

astronomic north l ( geodetic north

astronomic
meridian

local
horizon

celestial sphere

Figure 2.22: Astronomic and geodetic azimuths.

Za
o
Zg 7 F
E
N
H

Figure 2.23: Deflection of the vertical components.
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Now, the angle at the north pole between the meridians is 41 =/ -A, again, because the
two systems presumably have parallel x-axes (common origin on the celestial sphere). From the
indicated astronomic and geodetic latitudes, we find by applying the law of cosines to the
triangle Z,OF :

cos(90° - ¢) =cos7cos(90° — @ + &) +sinsin(90° ~@ +¢&)cos90 °. (2.164)

Since 17 isasmall angle (usually of the order of 10 arcsec), we have

sing=sin(®-¢), (2.165)
and hence
f=0-g. (2.166)

Applying the law of sinesto the sametriangle, Z,OF , one finds

sinp _sin(90°-¢)

sin4A sin90°
and, with the same approximations,
n=(A-2)cosg. (2.168)

Thus, the north and east components, & and 77, of the deflection of the vertical are essentially
the differences between the astronomic and the geodetic | atitudes and longitudes, respectively.

The great circle arc, u/a_Q\a , in Figure 2.22 is the same as the astronomic azimuth, A, to the
target point, Q, while the great circle arc (approximately, since the two zeniths are close), u/g_Q\g ,
is the same as the geodetic (normal section) azimuth, &, of the target point. Thus, from Figure
2.22, we obtain:

A-a =u,Q, -U,Q, =4 +4,. (2.169)

It remains to find expressionsfor 4 and 4,.
From the law of sines applied to triangle u,Ou, , we find

sn4 _ sng _ .
= = =AAsing, 2.170
sindAd  sin90° 4 ¢ ( )
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with the usual small-angle approximation. Similarly, intriangle Q,QQ, , the law of sinesyields

sna, _sin(90°-z,)
sndp  sin90°

= 4,=4pcosz,. (2.171)

Also, triangle Z_,QH (see also Figure 2.23) yields

sin4p sna sina
= = Ap=(&+¢ } 2.172
sin(é+&) singz, p=(¢ )sinza1 ( )
Finally, from the approximately planar triangle Z,FH we obtain
Ui
c= , 2.173
tan (180"~ ) (2173)

which could also be obtained by rigorously applying the laws of cosines and sines on the
spherical triangle and making the usual small-angle approximations.
Substituting equations (2.172) and (2.173) into equation (2.171), we find

4, =(&+¢)sina cot z (2.174)
=(&sina -1 cosar ) cot z |

where the approximation z=z, =z, is legitimate because of the small magnitude of 4,. We
come to the final result by combining equations (2.170) and (2.174) with equation (2.169):

A-a =(/A-A)sing +(&sina -1 cosar )cot z, (2.175)

which, of course, in view of equations (2.166) and (2.168) is the same as equation (2.163).
Equation (2.175) is known as the (extended) Laplace condition. Again, it is noted that a isthe
normal section azimuth. The second term on the right side of equation (2.175) is the extended
part that vanishes (or nearly so) for target point on (or close to) the horizon, where the zenith
angleis 90°. Even though this relationship between astronomic and geodetic azimuths at a point
is a consequence of the assumed parallelism of the corresponding system axes, its application to
observed astronomic azimuths, in fact, also ensures this parallelism, i.e., it is a sufficient
condition. This can be proved by deriving the equation under a general rotation between the
systems and specializing to parallel systems. The geodetic (normal section) azimuth, a,
determined according to equation (2.175) from observed astronomic quantities is known as the
Laplace azimuth.
The simple Laplace condition (for z=90°),
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A-a=(A-A)sing, (2.176)

describes the difference in azimuths that is common to all target points and is due to the non-
parallelism of the astronomic and geodetic meridian planes at the observer’s location (Figure
2.22). Interestingly, the ssimple Laplace condition is aso the Bessel equation derived for
geodesics, equation (2.95), which, however, is unrelated to the present context. The second term
in the extended Laplace condition (2.174) (for target points with non-zero vertical angle)
depends on the azimuth of the target. It is analogous to the error in angles measured by a
theodolite whose vertical is out of alignment (leveling error).
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2231 Problems

1. Suppose the geodetic system is rotated with respect to the astronomic system by the small
angle, w,, about the polar axis. Repeat all derivations and thus show that the components of the
deflection of the vertical and the Laplace condition are now given by

{=@-¢
n=(A-21-w,)cosp (2.177)
A-a =(N-A -w,)sing +(® -¢g)sin a~ A=A —w)cos gos gcot z

2. Suppose that an observer measures the astronomic azimuth of atarget. Describe in review
fashion all the systematic corrections that must be applied to obtain the corresponding geodesic
azimuth of the target that has been projected (mapped) along the normal onto an ellipsoid whose
axes are parallé to the astronomic system.
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2.3 Cdestia Coordinates

In order to determine astronomic coordinates of points on the Earth, we make angular
observations of stars relative to our location on the Earth and combine these measurements with
the known coordinates of the stars. Therefore, we need to understand how celestial coordinates
are defined and how they can be related through terrestrial observations to the astronomic
coordinates. Later we will also discuss the orientation of the terrestrial coordinate systems with
respect to inertial space and, again, we will have need of celestial coordinates.

For the moment, we deal only with directions, or angles, because all celestia objects that
concern us (stars, quasars) are extremely distant from the observer on the Earth. Thus, as in
Section 2.2, we project the coordinate directions of observable objects, as well as general
directions, radially onto the celestial sphere. At therisk of being too repetitive, thisis afictitious
sphere having infinite or arbitrary (e.g., unit) radius; and, formally the center of this sphereis at
the center of mass of the solar system. However, it can have any of a number of centers (e.g., the
geocenter), where transformation from one to the other may or may not require a correction,
depending on the accuracy required in our computations. Certainly, thisis of nho consequence for
the most distant objects in the universe, the quasars (quasi-stellar radio source). The main point
isthat the celestial sphere should not rotate in time, meaning that it defines an inertial system (we
ignore the effects of genera relativity).

We introduce three coordinate systems. 1) the horizon system, in which we make our
astronomic observations, 2) the equatorial, right ascension system, in which we define the
celestial coordinates of objects; and 3) the equatorial, hour angle system, that connects 1) and 2).
Each coordinate system is defined by mutually orthogonal axes that are related to naturally
occurring directions; we need two such directions for each system. Each system is either right-
handed, or |eft-handed.

2.3.1 Horizon System

The horizon system of coordinates is defined on the celestial sphere by the direction of local
gravity and by the direction of Earth’s spin axis, intersecting the celestial sphere at the north
celestial pole (NCP) (Figure 2.24). (For the moment we assume that the spin axisis fixed to the
Earth and in space; see Chapters 3 and 4 for a more precise definitions of the polar direction,
both for terrestrial and for celestial systems.) The positive third axis of the horizon system is the
negative (upward) direction of gravity (the zenith is in the positive direction). The first axisis
defined as perpendicular to the third axis and in the astronomic meridian plane, positive
northward. And, the second axis is perpendicular to the first and third axes and positive
eastward, so as to form a left-handed system. The intersection of the celestial sphere with the
plane that contains both the zenith direction and an object is called the vertical circle.
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The (instantaneous) coordinates of stars (or other celestial objects) in this system are the
zenith angle and the astronomic azimuth. These are aso the observed quantities; however,
instead of azimuth, one may observe only a horizontal angle with respect to some other
accessible reference direction. Both are “astronomic” in the sense of being an angle that is
turned about the direction defined by the astronomic zenith. The horizon system is fixed to the
Earth and the coordinates of celestial objects change in time as the Earth rotates.

A 3, zenith
vertical
circle
north celestial
ole (NCP
pole ) 2, east
celestial
equator
1, north
astronomic
horizon
celestial —
sphere

Figure 2.24: Horizon system.

2.3.2 Equatorial, Right Ascension System

The equatorial, right ascension system of coordinates is defined on the celestia sphere by the
direction of Earth’s spin axis (the north celestial pole) and by the direction of the north ecliptic
pole (NEP), both of which, again, are naturally defined directions. Again, we assume the NEP to
be fixed in space. Figure 2.25 shows the (mean) ecliptic plane, which is the plane of the average
Earth orbit around the sun. The direction perpendicular to this plane is the north ecliptic pole. A
point where the ecliptic crosses the celestial equator on the celestial sphereis called an equinox;
the vernal equinox, Y, isthe equinox at which the sun crosses the celestial equator from south to
north as viewed from the Earth. It is the point on the Earth’s orbit when Spring starts in the
northern hemisphere. The angle between the celestial equator and the ecliptic is the obliquity of
the ecliptic, €, itsvalueis approximately & =23.44° .
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The first axis of the right ascension system is defined by the direction of the vernal equinox
and the third axis is defined by the north celestial pole (NCP). By definition these two axes are
perpendicular since the vector defining the direction of the vernal equinox lies in the equatorial
plane with respect to which the polar axisis perpendicular. The second axis is perpendicular to
the other two axes so as to form a right-handed system. The intersection of the celestial sphere
with the plane that contains both the third axis (NCP) and the object is called the hour circle of
the object (Figure 2.26), the reason for which will become apparent in Section 2.3.3. The right
ascension system is assumed to be fixed in space, i.e,, it is an inertial system in the sense that it
does not rotate in space (again, thisis made more precise in Chapter 4).

The coordinates of stars (or other celestial objects) in the right ascension system are the
celestial coordinates: declination and right ascension. Very much anaogous to the spherical
coordinates of latitude and longitude on the Earth, the declination, J, isthe angle in the plane of
the hour circle from the equatorial plane to the object; and the right ascension, a , isthe angle in
the equatoria plane from the vernal equinox, counterclockwise (as viewed from the NCP), to the
hour circle of the object (despite the same notation, no confusion should exist between right
ascension and azimuth). For geodetic applications, these coordinates for stars and other celestial
objects are assumed given. Since the right ascension system is fixed in space, so are the
coordinates of objects that are fixed in space; stars do have lateral motion in this system and this
must be known for precise work (see Section 4.2.1).

For later reference, we a so define the ecliptic system which is aright-handed system with the
same first axis (vernal equinox) as the right ascension system. Its third axis, however, is the
north ecliptic pole. Coordinates in this system are the ecliptic latitude (angle in the ecliptic
meridian from the ecliptic to the celestial object), and the ecliptic longitude (angle in the ecliptic
from the vernal equinox to the ecliptic meridian of the celestial object).

north ecliptic pole (NEP)

mean ecliptic plane

vernal equinox
(First Point of Aries)

Figure 2.25: Mean ecliptic plane (seasons are for the northern hemisphere).
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Figure 2.26: Equatorial, right ascension system.

2.3.3 Equatorial, Hour Angle System

The equatorial, hour angle system of coordinates is introduced as a link between the horizon
system, in which observations are made, and the right ascension system, in which coordinates of
observed objects are given. As with the previous systems, the hour angle system is defined by
naturally occurring directions: the direction of Earth’s spin axis (NCP) which is the third axis of
the system, and the local direction of gravity which together with the NCP defines the
astronomic meridian plane. The first axis of the system is the intersection of the astronomic
meridian plane with the celestial equatorial plane; and, the second axis is perpendicular to the
other two axes and positive westward, so as to form a left-handed system (Figure 2.27). Asin
the case of the horizon system, the hour angle system is fixed to the Earth.
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Figure 2.27: Equatorial, hour angle system.

The (instantaneous) coordinates of stars (or other celestial objects) in this system are the
declination (the same as in the right ascension system) and the hour angle. The hour angle, t,
that gives this system its name, is the angle in the equatorial plane from the local astronomic
meridian to the hour circle of the celestial object. It is reckoned clockwise as viewed from the
NCP and increases with time. In fact, it changes by 360° with a complete rotation of the Earth
with respect to inertial space for objects fixed on the celestial sphere (note that the declination
remains constant as the Earth rotates — assuming the direction of the spin axis remains fixed; it
does not, as we will seein Chapter 4).

2.3.4 Coordinate Transfor mations

Transformations between coordinates of the horizon and right ascension systems can be
accomplished with rotation matrices, provided due care is taken first to convert the left-handed
horizon system to a right-handed system. We take another approach that is equally valid and
makes use of spherical trigonometry on the celestial sphere. Consider the so-called astronomic
triangle (Figure 2.28) whose vertices are the three important points on the celestial sphere
common to the two systems:. the north celestial pole, the zenith, and the star (or other celestia
object). It isleft to the reader to verify that the labels of the sides and angles of the astronomic
triangle, as depicted in Figure 2.28, are correct (the parallactic angle, p, will not be needed).
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Using spherical trigonometric formulas, such as the law of sines, equation (1.1), and the law of
cosines, equation (1.2), it is also left to the reader to show that the following relationship holds:

SinzcosA -sn®@ 0 cos@ [ cosodcost
sinzsinA | = 0 -1 O cosdsint |. (2.178)
CoSZz cos®@ 0 sno@ sino

The matrix on the right side is orthogonal, so that the following inverse relationship also holds

C0SO cost -sn®@ 0 cos@\(sinzcosA
cosdsint |= 0 -1 0 sinzsinA|. (2.179)
sind cos® 0 sno CoSZ

Z (zenith)

S(dar)
Figure 2.28: Astronomic triangle on the celestial sphere.

Figure 2.29 completes the transformation between systems by showing the relationship
between the right ascension and the hour angle. Because the hour angle also is a measure of
Earth’s rotation with respect to a reference on the celestial sphere, we identify the hour angle
with atype of time, specifically sidereal time (we will discuss time in more detail in Chapter 5).
We define:

t, = hour angle of the vernal equinox = local sidereal time (LST) . (2.180)

It isalocal time since it applies to the astronomic meridian of the observer. Clearly, from Figure
2.29, we have for an arbitrary celestial object with right ascension, a , and hour angle, t:

LST =a +t. (2.181)
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We note that 24 hours of sidereal time is the same as 360 degrees of hour angle. Also, the hour
angle of the vernal equinox at the Greenwich meridian, tS, is known as Greenwich Sidereal
Time (GST).

local astronomic

meridian celestial equator

hour circle

verna
equinox

Greenwich astronomic
meridian
Figure 2.29: Transformation between right ascension and hour angle systems.

2.3.5 Determination of Astronomic Coordinates and Azimuth

The following is a very much abbreviated discussion of the determination of astronomic
coordinates, (<Z>,/l), and astronomic azimuth, A, from terrestrial observations of stars. For
more details the interested reader is referred to Mueller (1969)*°. In the case of astronomic
latitude, @, we consider the case when a star crosses the local astronomic meridian of the
observer. Then the hour angle of the star is t = 0°, and according to Figure 2.28, we have simply

0°-@=90°-9, tz, = @=4, ~z
(2.182)
90°-9s =N0°-P+z, = @=q+zg
where J,, o5 and z,, z refer to the declinations and zenith angles of stars passing to the north,
respectively south, of the zenith. The declinations of the stars are assumed given and the zenith
angles are measured. Combining these, the astronomic latitude of the observer is given by

¥ Mueller, 1.1 (1969): Spherical and Practical Astronomy as Applied to Geodesy. Frederick Ungar Publishing Co.,
New Y ork.
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d’:%(JN +i) _%(ZN _Zs)' (2.183)

The reason for including stars on both sides of the zenith is that atmospheric refraction in the
observed zenith angle will tend to cancel in the second term in equation (2.183) if the
corresponding zenith angles are approximately equal. Also, it can be shown (Problem 2.3.6-2)
that knowing where the astronomic meridian is (i.e., knowing that t =0°) is not a critical factor
when measuring the zenith angle of a star at its culmination (the point of maximum elevation
above the horizon, which the star attains as it crosses the meridian).

Determining the astronomic longitude of an observer requires that a reference meridian be
established (the reference for latitudes is the equator which is established by nature).
Historically, thisisthe meridian through the Greenwich Observatory near London, England. The
longitude of an observer at any other point is simply the difference between LST and GST (see
Figure 2.29):

A=LST-GST. (2.184)

If we wait until a star crosses the local astronomic meridian, when t =0°, then from equation
(2.181) LST =a, where the right ascension of the star must be given. Alternatively, using the
law of cosines applied to the astronomic triangle (Figure 2.28), we can calculate the hour angle
for any sighting of a star by measuring its zenith angle and having aready determined the
astronomic latitude:

_cosz-sin@snod
cos@cosd

cost (2.185)

It can be shown (Problem 2.3.6-3) that errors in the zenith measurement and the astronomic
latitude have minimal effect when the star is observed near the prime vertical. With t thus
calculated, the LST is obtained, again, from equation (2.181) and the known right ascension of
the observed star.

Either way, with the hour angle known or calculated, one needs a reference for longitudes,
and thisis provided by the GST. It means that the observer must have a clock (chronometer) that
keeps Greenwich Sidereal Time which isrecorded at the moment of observation.

The determination of astronomic azimuth is less straightforward and can be accomplished
using either a calculation of the hour angle from a time measurement or the measurement of the
zenith angle. For the first case, the hour angle, t, of a star can be calculated using equation
(2.181), where LST is determined from equation (2.184) based on a previous determination of
the observer’s longitude and a recording of GST at the moment of observation. Now, from
equation (2.178), we have
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sint

- , (2.186)
sin@cost —cos@tan o

tan A =

where A is the (instantaneous) astronomic azimuth of the star at the time of observation. The
observer’s astronomic latitude and, as always, the declination and right ascension of the star are
assumed to be given.

Alternatively, using a star’s observed zenith angle, we find its astronomic azimuth from the
law of cosines applied to the astronomic triangle (Figure 2.28):

_sind-sin@cosz

_ (2.187)
cos@sinz

Ccos A

This does not require a determination of the hour angle (hence no longitude and recording of
GST), but isinfluenced by refraction errorsin the zenith angle measurement.

Of course, z or t and, therefore, Ay will change if the same star is observed at a different
time. To determine the astronomic azimuth of a terrestrial target, Q, we first set up the
theodolite (a telescope that rotates with respect to vertical and horizontal graduated circles) so
that it sights Q. Then at the moment of observing the star (with the theodolite), the horizontal
angle, D, between the target and the vertical circle of the star is also measured. The astronomic
azimuth of the terrestrial target is given by

A,=A,-D. (2.188)

Having established the astronomic azimuth of a suitable, fixed target, one has also established,
indirectly, the location of the local astronomic meridian — it is the vertical circle at a horizontal
angle, A,, counterclockwise (as viewed from the zenith) from the target.
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2.36 Problems

1. Deriveequation (2.178).

2. a) Starting with the third component in equation (2.178), and also using the first component,
show that (assuming dd =0)

do=-—% _tan Acosat (2.189)
CosA

b) Determine the optimal azimuth for the observation of a star so as to minimize the error in
calculating the astronomic latitude due to errors in the zenith angle measurement and in the
determination of the hour angle.

3. @ As in Problem 2, use equation (2.178) and other relationships from the astronomic
triangle to show that

dz _cotAd(p

dt = ——
sn Acos@®@ cos@

(2.190)

b) Determine the optimal azimuth for calculating a star’s hour angle so as to minimize the
error in calculating the astronomic longitude due to errors in the zenith angle measurement and
in the determination of the astronomic latitude.

4.8 Asin Problem 2, use equation (2.178) and further trigonometric relations derived from
Figure 2.28, to show that

_ COosSpcosd
sinz

dAg dt +cot zsin A;d@, (2.191)

where p isthe parallactic angle.

b) Determine optima conditions (declination of the star and azimuth of observation) to
minimize the error in the determination of astronomic azimuth due to errors in the cal culations of
hour angle and astronomic latitude.
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5.8 From equation (2.187), show that
sin A,dA = (cot z—cos Ay tan @) d@ —(tan @ —cos A cot z) dz. (2.192)

b) Show that the effect of a latitude error is minimized if the hour angle is t =90° or
t =270°; and that the effect of a zenith angle error is minimized when the parallactic angle is
p=90°.
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Chapter 3
Terrestrial Reference Systems

Geodetic control at local, regional, national, and international levels has been revolutionized by
the advent of satellite systems that provide accurate positioning capability to terrestrial observers
at al scales, where, of course, the Global Positioning System (GPS) has had the most significant
impact. The terrestrial reference systems and frames for geodetic control have evolved
correspondingly over the last few decades. Countries and continents around the world are
revising, re-defining, and updating their fundamental networks to take advantage of the high
accuracy, the ease of establishing and densifying the control, and critically important, the
uniformity of the accuracy and the connectivity of the control that can be achieved basicaly in a
global setting.

We will consider these reference systems, from the traditional to the modern, where it is
discovered that the essentia concepts hardly vary, but the implementation and utility clearly
have changed with the tools that have become available. Even though the traditional geodetic
reference systems have been or are in the process of being replaced by their modern counterparts
in many economically developed regions, they are still an important component for many other
parts of the world. It is important, therefore, to understand them and how they relate to the
modern systems.

We begin with the definition of the geodetic datum. Unfortunately, the definition is neither
consistent nor explicit in the literature and is now even more confusing vis-a-vis the more precise
definitions of reference system and reference frame (Section 1.2). The National Geodetic Survey
(NGS, 1986)*, defines the geodetic datum as “a set of constants specifying the coordinate system
used for geodetic control, i.e., for calculating coordinates of points on the Earth.” The definition
given there continues with qualifications regarding the number of such constants under

! NGS (1986): Geodetic Glossary. National Geodetic Survey, National Oceanic and Atmospheric Administration
(NOAA), Rockville, MD.
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traditional and modern implementations (which tends to confuse the essential definition and
reduces it to specialized cases rather than providing a conceptual foundation). Other sources are
less deliberate, and add no clarification. For example, Torge (1991)? states that a geodetic datum
“defines the orientation of a conventional [coordinate] system with respect to the global X,Y,Z -
system, and hence, with respect to the body of the earth.” Moritz (1978)° the title of his paper
notwithstanding, only states that a geodetic datum “is usually defined in terms of five parameters
..”; Ewing and Mitchell (1970)* are also vague about the definition: “a geodetic datum is
comprised of an ellipsoid of revolution fixed in some manner to the physical earth”; while
Bomford (1980)° states that a datum is the ellipsoid and/or the three coordinates of an origin
point relative to the ellipsoid. Finally, Rapp (1992)° attempts to bring some perspective to the
definition by giving a “simple definition” for a horizontal datum, which is analogous to the
discussion by Moritz.

All of these endeavors to define a geodetic datum are targeted toward the horizontal geodetic
datum (i.e., for horizontal geodetic control). We will provide a more systematic definition of the
geodetic datum and try to relate these to those of reference systems and frames given earlier.
The NGS definition, in fact, provides a reasonably good basis. Thus:

A Geodetic Datum is a set of parameters and constants that defines a coordinate system,
including its origin and (where appropriate) its orientation and scale, in such a way as to make
these accessible for geodetic applications.

This general definition may be used as a starting point for defining traditional horizontal and
vertical datums. It conforms to the rather vaguely stated definitions found in the literature and
certainly to the concepts of the traditional datums established for geodetic control. Note,
however, that the definition includes both the definition of a system of coordinates and its
realization, that is, the frame of coordinates. Conceptually, the geodetic datum defines a
coordinate system, but once the parameters that constitute a particular datum are specified, it
takes on the definition of a frame. Because of the still wide usage of the term, we continue to
talk about the geodetic datum as defined above, but realize that a more proper foundation of
coordinates for geodetic control is provided by the definitions of reference system and reference
frame. In fact, the word “datum” by itself still formally connotes the definition of parameters for
the origin, orientation, and scale of a system, and thus is more closely associated with its frame.

2 Torge, W. (1991): Geodesy, Second Edition. Walter deGruyter, Berlin.

3 Moritz, H. (1978): The definition of a geodetic datum. Proceedings of the Second International Symposium on
Problems Related to the Redefinition of North American Geodetic Networks, 24-28 April 1978, Arlington, VA,
pp.63-75, National Geodetic Survey, NOAA.

* Ewing, C.E., Mitchell, M.M. (1970): Introduction to Geodesy. Elsevier Publishing Co., Inc., New Y ork.

® Bomford, G. (1971): Geodesy, 3rd edition. Oxford University Press.

® Rapp, R.H. (1992): Geometric Geodesy, Part I1. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, Columbus, OH. http://hdl.handle.net/1811/24409
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Indeed, the IERS extends the datum to include also temporal rates of change of these
fundamental parameters (see Section 3.3).

It is now a simple matter to define the traditional geodetic datum for horizontal and vertical
control:

A horizontal geodetic datum is a geodetic datum for horizontal geodetic control in which points
are mapped onto a specified ellipsoid.

A vertical geodetic datum is a geodetic datum for vertical geodetic control in which points are
mapped to the geopotential.

The horizontal datum is two-dimensional in the sense that two coordinates, latitude and
longitude, are necessary and sufficient to identify a point; however, the geometry of the surface
on which these points are mapped is such that its realization, or accessibility, requires a three-
dimensional conceptualization. The vertical datum, on the other hand, is one-dimensional and
requires the value of but a single parameter, the origin point, to be realizable. We will not
discuss vertical datums at length in these notes (however, see Section 3.5).

3.1 Horizontal Geodetic Datum

The definition of any terrestrial coordinate system requires the specification of its origin and its
orientation with respect to the Earth. If geodetic coordinates are used one must specify in
addition the ellipsoid to which they refer. For three-dimensional systems, we will see later that
scale is aso important; however, for horizontal systems describing only the angles, latitude and
longitude, the coordinate system scale is not as critical since it is basically associated with
heights. It is noted that scale parameters associated with horizontal distance measurements are
part of the instrument error models, not part of the coordinate system scale. Therefore, the
definition of the traditional horizontal geodetic datum is based on eight parameters. three to
define its origin, three to define its orientation, and two to define the ellipsoid. More than that,
however, the definition of the datum requires that these coordinate system attributes be
accessible; that is, for its practical utilization, the coordinate system must be realized as aframe.
The origin could be defined by placing the ellipsoid center at the center of mass of the Earth.
This very natural definition had one important defect before the existence of observable artificia
satellites — this origin was not accessible with sufficient accuracy. In addition, the ellipsoid
thus positioned relative to the Earth rarely “fit” the region in which geodetic control was to be
established. By a good fit we mean that the ellipsoid surface should closely approximate a
regiona reference surface for heights - the geoid, or approximately mean sea level. This was
important in the past since observations on the surface of the Earth need to be reduced to the
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ellipsoid, and the height required to do this was only known (measurable) with respect to the
geoid. Therefore, a good fit of the ellipsoid to the geoid implied that the difference between
these two surfaces regionally was not as important, or might be neglected, in the reduction of
observations. Nevertheless, it should be recognized that the neglect of the geoid, even with a
good fit, can produce systematic errors of the order of a meter, or more, that certainly with
today’ s accuracy requirements are very significant.

The alternative definition of the “origin” places the ellipsoid with respect to the Earth such
that a specific point on the Earth’s surface has given (i.e., specified or defined) geodetic
coordinates. This datum origin point, also called the initial datum point, is then obviously
accessible — it isamonumented marker on the Earth’s surface (see Figure 3.1).

z
topographic surface
] origin point
-\ \ dlipsoid
/ ———;
M y
X

Figure 3.1: Datum origin point.

The only logical definition of the orientation of the datum is to make the ellipsoid axes
paralel to the fundamental astronomic (conventional terrestrial reference) system (Section 2.2);
indeed, this is how the orientation is always defined. The three parameters associated with the
orientation could be the angles, (cux, «, ag) , between the ellipsoidal and the (x, Y, z)-axes of the
astronomic system; their values would be zero in order to enforce the parallelism:

w =0, @ =0, «=0. (3.1
The definition of orientation is thus simple enough, but the practical redlization of this condition
is less straightforward. In Section 2.2.3 we devel oped the relationships between astronomic and

geodetic quantities under the assumption that the two systems are parallel and that, basically,
they are concentric (i.e., the placement of the origin was considered to have no effect). In
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particular, we found that the astronomic and geodetic azimuths are related by Laplace's
condition, (2.175) with (2.166) and (2.168):

A-a =(/A-A)sing +((®@ —g)sin a - /A -A) cosgcos a) cot . (3.2)

In addition, we found that the components of the astro-geodetic deflection of the vertical could
be expressed smply as (essentially) the differences in astronomic and geodetic latitude and
longitude:

$=o-e (3.3)
n=(A-2)cosg
Equations (3.2) and (3.3) are necessary and sufficient for the two systems to be parallel.
If they were not parallel, each equation would contain additional terms involving the angles
(a)x, «,, ag) It is outside the scope of this exposition to derive the following formulas, however,
they may be found, in some fashion, in (Heiskanen and Moritz, 1967, p.213)" and (Pick et 4.,
1973, p.436)%; see also the analogous polar motion equations for the astronomic coordinates and
azimuth (Section 4.3.1). Neglecting second-order terms in the small rotation angles,
(a)x, «,, ag) , the geodetic coordinates and azimuth become

B = P~ SN A+, cosA (3.4)
Ag =4 +(a)X cosA +a)ysin/1)tan(p—a)z, (3.5
a, =a +(a)X cosA +a)ysin)l)sec¢), (3.6)

where (w,)l) and a refer to the geodetic coordinates and azimuth for the non-rotated ellipsoid,

and (@A) and a,, are corresponding quantities when the ellipsoid is rotated about its

center. The astro-geodetic deflections, & and 77 (equations (3.3)) at a given point with respect to
arotated ellipsoid then become:

=@ -@, ~w, SN A+, cosA, (3.7)

n=(A —/1r(,t)cosqo+(a)X oS A +aj,sin A)sinqo—a)z COSQ; (3.8

" Heiskanen, W.A., Moritz, H. (1967): Physical Geodesy, Freeman and Co., San Francisco.
8 Pick, M., Picha, J., Vyskocil, V. (1973): Theory of the Earth's Gravity Field, Elsevier Scientific Publ. Co.,
Amsterdam.
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and the azimuth, a,, , with respect to the rotated meridian becomes
01 = A=(A =2y )sing =((® —g,,)sin @ (/1 =), ) cos gcos a) cot z

—((—a)xsin/i +ag/cos)l)sina—((ag(cos)l +a Sin A)sin @— @Cos {)cos c}cotz (3.9

+(a)X cos A+, sin )l)cos¢+ wsin ¢

To first order, the non-paralelism effect is independent of a potential origin off-set,
(4x,4y,4z). While the deflection of the vertical does not change at a point (in first-order

approximation) due to a small rotation of the ellipsoid (but the way it is computed does change
as seen in equations (3.4) and (3.5)), it does change with a displacement of the ellipsoid, since
the ellipsoid normal through the point changes direction. Since, after displacement, the ellipsoid
is still paralel to the astronomic system, equations (3.3) and (3.2) hold for the new deflection
components and the geodetic azimuth. Neglecting effects due to the ellipsoidal eccentricity (i.e.,
using the mean Earth radius, R, equation (2.64)), we find

Sas = P~ Wi
3.10
:¢—go+sin¢{ﬁcos)l +ﬂsin)lj—£cos¢ (310
R R R
Mais = (/‘ _/]dis)cow
3.11
=(A —A)cosqa+(ﬁsin/] —ﬂcos/]j (310
R R
Oye = A=(A =Ay,)sing ~((® -, )sin @ ~( A = Ay, ) cosgeos a) cot z
=a+tanqo(—A—;sin/l +A—F:/cosﬂj (3.12)

- sin;u(ﬁcosﬁ +ﬂsin /lj —gcosrp sin a—(ﬁsin/i —ﬂcos)ljcosa cot z
R R R R R

where ¢, are geodetic coordinates that refer to an ellipsoid with its center displaced by
(4x, 4y, Az) from the geocenter.

When computing the geodetic azimuth of a target, Q, from the origin point, it should be
computed according to equation (3.2) as follows to ensure the parallelism of the astronomic and
geodetic systems:

Ao = Ao (o —Ay)Sing —(((DO -@)sin gy, ~( /) —A)cosgcos %VQ)cot Zoos (3.13)
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where the coordinates, (¢,4,), have already been chosen, and the quantities, (cpo,/g,Ab’Q),
have been observed (i.e., they are not arbitrary, but are defined by nature); see also Section 2.2.3.
The zenith angle, z,,, is also obtained by observation. It is sometimes stated that the Laplace
azimuth, a,,, a the origin is a parameter of the horizontal geodetic datum. However, we see
with equation (3.13), that, in fact, thisis not a parameter in the sense that it is given an arbitrarily
specified value. Only by computing the geodetic (Laplace) azimuth according to equation (3.2)
can one be assured that the datum is realized as being parallel to the astronomic system. In
theory, only one Laplace azimuth in a geodetic network is necessary to ensure the parallelism;
but, in practice, several are interspersed throughout the region to reduce the effect of observation
error (Moritz, 1978)°. That is, asingle error in azimuth propagates in a systematic way through
the network, causing significant rotational distortions, unless controlled by other azimuth
observations and correspondingly computed L aplace azimuths elsewhere in the network.

The coordinates, (%, )b,h)), of the origin point can be chosen arbitrarily, but usually they
are determined under an imposed additional condition that the separation between the ellipsoid
and the geoid in the particular region should be minimized. In the former case, one could choose

R=%D, A=/ h=H,, (3.14)

where H, is the height of the origin point above the geoid (the orthometric height); this is a
measurable quantity, again defined by nature. With the choice, given by equations (3.14), we see
that the deflection of the vertical, equations (3.3), at the origin point is zero (the normal to the
ellipsoid is tangent to the plumb line at this point), and the ellipsoid/geoid separation (the geoid
height, or geoid undulation, N,) at this point is also zero. Alternatively, we could also specify
the deflection of the vertical and geoid undulation at the origin point: (&,,/77,,N,). Then the
geodetic latitude, longitude and ellipsoidal height of the origin point are given by (see aso
Figure 3.2)

B=A=& A=A gl B =H N, (315)

which also helps ensure the parallelism of the geodetic and astronomic systems, because the first
two equations are based on equations (3.3).

® Moritz, H. (1978): The definition of a geodetic datum. Proceedings of the Second International Symposium on
Problems Related to the Redefinition of North American Geodetic Networks, 24-28 April 1978, Arlington, VA,
pp.63-75, National Geodetic Survey, NOAA.
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Figure 3.2: Geoid undulation, N, , at the origin point, in general.

To summarize, the horizontal geodetic datum as a reference system is defined as a system of
coordinates referring to an ellipsoid, with specified parameters (e.g., a, f ), whose origin is fixed
to the Earth in some prescribed way (e.g, by “attaching” the ellipsoid to a monument on the
Earth’s surface), and whose orientation is defined with respect to the astronomic system, always
by eguation (3.1). The datum as a reference frame is redlized by the three origin point
coordinates (as illustrated above), and the three orientation parameters indirectly through the
utilization of equations (3.2) and (3.3) at all points in the network where astronomic observations
are related to geodetic quantities. Here the azimuth plays the most critical role in datum
orientation.

3.1.1 Examplesof Horizontal Geodetic Datums

Table 3.1, taken from (Rapp, 1992)*, lists many of the horizontal geodetic datums of the world
(not all are still in service). NIMA (1997)* also lists over 100 datums (however, without datum
origin point parameters). Note that the datum origin coordinates (Table 3.1) were chosen either
according to equations (3.14) or (3.15), or by minimizing the deflections or the geoid undulations
(geoid heights) over the region of horizontal control; or, they were ssimply adopted from a
previous network adjustment. Again, it is beyond the present scope to explore the details of
these minimization procedures and adjustments.

10 Rapp, R.H. (1992): Geometric Geodesy, Part I1. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, Columbus, OH. http://hdl.handle.net/1811/24409

1 NIMA (1997): Department of Defense World Geodetic System 1984, Its Definition and Relationships with Local
Geodetic Systems. Technical report TR8350.2, third edition, National Imagery and Mapping Agency,
Washington, D.C.
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Table 3.1: Selected Horizontal Geodetic Dattfms

DATUM SPHEROID ORIGIN LATITUDE LONGITUDE (E)
Adindan Clarke 1880 STATION Z, 22°10°07M010 31°29' 217608
American Samoa 1962 Clarke 1866 BETTY 13 ECC -14 20 08,30 189 17 07.750
Arc-Cape (South Africa) Clarke 1880 Buffelsfontein -33 59 32,000 25 30 44.622
Argentine International Campo Inchauspe -35 58 17 297 49 48
Ascension Island 1958 Internatfonal Mean of three stations =07 57 345 37
Australian Geodetic 1966 nu;:r?lllq Johnston Geodetic Station -25 56 54.55 133 12 30.08
tiona
Bermuda 1957 Clarke 1866 FT. GEORGE B 1937 32 22 44,380 295 19 01.8%0
Berne 1898 Bessel Berne Observatory 46 57 08.660 07 26 22.33%
Betio Tsland, 1966 International 1966 SECOR ASTRD 01 21 42.03 172 55 47.90 .
Camp Area Astro 1961-62 USGS International CAMP AREA ASTRO =77 50 52.521 166 40 13.753
Canton Astro 1966 International 1966 CANTOM SECOR ASTRO -02 46 28.99 188 16 43.47
Cape Canaveral* Clarke 1B&6 CENTRAL 28 29 32.364 279 25 21,230
Christmas Island Astro 1967 Intarnational SAT.TRI.STA. 059 RM3 02 00 35.91 202 35 21.82
Chua Astrp (Brazil-Geodetic) International CHUA -19 45 41.16 311 53 57,44
Corrego Alegre International CORREGO ALEGRE -19 50 15.140 31 02 17,250
{Brazil-Mapping)
Easter [sland 1967 Astro International SATRIG RM No. 1 =27 10 39.95 250 34 16.81
Efate [New Hebrides) International BELLE VUE IGN =17 44 17.400 168 20 33.25%0
Eurcpean (Europe 50) International Helmertturm §2 22 51.446 13 03 58.928
Graciosa Island {Azores) International SW BASE 39 03 54.934 331 57 36.118
Gizo, Provisfonal DOS International GUX 1 -09 27 05.272 159 58 31,752
Guam 1953 Clarke 1866 TOGCHA LEE NO. 7 13 22 38.49 144 45 51.56
Heard Astro 1968 International INTSATRIG 0044 ASTRO -53 01 11.68 73 23 22.64
Iben Astro, Navy 1947 (Truk) Clarke 1886 IBEN ASTRO 07 29 13.05 151 49 44.42
Indian Everest Xalianpur 24 07 11.26 77 39 17.57
1s1a Socorrp Astro Clarke 1866 Station 038 18 43 44.93 248 02 39.28
Johnston [sland 1961 International JOHNSTON ISLAND 1961 16 44 49.729 190 29 04,781
Kourou (French Guiana) International POINT FONDAMENTAL 05 15 53.699 -52 48 09.149
Kusaie, Astro 1962, 1965 International ALLEN SODANO LIGHT 05 21 48.80 162 58 03.28
Luzon 1911 (Philippines) Clarke 1866 BALANCAN 13 33 41.000 121 52 03.000
Midway Astro 1961 International MIDWAY ASTRO 1861 28 11 34.50 182 36 24.28
New Zealand 19453 International ] PAPATAHI -41 19 08.900 175 02 51.000
North American 1927 Clarke 1866 MEADES RANCH 39 13 26.688 261 27 29,494
01d Bavarian Bessel Munich 43 08 20.000 11 34 26.483
01d Hawaiian Clarke 1866 DAHU WEST BASE 21 18 13.89 202 09 04.21
Ordnance Survey G.B. 1536 Airy, Herstmonceux 50 51 55.2N 00 20 45.882
OSGB 1970 ([SN) Afry Herstmonceux 50 51 55.2N1 00 20 45.882
Palmer Astro 1969 (Antarctica) International ISTS 050 -64 46 35.71 295 56 39.53
Pico de las Nieves (Canaries) International PICO DE LAS NIEVES 27 57 M1.273 344 25 49.476
Pitcairn Island Astro International PITCAIRN ASTRQ 15967 -25 04 06.97 228 53 12.17
Potsdam Bessel Helmertturm 52 22 53.954 13 04 01,153
Provisional S, American 1956 International LA CANCA 08 34 17.17 296 08 25.12
Provisional 5. Chile 1963 International HITO XVILI =53 57 07.76 291 23 28.76
Pulkovo 1942 Krassovski Pulkovo Observatory 59 46 18.55 30 19 42.09
Qornog (Greenland) International | No. 7008
South American 1969 Solilgléghnerican CHUA =19 45 41.653 311 53 55.936
Sputheast Island {Mahe) Clarke 1880 =04 40 39.460 55 32 00.166
South Georgia Astro International ISTS 061 ASTRD POINT 1968 =54 16 38.93 323 30 43.97
Swallow Islands (Solomons) International 1966 SECOR ASTRQ =10 18 21,42 166 17 56.79
Tananarive International Tananarive Dbservatory =18 55 02.10 47 331 06.75
Tokyo bessel Tokyo Dbservatory (AZABU) 35 39 17.5148 ] 139 44 40.90
Tristan Astro 1968 International INTSATRIG 069 RM No. 2 =37 03 26.79 347 40 53.21
USAFETR* Clarke 1866 PAD 3 2B 27 57.7564 | 279 27 43.1180
Viti Levu 1916 (Fiji) Clarke 1880 MOMAVATU {latitude only) =17 53 28.285
SUVA ngggttm only) 178 25 35.835
Wake Island, Astronomic 1952 International ASTRO 1 19 17 19.991 166 38 46.294
Wake-Eniwetok 1960 Hough MAKE 19 16 19.506 166 33 21.798
| WCT Yandenberg Adjustment® Clarke 1866 ARGUELLO 2, 1959 34 34 58.021 239 26 22.361
White Sands* Clarke 1866 KENT 1909 32 30 27.079 253 31 01.306
Yof Astro 1967 (Dakar) Clarke 1BBO YOF ASTRO 1967 14 44 41,52 342 30 52.98

* Local datums of special purpose, based on MAD 1927 values for the origin stations.

12 NASA (1978): Directory of Station Locations, 5tth. eComputer Sciences Corp., Silver Spring, MD.
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3.1.2 Problems

1. Describe a step-by-step procedure to compute the geodetic latitudes and longitudes of points
in a network of measured horizontal angles and straight-line distances. Use diagrams and
flowcharts to show how the coordinates could be computed from the coordinates of other points
and the measurements (hint: direct problem!). Assume that the astronomic coordinates are
observed at every point, but that the astronomic azimuth is observed only at the origin point. We
aready discussed all corrections needed to transform observed azimuths to geodesic azimuths;
assume similar procedures exist to transform straight-line distances and angles to geodesic
distances and angles between points on the elipsoid. (For helpful discussions of this problem,
see Moritz, 1978").

2. @ The software for a GPS receiver gives positions in terms of geodetic latitude, longitude,
and height above the elipsoid GRS80 (the elipsoid for WGS84). For ¢=40°, A =-83°, and
h=200 m, compute the equivalent (x, Y, z) coordinates of the point in the corresponding
Cartesian coordinate system.

b) Compute the geodetic coordinates (¢, A h) of that point in the NAD27 system, assuming
that it, like GRS80, is geocentric (which it is not!).

c) Now compute the coordinates (¢, A h) of that point in the NAD27 system, knowing that
the center of the NAD27 ellipsoid is offset from that of the WGS84 ellipsoid by
Xwesss ~ Xnapzz = "4 M, Yvesss ~ Ynanzr =166 M, Zyyases — Zyapy =183 M. Compare your result
with 2.b).

3. Suppose the origin of a horizontal datum is defined by a monumented point on the Earth’s
surface.

a) The deflection of the vertical at the origin point is defined to be zero. If the geodetic
coordinates of the point are ¢=40° and A =-83°, what are the corresponding astronomic
latitude and longitude at this point? What assumptions about the orientation of the datum does
thisinvolve?

c) Suppose the €lipsoid of the datum is shifted in the z-direction by 4 m, which datum
parameters will change, and by how much (give an estimate for each one based on geometrical
considerations; i.e., draw a figure showing the consequence of a change in the datum)?

3 Moritz, H. (1978): The definition of a geodetic datum. Proceedings of the Second International Symposium on
Problems Related to the Redefinition of North American Geodetic Networks, 24-28 April 1978, Arlington, VA,
pp.63-75, National Geodetic Survey, NOAA.
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3.2 Geodetic Control inthe U.S. (and North America)

Each datum in the world has a history that reflects the economic development of the region. In
the U.S., national geodetic control is the responsibility of the National Geodetic Survey (NGS,
part of NOAA, the National Oceanic and Atmospheric Administration, under the Department of
Commerce); in Canada, this responsibility falls to the Geodetic Survey Division of the
Department of Natural Resources (Natural Resources Canada). The North American Datum
interestingly chronicles the westward expansion and globalization from its initial definition for
the eastern U.S. to the present-day definition. The New England Datum of 1879 used the Clarke
1866 ellipsoid with origin point at Station Principio in Maryland. This datum was adopted for
the entire country as the U.S. Standard Datum of 1901 soon after the trans-continental
triangulation was completed, 1871-1897 (32 years after the completion of the trans-continental
railroad in 1869!). In 1909 the datum origin was chosen to be at Meades Ranch, Kansas, upon
an adjustment of the coordinates to fit the observed deflections of the vertical at hundreds of
points throughout the country. When Canada and Mexico adopted this datum for their
triangulationsin 1913, it became the North American Datum.

In 1927, a magor re-adjustment of the horizontal networks across the continent was
undertaken by holding the coordinates at Meades Ranch fixed. However, these coordinates have
no special significance in the sense of equations (3.14) or (3.15), being simply the determined
coordinates in the previous triangulations and adjustments. The datum was named the North
American Datum of 1927 (NAD27). The orientation of the datum was controlled by numerous
Laplace stations throughout the network. It was estimated later with new satellite observations
that the orientation was accurate to about 1 arcsec (Rapp, 1992, p.A-6)*.

Even though the new, more representative International Ellipsoid (Table 2.1) was available,
based on Hayford's 1909 determinations, the Clarke Ellipsoid of 1866 was retained for the
datum since it was used for most of the computations over the preceding years. In the reduction
of coordinates of pointsin NAD27 to the ellipsoid, the geoid undulation was neglected, and thus
al lengths technicaly refer to the geoid and not the elipsoid, or conversely, the ellipsoid
distances have a systematic error due to this neglect. This error manifested itself regionally as
distortions of relative positions separated by several hundreds and thousands of kilometers within
the network. Similarly, most angles were not corrected for the deflection of the vertical and were
reduced to the ellipsoid as if they were turned about the ellipsoid normal. These approximate
procedures and other deficiencies in the adjustment caused distortions of parts of NAD27 (i.e.,
locally) up to 1 part in 15,000 (1 m over 15 km)! The adjustment was done in parts, primarily
treating the western and eastern parts of the country separately. Errors were distributed by the
residuals between observed astronomic and geodetic latitude, longitude, and azimuth along
survey triangulation arcs, much like leveling residuals are distributed along leveling loops.
Geoid undulations were kept small in this way, since, in essence, this amounts to a minimization

4 Rapp, R.H. (1992): Geometric Geodesy, Part I1. Lecture Notes, Department of Geodetic Science and Surveying,
Ohio State University, Columbus, OH. http://hdl.handle.net/1811/24409
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of the deflections, which is equivalent to minimizing the slope of the geoid relative to the
ellipsoid, and thus minimizing the variations of the geoid undulation over the network.

Because of its realization, fundamentally at a terrestrial monument, the NAD27 ellipsoid is
not geocentric. This was the situation for all datums in the world prior to the use of satellites for
geodetic positioning. However, once satellites entered the picture, it was possible to realize the
(0, 0, O) origin of a datum at Earth’s center, recognizing that satellites orbit around the center of
mass of the Earth. Of course, this realization of the origin is indirect and is subject to errorsin
determining the satellite orbit and other observationa errors. Extensive gravity observations in
North America (particularly the U.S., propelled by the search for oil) yielded good models for
the geoid undulation and the deflection of the vertical. Also, early satellite altimetry and satellite
perturbation analyses yielded much better values for Earth’s size and its dynamic flattening.

Hence, in the 1970's and 1980's a major re-adjustment, as well as a re-definition, of the
North American Datum was undertaken. The ellipsoid was changed to that of the Geodetic
Reference System 1980 (GRS80) and was assumed to be geocentric (system definition). That is,
the Meades Ranch station was abandoned as the origin point in favor of the geocenter (center of
mass of the Earth). This geocentric realization was achieved by satellite Doppler observations
which yield three-dimensional coordinates of points with respect to the centroid of the satellite
orbits (i.e., the center of mass, or geocenter). Although astronomic observations of azimuth still
served to realize the orientation of the new datum, specifically the z-axis rotation angle (w,), the
satellite observations could now also provide orientation, especialy the other angles, @, and @), .
In addition, very long-baseline interferometry (VLBI) began to deliver very accurate orientation
on a continental scale. Since geoid undulations could now be estimated with reasonable
accuracy, they were used in all reductions of distances and angles to the ellipsoid. Thiswas, in
fact, an important element of the re-adjustment, since now the ellipsoid/geoid separation was not
minimized in any way. The geoid undulation over the conterminous U.S. varies between about
—7 m (southern Montana and Wyoming) and —37 m (over the Great Lakes). The result of this
vast re-adjustment and re-definition was the North American Datum of 1983 (NADS83). For
further details of the re-adjustment, the reader is directed to Schwarz (1989)*° and Schwarz and
Wade (1990)*°.

New realizations of NAD83 (now viewed as a 3-D reference system) were achieved with
satellite positioning techniques, originally the Doppler-derived positions, but mostly with the
Global Positioning System (GPS) that provided increased accuracy of the origin and orientation.
The NAD83(1986) realization is based on a transformation of the Doppler station coordinates by
a 4.5m trandation in the z-direction, a 0.814 arcsec rotation about the z-axis, and a scae
change of —0.6 ppm. Improvements in the realization continued with High-Accuracy Regional
Networks (HARN'’s) derived from GPS, where the realizations NAD83(HARN) (1989 - 1997)

5 schwarz, C.R. (ed.) (1989): North American Datum 1983. NOAA Professional Paper NOS 2, national Geodetic
Information Center, National Oceanic and Atmospheric Administration, Rockville, Maryland.

16 schwarz, C.R., Wade, E.B. (1990): The North American Datum of 1983: Project methodology and execution.
Bulletin Géodésique, 64, 28-62.
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changed the scale by —0.0871 ppm, but retained the known origin and orientation offsets of
approximately 2 m and 0.03 arcsec, respectively, from the geocenter and the mean Greenwich
meridian, as realized by more modern observations (see also Table 3.3). Nationaly, new
realizations of NAD83 made use of the Continuously Operating Reference Stations (CORS),
based on GPS, throughout the U.S., yielding NAD83(CORS93), NAD83(CORS94), and
NAD83(CORS96) with each new adjustment. In al these realizations, the origin and orientation
of the NAD83(1986) frame were, again, basicaly retained. The most recent realization that re-
adjusted the HARN’s as close as possible to NADS83(CORS96) is designated
NADB83(NSRS2007), where NSRS stands for the National Spatial Reference System and today
represents the fundamental geodetic control in the United States in all dimensions (horizontal
and vertical) and aspects (such as providing accurate control of shorelines).

The National Geodetic Survey (NGS) has planned”*® a modernization of the NSRS over the
next decade that is based on yet another “paradigm shift” in terms of defining and realizing the
coordinate systems. The many conventional, “passive,” fixed benchmarks that surveyors have
employed for centuries to access the coordinate frame will no longer be maintained by NGS and
will not form the primary control. Instead, the NAD83, aready viewed as a three-dimensional
system, will be replaced by a system that is defined and actively maintained using Global
Navigation Satellite Systems (GNSS). These include firstly GPS, but also the Russian
GLONASS (GLObal’naya NAvigatsionnaya Sputnikovaya Sistema), the European Galileo
System, the Chinese Beidou (Compass) System, and others as they come on line. The system
definitions of origin, orientation, and scale now will be the same as for the International
Terrestrial Reference System. The realization will be actively maintained using an extensive
foundational CORS network that is accurately tied to the International Terrestrial Reference
Frame (Section 3.3). Thus, the 2-meter origin offset will finally disappear and the system will be
truly geocentric. NGS will make available mathematical tools (software accessible on the
internet, similar to the current Online Positioning User Service, OPUS") that allow users to
obtain coordinates for any point for which they can provide GNSS (e.g., GPS) data. In this way,
the user community will be responsible for any loca monumentation of control; and, al such
control will be tied unambiguously and with precision defined by the user to the national CORS
network. The motivation behind this planned mode of operation is the realization that
monuments on the Earth’s surface can no longer be viewed as permanently associated with
constant coordinates. Plate tectonics, subsidence and other deformation of the crust due to
natural and anthropogenic causes make this concept obsolete at the centimeter level of precision.
In fact, NGS has already been migrating to this new mode by providing coordinates of CORS

Y NGS (2008). The National Geodetic Survey Ten-Y ear Plan, Mission, Vision and Strategy, 2008-2018.
http://www.ngs.noaa.gov/I NFO/NGS10yearpl an.pdf

'8 Proceedings of the 2010 Federal Geospatial Summit on Improving the National Spatial Reference System.
http://www.ngs.noaa.gov/2010Summit/2010Federal Geospati al SummitProceedings.pdf

19 \www.ngs.noaa.gov/OPUS/
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sites at an epoch (2002.0) with velocities due to known motions within the frame of
NADS83(CORS96) (see Section 3.4.1).

With the replacement of NAD83, NGS also plans to replace the vertical datum NAVDS88
(Section 3.5) by a geopotential model, where again the control is achieved actively without the
need, at least on anationa level, to maintain passive markers.

3.3 International Terrestrial Reference System

The international efforts to define a terrestrial system can be traced back to the turn of the last
century (1900's) when the International Latitude Service (ILS) (established in 1899 by the
International Association of Geodesy (IAG)) organized observations of astronomic latitude in
order to detect and monitor the motion of the pole (Section 4.3.1). The ILS was reorganized into
the International Polar Motion Service (IPMS) in 1962 by resolution of the Internationa
Astronomical Union (IAU); and the IPMS officially continued the work of the ILS. Also, the
Rapid Latitude Service (RLS) of the Bureau International de |’ Heure (BIH) in Paris, France, was
established in 1955 again by the IAU, and predicted coordinates of the instantaneous pole and
served primarily to help in the time keeping work of the BIH. In addition, the U.S. Navy and the
Defense Mapping Agency (U.S.) published polar motion results based on the latest observing
technologies (such as lunar laser ranging (LLR) and very long baseline interferometry (VLBI)).

In 1960, it was decided at the General Assembly of the International Union of Geodesy and
Geophysics (1.U.G.G.) to adopt as terrestrial pole the average of the true celestial pole during the
period 1900-1905 (a six-year period over which the Chandler period of 1.2 years would repeat
five times; see Section 4.3.1). This average was hamed the Conventional International Origin
(ClO) starting in 1968 (not to be confused with the Celestial Intermediate Origin, Chapter 4).
Even though more than 50 observatories ultimately contributed to the determination of the pole
through latitude observations, the CIO was defined and monitored by the original 5 latitude
observatories under the ILS (located approximately on the 39th parallel; including Gaithersburg,
Maryland; Ukiah, California, Carloforte, Italy; Kitab, former U.S.S.R.; and Mizusawa, Japan).

The reference meridian was defined as the meridian through the Greenwich observatory, near
London, England. However, from the 1950’s until the 1980's, the BIH monitored the variation
in longitudes (due to polar motion and variations in Earth’s spin rate, or length-of-day) of many
observatories (about 50) and a mean “Greenwich” meridian was defined, based on an average of
zero-meridians, asimplied by the variation-corrected longitudes of these observatories.

These early conventions and procedures to define and realize a terrestrial reference system
addressed astronomic directions only; no attempt was made to define a redlizable origin,
although implicitly it could be thought of as being geocentric. From 1967 until 1988, the BIH
was responsible for determining and monitoring the CIO and reference meridian. In 1979 the
BIH Conventional Terrestrial System (CTS) replaced the 1968 BIH system with a better
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reference to the CIO. However, the CIO as originally defined was not entirely satisfactory
because it could be accessed only through 5 latitude observatories. As of 1984, the BIH defined
the BIH CTS (or BTS) based on satellite laser ranging, VLBI, and other space techniques. With
the inclusion of satellite observations, an (indirectly) accessible origin of the system could also
be defined (geocentric). With new and better satellite and VLBI observations becoming
available from year to year, the BIH published new realizations of its system: BTS84, BTS85,
BTS86, and BTS87.

In 1988 the functions of monitoring the pole and the reference meridian were turned over to
the newly established International Earth Rotation Service (IERS), thus replacing the BIH and
the IPMS as service organizations. The time service, originally also under the BIH, now resides
with the Bureau International des Poids et Mésures (BIPM). The new reference pole realized by
the IERS, called the International Reference Pole (IRP), is adjusted to fit the BIH reference pole
of 1967 — 1968 and presently is consistent with the CIO to within +0.03 arcsec (1m).
Additional information regarding the BIH may be found in (Mueller, 1969)*°, Seidelmann
(1992)%*, and Moritz and Mueller (1987)%.

The IERS, renamed in 2003 to International Earth Rotation and Reference Systems Service
(retaining the same acronym), is responsible for defining and realizing both the International
Terrestrial Reference System (ITRS) and the International Celestial Reference System (ICRS).
In each case, an origin, an orientation, and a scale are defined among other conventions for the
system. The system is then realized as a frame by the specification of these datum parameters
and the coordinates of points worldwide. Since various observing systems (analysis centers and
techniques) contribute to the overal redlization of the reference system and since new
realizations are obtained recurrently with improved observation techniques and instrumentation,
the transformations among various realizations are of paramount importance. Especidly, if one
desires to combine data referring to realizations of different reference systems, or to different
realizations of the same system, it is important to understand the coordinate relationships so that
the data are combined ultimately in one consistent coordinate system. We first continue this
section with a description of the ITRS and its realization and treat transformations in the next
section.

The IERS International Terrestrial Reference System is defined by an orthogonal triad of
right-handed, equally scaled axes with the following additional conventions:

a) Theoriginis geocentric, that is, at the center of mass of the Earth (including the mass of the
oceans and atmosphere). Nowadays, because of our capability to detect the small (cm-level)

2 Mueller, I.1. (1969): Spherical and Practical Astronomy as Applied to Geodesy. Frederick Ungar Publishing Co.,
New Y ork.

2 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill
Valley, CA.

2 Moritz, H., Mueller, 1.1. (1987): Earth Rotation, Theory and Observation. Ungar Pub. Co., New Y ork.
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variations due to terrestrial mass re-distributions, the origin is defined as an average location of
the center of mass and referred to some epoch.

b) The scale is defined by the speed of light in vacuum and the time interval corresponding to
one second (see Chapter 5) within the theory of general relativity and in the local Earth frame.

c) The orientation is defined by the directions of the CIO and the reference meridian as given
for 1984 by the BIH. Sinceit is now well established that Earth’s crust (on which our observing
stations are located) is divided into plates that exhibit tectonic motion (of the order of
centimeters per year), it is further stipulated that the time evolution of the orientation of the
reference system has no residual globa rotation with respect to the crust (“no-net-rotation”
condition). That is, even though the points on the crust, through which the system is realized,
move with respect to each other, the net rotation of the system with respect to itsinitial definition
should be zero.

The redlization of the ITRS is the International Terrestrial Reference Frame (ITRF) and requires
that three origin parameters, three orientation parameters, and a scale parameter must be
identified with actual values. These seven parameters are not observable without conventions
(see below) and their specification is formulated by the IERS in terms of constraints imposed on
the solution of coordinates from observations. Moreover, the constraints are cast in the form of a
seven-parameter transformation (see Section 3.4) from an a priori defined frame to the realized
frame, three translation parameters that realize the origin; three angle parameters that realize the
orientation, and a scale change parameter that realizes the scale. As asimple example (whichis
not practiced anymore), suppose a previous frame contains a point with defined coordinates
(analogous to the Meades Ranch origin point, but known to refer to the geocenter). The next
realization, based on new observations, could be related to the previous frame by constraining
the trandation to be zero. Because these datum (transformation) parameters are determined for
points on the Earth’s crust (“crust-based frame”), and because the Earth as awhole is a dynamic
entity, the parameters are associated with an epoch and, today, are supplemented with rates of
change, making the total number of parameters equal to 14.

Unlike the origin of the historical (traditional) geodetic datum that could be accessed at a
physical point on the Earth, the geocenter is accessible only indirectly by dynamical modeling of
satellite orbits and observations of distances relative to the satellites in these orbits. In either
case, however, whether a marker on the Earth’s surface or its geocenter, we note that the origin is
defined by a convention, just like all other parts of the coordinate system. As such it is not, a
priori, an observable quantity like a distance or an angle. This is the classic datum defect
problem, well known in al types of surveying, where observations of distances and angles must
ultimately be related to a point or direction that is fixed or defined by convention.

With satellite techniques, on the other hand, there is the advantage of knowing that the center
of mass is the centroid for all orbits. In that sense, the center of mass of the Earth serves as a
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natural origin point that, in theory, isaccessible. That is, if the orbit is known, observations (e.g.,
distances) from points on the Earth’ s surface to points on the orbit are in a geocentric system, by
definition. Determining the orbit by dynamical methods (using and/or solving for the
gravitational field of the Earth, as well as other forces acting on the satellite) is beyond the
present scope™. Suffice it to say that not al origin redizations are the same as obtained by
different analysis centers that, moreover, process different satellite data (satellite laser ranging,
lunar laser ranging, GPS, Doppler data). Generally, the most precise methods are based on
satellite laser ranging (SLR).

For the first ITRFs in the early 1990s, it was customary to relate all frames realized by
particular analysis centers and/or satellite techniques to one of the satellite laser ranging (SLR)
solutions from the Center for Space Research (CSR) in Austin, Texas, which was considered to
be the best solution that accesses the center of mass and thus realizes the origin. The origins of
solutions (i.e., realized coordinate systems) from other techniques, such as Doppler and GPS,
were related by IERS to the ITRF origin through a trandlation determined by using stations that
are common to both the CSR and the other solutions. Later, a weighted average of selected SLR
and GPS solutions was used to realize the origin. For ITRF2000, the origin was realized by a
weighted average of “the most consistent SLR solutions’®* submitted to the IERS. With
ITRF2005 and ITRF2008, the IERS used atime series over 13 years and 26 years, respectively,
of re-processed SLR data at selected, globally distributed sites to realize the origin.

The scale similarly was redlized for the early ITRFs by the SLR solutions from the CSR
analysis center, with the scale of other solutions transformed accordingly. For all subsequent
realizations of scale, SLR was combined with Very Long Baseline Interferometry (VLBI), which
accurately measures coordinate differences of stations separated by large distances (several 1000
km) using observed directions to quasars (Chapter 4). (It is noted that VLBI provides no
information on the origin of coordinates.)

Satellite and space observational techniques contain no information on the absolute
longitudinal orientation of a system. This orientation has no obvious natural reference and is
completely arbitrary (the Greenwich meridian). One might argue that the equatorial orientation
(or, equivalently, the polar direction) like the center of mass is a natura reference that is
accessible indirectly from astronomic observations, VLBI, and satellite tracking (since the orbit
is also defined by the figure axis of the Earth, see Section 4.3.2). However, the polar directionis
complicated, a result of both polar motion with respect to the Earth’s crust, and precession and
nutation with respect to the celestial sphere (see Chapter 4). Besides this, the stations on the
Earth’s crust, which ultimately realize the ITRS, are in constant motion due to plate tectonics.
Thus, the adopted convention for realizing the orientation of the ITRS is to ensure that each
successive realization after 1984 is aligned with the orientation defined by the BIH in 1984 (with
some early adjustments for different solutions of the Earth Orientation Parameters (Chapter 4).

% Seeber, G. (1993): Satellite Geodesy. Walter DeGruyter, Berlin.
2 petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010. |ERS Technical Note No.36, Verlag des Bundesamts
fir Kartographie und Geodasie, Frankfurt am Main.
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The methods of combining different solutions and introducing the constraints needed to
address the datum defect (i.e., specifying origin, scale, and orientation) has become increasingly
complicated as more data are assimilated and analysis centers employ various weighting schemes
to account for the various observational accuracies. These details are beyond the present scope
and the interested reader is referred to the IERS Conventions of 2003%° and 2010%° and
references therein (specifically also publications by Altamimi et a., 2002a”’, 2002b%®, and
references therein).

The model for the coordinates of any of the observing stations participating in the realization
of ITRSisgiven by

X(t) =%y +(t ~t5) Vo +ZAXi (t), (3.16)

where x, and v, are the coordinates and their velocity of the observing station, defined for a
particular epoch, t,. These are solved on the basis of observed coordinates, x(t) , a time, t,
using some type of observing system (like satellite laser ranging). The quantities, Ax;, are
corrections applied by anaysis centers to account for various, short-wavelength, local
geodynamic effects, such as solid Earth tides, ocean loading, and atmospheric loading, with the
objective of accounting for the non-constant velocities. Details for corresponding recommended
models are provided by the IERS Conventions 2010 (Chapter 7). The coordinate vector, X, , and
the linear velocity, v,, for each participating station is provided by IERS as a result of the
assimilation of all data, and these represent the consequent realization of ITRS at epoch, t,. In
the past, the linear velocity was modeled largely by the tectonic plate motion model, NNR-
NUVEL1A (McCarthy, 1996)%; thus,

Vo = Vyuveria TV, (3.17)

where v,,e 14 1S the velocity given as a set of rotation rates for the major tectonic plates, and
dv, isaresidual velocity for the station. The newest ITRFs (since ITRF2000) appear to indicate
significant departures of the station velocities, v,, from the NNR-NUVEL1A model, which,
however, does not impact the integrity of the ITRF.

% McCarthy, D.D., Petit, G. (2003): IERS Conventions 2003. |ERS Technical Note 32, U.S. Naval Observatory,
Bureau International des Poids et Mesures.

% petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010. |ERS Technical Note No.36, Verlag des Bundesamts
fur Kartographie und Geodéasie, Frankfurt am Main.

' Altamimi, Z., Boucher, C., Sillard, P. (2002a): New trends for the realization of the International Terrestrial
Reference System. Adv. Space Res., 30(2), 175-184.

% Altamimi, Z., Sillard, P., Boucher, C. (2002b): ITRF2000: A new release of the International Terrestrial
Reference Frame for earth science applications. J. Geophys. Res., 107(B10), 2214, doi:10.1029/2001JB000561.

% McCarthy, D.D. (ed.) (1996): IERS Conventions (1996). |ERS Tech. Note 21, Observatoire de Paris, Paris.
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3.3.1 World Geodetic System of the U.S. Department of Defense

The World Geodetic System 1984 (WGS84) is the equivalent of the ITRS for the U.S.
Department of Defense (and includes also a global gravitational model). It is the evolution of
previous reference systems, WGS60, WGS66, and WGS72*. The corresponding reference
frame for WGS84 as originally realized in 1987 on the basis mostly of satellite Doppler
observations agreed approximately with NADS3. The next redlization, designated
WGS84(G730), made use of observations from 12 GPS stations around the world and was
aligned with the ITRF92 to an accuracy of about 20 cm in al coordinates. Here, G730 denotes
the 730" week of the GPS satellite ephemerides. The next realization, WGS84(G873), improved
on this and was designed to be consistent with ITRF94, which was achieved with about 10 cm
accuracy. The latest realization, WGS84(G1150), is based on GPS observations at 17 U.S. Air
Force and NIMA (National Imagery and Mapping Agency)® stations, and it is consistent with
ITRF2000 at the 2 cm level of accuracy™.

3.4 Transformations

With many different realizations of terrestrial reference systems, as well as local or regiond
datums, it is important for many geodetic applications to know the relationship between the
coordinates of points in these frames. Especialy for the realization of ITRF, extensive use is
made of transformations to define the evolution of the realizations and the relationships of ITRF
to the realizations of reference systems of contributing analysis centers or space techniques. The
transformations of traditional local horizontal datums (referring to an ellipsoid) with respect to
each other and with respect to a global terrestrial reference frame is a topic beyond the present
scope. However, for standard Cartesian systems, like the ITRS and WGS84, and even the new
realizations of the NAD83 and other modern realizations of regiona datums (like the European
Coordinate Reference Systems®), a simple 7-parameter similarity transformation (Helmert
transformation) serves as basic model for the transformations.
According to the definition of the IERS, this transformation model is given by

=T +(1+D) R X; g (3.18)

Xto

% DMA (1987): Supplement to Department of Defense World Geodetic System 1984 Technical Report, Part |.
DMA TR 8350.2-A, Defense Mapping Agency, Washington, D.C.

3 Renamed in 2003 to National Geospatial-Intelligence Agency (NGA)

% Proceedings of the ION GPS-02. http://earth-info.nga.mil/GandG/sathtml/| ONReport8-20-02. pdf

3 http://www.euref .eu/
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where x,, isthe coordinate vector of apoint in the frame to which it is transformed, and X;,.,, iS
the coordinate vector of that same point in the frame from which it is transformed. (Perhapsitis
not the best notation, but it is the clearest in defining the direction of the transformation, and the
reader is cautioned not to confuse “to” with the epoch, t,.) The trandation, or displacement,
between frames is given by the vector, T, and the scale difference is given by D.
Unfortunately, the IERS definition concerning the rotations between frames is counter-intuitive,
where the rotation matrix, here denoted R', represents the rotation from the new frame (the to-
frame) to the old frame (the from-frame); see Figure 3.3. Since the rotation angles are small, we
have from equation (1.9):

1 -R3 R2
R=R(R)R (R2)R; (R3)=| R3 1 -Ri|, (3.19)
-R2 RL 1

where RL, R2, and R3 are the small rotation angles, in the notation and definition of the IERS.

yfrom

Xto Xfrom
Figure 3.3: Transformation parameters for the IERS and the NGS models.

Since D isaso asmall quantity, we can neglect second-order terms and write
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X X T1 X 0 -R3 R2)(x
y| =|y +| T2 |+D|y + R3 0 Ry . (3.20)
z to z from T3 z from _RZ Rl O z from

Each of the seven parameters of thismodel, T1, T2, T3, Rl, R2, R3, and D, may have atime
variation that is ssmply modeled as being linear:

B(t)=By + By (t-t,), (3.22)

where B refers to any of the parameters. The 14 parameters, £, and £, , i =1,...,7, then
constitute the complete transformation. Combining equations (3.20) and (3.21), we have

x(t) x(t) T1(t) x(t) 0 -R3(t) R2(t))(x(t)

y(t)| =|y(t)| +[T2(t) |+D()[ v(t) | + R3() 0  RU(t)| y(t)| .

2(t)), \z(t)),.. (T3(t) 2(t)) - \-R2(t) Ry(t) 0 2(t)),.
(3.22)

noting that the transformation, as given by the parameters, 3 (t) , isvalid at a particular epoch, t.

Table 3.2 lists the transformation parameters among the various |IERS (and BIH) terrestrial
Reference Frames since 1984. [These numbers were obtained from various IERS publications
and internet sites and have been known to contain some inconsistencies (see also the ITRF
internet site®)]. Rates of the parameters were given only since 1993. Note that ITRF96 and
ITRF97 were defined to be identical to ITRF94 with respect to epoch 1997. In order to obtain
transformation parameters for other than the listed epoch, equation (3.21) should be employed.
For example, using the last row of Table 3.2, the trandation in x between ITRF2005 and
ITRF2008 at the epoch, t =2000 is given by

T1(t) =T1(t,) +T10t -t,)
=0.05 cm -0.03 cm/yr [{-5 yr)
=0.20cm

The IERS® provides transformation parameters from ITRF2008 to all previous frames for the
epoch, t =2000.

3 http://itrf.ensg.ign.fr/
% Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010. |ERS Technical Note No.36, Verlag des Bundesamts
fir Kartographie und Geodasie, Frankfurt am Main.
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Table 3.3 lists transformation parameters from WGS84 to I TRF90 as published by IERS®, as
well as from recent ITRFs to NAD83(CORS96) as published by the National Geodetic Survey™.
Note that the rotation parameters in Table 3.3 represent the more intuitive rotations from the
from-frame to the to-frame. Also, note that the transformation parameters are estimates with
associated standard deviations (not listed here). Therefore, the determination of the vector of
coordinates through such a transformation, in principle, should include a rigorous treatment of
the propagation of errors.

% McCarthy, D.D. (ed.) (1992): IERS Conventions (1992). IERS Tech. Note 13, Observatoire de Paris, Paris.

3" These are no longer available on the web; individual transformations may be found in the literature; e.g., Soler, T.,
Snay, R.A. (2004): Transforming Positions and Velocities between the International Terrestrial Reference Frame
of 2000 and North American Datum of 1983. Journal of Surveying Engineering, 130(2), 49-55. DOI:
10.1061/(ASCE)0733-9453(2004)130:2(49).
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Table 3.2: Transformation parameters for recent terrestrial reference frames.

From To T1|T1 | T2|T2 | T3|T3 | RI|RL | R2|R2 | R3|R3 | D|D t,
cm cm cm 0.001" 0.001" 0.001" | 10°®
cm/iyr cm/yr cm/yr 0.001"/yr| 0.001"/yr| 0.001"/yr| 107®/yr
BTS84 BTS85 54 21 4.2 -09 -25 =31 -0.5 | 1984
BTS85 BTS386 31 -6.0 -5.0 -18 -1.8 -5.81 -1.7 | 1984
BTS86 BTS87 -3.8 0.3 -1.3 -04 25 7.5 -0.2 | 1984
BTS87 ITRFO 04 -0.1 0.2 0.0 0.0 -0.2 -0.1 | 1984
ITRFO ITRF88 0.7 -0.3 -0.7 -0.3 -0.2 -0.1 0.1 | 1988
ITRF88 ITRF89 0.5 3.6 24 -0.1 0.0 0.0 —-0.31 | 1988
ITRF89 ITRF90 -0.5 24 3.8 0.0 0.0 0.0 -0.3 | 1988
ITRF90 ITRFI1 0.2 04 16 0.0 0.0 0.0 —0.03 | 1988
ITRFO1 ITRF92 -1.1 -14 0.6 0.0 0.0 0.0 -0.14 | 1988
ITRF92 ITRF93 -0.2 -0.7 -0.7 -0.39 0.80 —-0.96 0.12 | 1988
-0.29 0.04 0.08 -0.11 -0.19 0.05 0.0
ITRF93 ITRF94 -0.6 0.5 15 0.39 -0.80 0.96 —0.04 | 1988
0.29 -0.04 -0.08 0.11 0.19 -0.05 0.0
ITRF94 ITRF96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 1997
0.0 0.0 0.0 0.0 0.0 0.0 0.0
ITRF96 ITRF97 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 1997
0.0 0.0 0.0 0.0 0.0 0.0 0.0
ITRF97 ITRF2000 -0.67 -0.61 185 0.0 0.0 0.0 —0.155 | 1997
0.00 0.06 0.14 0.0 0.0 -0.02 -0.001
ITRF2000 | ITRF2005 -0.01 0.08 0.58 0.0 0.0 0.0 -0.040 | 2000
0.02 -0.01 0.18 0.0 0.0 0.0 -0.008
ITRF2005 | ITRF2008 0.05 0.09 0.47 0.0 0.0 0.0 -0.094 | 2005
-0.03 0.0 0.0 0.0 0.0 0.0 0.0
X X T1(t) X 0 -R3(t) R2(t) }(x
y| =ly| #T2(t)|+D(t)]y| + R3(t) 0 Rit)||y (3.23)
z to z from T3(t) z from _Rz(t) Rl(t) 0 z from
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Table 3.3: Transformation parameters for other terrestrial reference frames. Notethat £, = -R1,
£,=-R2, &, =-R3.

From To TLT1| T2|T2 | T3|T3 | £l]é1 £2|é2 | £3|£3 D|D t,
cm cm cm 0.001" 0.001" 0.001" 10
cmiyr | cmlyr cmlyr 0.001"/yr| 0.001"/yr| 0.001"/yr| 1078/yr
WGS72 ITRF90 -6.0 51.7 472.3 18.3 -0.3 —547.0 23.1 | 1984
WGSs4*t ITRF90 -6.0 51.7 22.3 18.3 -0.3 7.0 1.1 | 1984
ITRF96 NADS83 99.1 -190.7 -51.3 25.8 9.7 11.7 0.0 | 1997
(CORS96) 0.0 0.0 0.0 0.053 -0.742 -0.032 0.0
ITRF97 NADB83 98.9 -190.7 -50.3 259 9.4 11.6 -0.09 | 1997
(CORS96) 0.07 -0.01 0.19 0.067 -0.757 -0.031 -0.02
ITRF2000 | NAD83 99.6 -190.1 -52.2 25.9 9.4 11.6 0.06 | 1997
(CORS96) 0.07 -0.07 0.05 0.067 -0.757 -0.051 -0.02

Loriginal redlization; sign error for &, has been corrected.

X X T1(t) X 0 () - (t)
y| =|y| #T2(t)|+D(t)|y| + () 0 &(t)|y| - (3.24)
z to z from T3(t) z from gy (t) —£‘X (t) 0 z from

3.4.1 Transformationsto and Realizations of NAD83

IAG resolutions (Resolutions Nos.1 and 4)*® recommend that regional high-accuracy reference
frames be tied to an ITRF, where such frames associated with large tectonic plates may be
allowed to rotate with these plates as long as they coincide with an ITRF at some epoch. This
procedure was adopted for NAD83, which for the conterminous U.S. and Canada lies (mostly)
on the North American tectonic plate. This plate has global rotational motion estimated
according to the NNR-NUVEL 1A mode! by the following rates™:

Q_=0.000258 rad/10°yr =0.053 maslyr =1.6 mm/yr
Q, = -0.003599 rad/10°yr = -0.742 maslyr = -22.9 mm/yr (3.25)
0 =-0.000153 rad/10°yr = -0.032 maslyr = -0.975 mm/yr

3| AG (1992): Geodesist’s Handbook. Bulletin Géodésique, 66(2), 132-133.
¥ McCarthy, D.D. (ed.) (1996):IERS Conventions (1996). |ERS Tech. Note 21, Observatoire de Paris, Paris.
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where the last equality for each rate uses the approximation that the Earth is a sphere with radius,
R=6371km. Theseratesarein the same sense as the IERS convention for rotations.

The transformation between a regiona frame and ITRF can be determined (using the
standard Helmert transformation model) if a sufficient number of points exists in both frames.
Such is the case for NAD83 where 12 VLBI stations have 3-D coordinates in both frames®. The
NADB83 3-D coordinates came from the original ITRF89-NADS83 transformation. Now in order
to determine the transformation parameters, the two frames should refer to the same epoch. For
example, if ITRF96 is the frame to which NAD83 should be tied, then this epoch is 1997.0 (the
epoch of ITRF96). It is assumed that the NAD83 coordinates do not change in time due to plate
motion (and that there is no other type of motion). That is, the frame is attached to one plate and
within that frame the coordinates of these points do not change in time (at least to the accuracy of
the origina adjustment), even as the plate moves. Hence, one may assume that the NAD83 3-D
coordinates also refer to the epoch 1997.0. The solution for the Helmert transformation
parameters from ITRF96 to NAD83 resulted in (see also Table 3.3):

T1(1997.0) =0.9910 m

T2(1997.0) = -1.9072 m

T3(1997.0) = -0.5129 m

R1(1997.0) = -25.79 mas (3.26)
R2(1997.0) = -9.65 mas

R2(1997.0) = -11.66 mas

D (1997.0) = 6.62 ppb

where the angles refer to the convention used by IERS. The scale factor ultimately was set to
zero (D (1997.0) = 0) so that the two frames, by definition, have the same scale. Snay (2003)*
notes that this is equivalent to determining a transformation in which the transformed latitudes
and longitudes of the points in one frame would best approximate the latitudes and longitudes in
the other in aleast-squares sense. That is, the scale is essentially the height, and the height is,
therefore, not being transformed. We thus have

X X T1(1997) 0 -R3(1997) R2(1997) \( x
y =|y +| T2(1997) | +| R3(1997) 0 -R1(1997) || y (3.27)
NAD83 z ITRF 96(1997) ITRF 96(1997)

T3(1997) ) (-R2(1997) R1(1997) 0

“0 Craymer, M., Ferland, R., Snay, R.A. (2000): Redlization and unification of NAD83 in Canada and the U.S. via
the ITRF. In: Rummel, R., H. Drewes, W. Bosch, H. Hornik (eds.), Towards an Integrated Global Geodetic
Observing System (IGGOS). IAG Symposia, vol.120, pp.118-21, Springer-Verlag, Berlin.

! Snay, R.A. (2003): Introducing two spatial reference frames for regions of the Pacific Ocean. Surv. Land Inf. Sci.,
63(1), 5-12.
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Now, the transformation parameters, thus determined, refer to a particular epoch (1997.0 in
this case). At other epochs, the NADS83 coordinates will not change (for these 12 stations), just
as assumed before; but, the coordinates of such pointsin the ITRF do change because the North
American plate is moving (rotating) in a globa frame. Therefore, the transformation between
NADS83 and ITRF96 should account for this motion at other epochs. For points on the North
American plate we may incorporate the plate motion into the ITRF transformation from one
epoch to the next as

x(t) x(1997) 0 -0, (t-1997) @, (t-1997) ( x(1997)
y(t) =1 y(1997) + Q,(t-1997) 0 -0, (t ~1997) || y(1997) :
{z(t)LF% L(1997)}TRF96 -0, (t-1997) @, (t-1997) 0 {2(1997)JITRF%

(3.28)

where, e.g., both x(t) and x(1997.0) refer to the IRTF96, but at different epochs. Substituting
thisinto the ITRF96-NAD83 transformation, we obtain:

x(t) T1 0  -R3(t) R2(t))(x
=| y(t) + T2 |+ R3(t) 0 -Rt)|y , (3.29)
z NAD83 Z(t) ITRF 96 T3 _RZ(t) Rl(t) O z ITRF 96(1997.0)

where

Ri(t) = R1(1997.0) - 2, (t —1997.0)
R2(t) = R2(1997.0) - 2, (t -1997.0) (3.30)
R3(t) = R3(1997.0) - 2, (t -1997.0)

which agrees with Craymer et al. (2000), as well as Table 3.3. To see that it agrees with the
latter, we note that the transformation, equation (3.24) uses angles defined in the reverse sense
(NGS convention). Hence, e.g.,

& (t) =-R1(t) = -R1(1997.0) +2, (t -1997.0) . (3.31)

Using the transformation, equation (3.29), NGS thus realized NAD83 at all CORS stations and
designated this realization NAD83(CORS96). By definition all temporal variations in the
displacement and scale parameters in this transformation were set to zero.

For transformations to NADS83 from the next realization of ITRS, the NGS adopted slightly
different transformation parameters than determined by the IERS. The transformation
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parameters from ITRF96 to ITRF97 are published as zero (including zero time-derivatives of
these parameters); see Table 3.2. Yet, the International GNSS Service (IGS) determined the
transformation ITRF96 to ITRF97 based solely on GPS stations and found non-zero
transformation parameters. Since the control networks of NAD83 are now largely based on
GPS, NGS decided to use the IGS-derived ITRF96-to-ITRFO7 transformation, yielding the
transformation parameters between ITRF97 and NADS83 as given in Table 3.3 and obtained
from:

ITRF97 — NAD83(CORS96) = (ITRF97 — ITRF96), . (3.32)
+(ITRF96 - NAD83(CORS96)) |

For ITRF2000, there were only insignificant differences between the transformation parameters
determined by IERS and by IGS, and thus we have

ITRF 2000 -~ NAD83(CORS96) = (ITRF 2000 - ITRF97)
+(ITRF97 - ITRF96),
+(ITRF96 - NAD83(CORS96))

IERS

(3.33)

as verified by the numerical valuesin Tables 3.2 and 3.3.

Since the IGS-derived ITRF96-to-I TRF97 transformation parameters are time-dependent, the
more general transformation to NADS83 now yields time-dependent coordinates in NADS8S.
However, for the most part these reflect only very small motions within the NAD83 frame. In
order to determine velocities of points within NAD83 based on velocities of corresponding ITRF
coordinates, one can write a more genera (i.e., time-dependent) transformation analogous to
equation (3.29):

x(t) T1(t) x(t) 0 -R3(t) R2(t))(x(t)
y(t) = T2(t) [+(2+D (1)) y(t) + R3(t) 0 —Rut) || y(t)
2(t) ) o \T3(1) 2(t) ) . \-R2(t) Rt) 0 2(t) )
(3.34)
Taking the time-derivative and neglecting second-order terms, we find
x T (x) 0 TRORNG

=|y| +T2[+D|y(t) +H R3 0 -Ri| y(t) . (3.35)

z NAD83 z ITRF T3 Z(t) ITRF _R2 Rl 0 Z(t) ITRF
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The epoch assumed for these rates is t,, corresponding to the epoch of the transformation
parameters. It is expected that most of the ITRF velocity associated with a point (the first term
in equation (3.35)) is cancelled by the plate motion, given by the last term, so that within NAD83
there is essentially no motion, only residual motion due to local effects. For example, those
points near a plate boundary (such as near the west coast of the U.S.) have significant motion
within NADS83 that is determined by the total motion of ITRF minus the overall plate motion
model.

Recently, NGS updated all NAD83 coordinates of its CORS stations to the epoch 2002.0,
and used formula (3.35) to determine the corresponding NADS83 velocities. The following
procedure can be used to determine 2002.0 coordinates, x, in NAD83 for any point observed by
static differential GPS observations, Axg(t), a some epoch, t, relative to CORS station
coordinates, X, :

) X(()ITRF 2000) (t) — X(()ITRF 2000) (1997'0) + )-((()ITRF 2000) [Ot _1997'0)

b) {X(()ITRFZOOO) (t)’AxGPS(t} —»AXQ,ISFZOOO) (t)

Table 3.3 with T1=T 2=T 3=0
(ITRF 2000) (NAD83(CORS96))
Q) Axgps (1) - AX e (t)

d) X((, NAD83(CORS96)) (t) - X(()NADSB(CORSQG)) (2002_0) + X (l)\lAD83 [Gt _ 2002_0)

(3.36)

(NAD83(CORS96)) (t) - X(() NAD83(CORS96)) (t) + Axg\;goss(COnge)) (t)

e X

f) X(NAD83(COR596)) (2002'0) — X(NAD83(COR596)) (t) _ )-(NAD83 [Ot _ 2002_0)

The first step, a), calculates the CORS station coordinates in ITRF2000 at the epoch, t, using its
NGS-published coordinates and velocities within that frame. The second step, b), implies
processing of these coordinates and the differential GPS data to determine the corresponding
coordinate differences between x and x, in ITRF2000 at the epoch, t. Subsequently, in step c)
these coordinate differences are transformed to NAD83(CORS(1996)) using the parameters in
Table 3.3. However, because they are coordinate differences, the translation vector is zero in this
transformation.  Next, in step d) the NGS-published CORS station coordinates in
NAD83(CORS(1996)) are determined at the epoch, t, using their velocities in that frame. Then,
step e) calculates the NAD83(CORS(1996)) coordinates of the observed point at the epoch, t.
Finally, the last step, f), transforms these to the epoch 2002.0 using the velocity, x"°%, of the
observed point. This velocity within NAD83(CORS(1996)) must be predicted in some way
(e.g., setting it equal to the velocity of the nearest CORS station, or using also known local crust
motions for the point).
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The procedure detailed by equations (3.36) is the essence of a web-based utility offered by
NGS caled OPUS™* (On-line User Positioning Service), although instead of a single CORS
station, the three nearest CORS stations are used to determine the NAD83(CORS(1996)) 2002.0
coordinates of an observed point. For an example of how the NAD83 and ITRFOO coordinates
of CORS points are related, see Problem 3 in Section 3.4.2.

“2 Soler, T., Snay, R.A. (2004): Transforming Positions and Vel ocities between the International Terrestrial
Reference Frame of 2000 and North American Datum of 1983. Journal of Surveying Engineering, 130(2), 49-
55. DOI: 10.1061/(ASCE)0733-9453(2004)130:2(49).

“® http://www.ngs.noaa.gov/OPUS/
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3.4.2 Problems

1. @ Rigorously derive the approximation, formula (3.20), from the exact equation (3.18)
(3.15) and clearly state al approximations. Determine the error in coordinates of the point in
Problem 3.1.2-2 when using equation (3.20) instead of equation (3.18) for the parameters
associated with the ITRF2000 — NAD83(CORS86) transformation.

b) Given the coordinates of a point in Columbus: ¢=40°, A =-83°, h=200m, in the
NAD83(CORS86) frame, compute its coordinates in the ITRF89, as well as in the ITRF94,
based on the transformation parametersin Tables 3.2 and 3.3.

2. @ Which of the following remain invariant in a 7-parameter similarity transformation,
eguation (3.18)?
i) chorddistance; ii) distance from origin; iii) longitude

b) Answer 2.a) for each of the quantitieslisted in case R=1 (identity matrix) (be careful!).

3. Using the web site: http://www.ngs.noaa.gov/CORS/GoogleM ap/CORS.shtml, find the
coordinate data sheet of CORS station Westford (WES2). Compute the NAD83 coordinates and
velocity for 2002.0 from the ITRF00(1997.0) values and compare them to the values published
by NGS. Do the same for the CORS station Point Loma 5 (PLO5), Southern California, near the
Mexican border. (Hint: use equation (3.35) to transform from 1997.0 to 2002.0.w)
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3.5 Vertica Datums

Nowadays, heights of points could be reckoned using GPS with respect to an ellipsoid; in fact,
we have aready introduced this height as the ellipsoidal height, h (Section 2.1.2). However, this
height does not correspond with our intuitive sense of height as a measure of vertical distance
with respect to alevel surface. Two points with the same ellipsoidal height may be at different
levels in the sense that water would flow from one point to the other. Ellipsoidal heights are
purely geometric quantities that have no connection to the gravity potential; and, it is the gravity
potential that determines which way water flows. An unperturbed lake surface comes closest to
a physical manifestation of a level surface. Mean sea level (often quoted as a reference for
heights) is aso reasonably close, but not equal to alevel surface, due to various non-gravitational
forces that cause the hydrostatic equilibrium of the mean surface to deviate from being
gravitationally level. We may define a level surface simply as a surface on which the gravity
potential is constant. Discounting friction, no work is done in moving an object along a level
surface; water does not flow on alevel surface; and al points on alevel surface should be at the
same height — at least, thisis what we intuitively would like to understand by heights. The geoid
is defined to be that level surface that closely approximates mean sea level (mean sea level
deviates from the geoid by up to 2 m due to the persistent variations in pressure, salinity,
temperature, wind setup, etc., of the oceans). Thereis till today considerable controversy about
the exact realizability (accessibility) of the geoid as a definite surface, and the definition given
here is correspondingly (and intentionally) vague.

A vertical datum, like a horizontal datum, requires an origin, but being one-dimensional,
there is no orientation; and, the scale is inherent in the measuring apparatus (leveling rods). The
origin is a point on the Earth’s surface (but see below for an alternative definition) where the
height is a defined value (e.g., zero height at a coastal tide-gauge station). This origin is
obviously accessible and satisfies the requirement for the definition of adatum. From thisorigin
point, heights (that is, height differences) can be measured to any other point using standard
leveling procedures (which we do not discuss further). Traditionally, a point at mean sea level
served as origin point, but it is not important what the absolute gravity potential is at this point,
since oneisinterested only in height differences (potential differences) with respect to the origin.
This is completely analogous to the traditional horizontal datum, where the origin point (e.g.,
located on the surface of the Earth) may have arbitrary coordinates, and al other points within
the datum are tied to the origin in a relative way. Each vertical datum, being thus defined with
respect to an arbitrary origin, is not tied to a global, internationally agreed upon, vertical datum.
The latter, in fact, does not yet exist officially, although much debate, discussion, literature, and
candidate models have centered on just such a datum.

Figure 3.4 shows the geometry of two local vertical datums each of whose origin is a station
at mean sealevel. In order to transform from one vertical datum to another requires knowing the
gravity potentia difference between these origin points. This difference is not zero because
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mean sea level is not exactly alevel surface; differences in height between the origins typically
are several decimeters.

P Q
HA P Qo HS
— ~—
/
vertical datum, A W Sea Level /ertical datum, B
elipsoid

Figure 3.4. Two vertical datums with respect to mean sea level.

The heights that are measured and belong to a particular vertical datum ultimately are defined
by differencesin gravity potential with respect to the origin point. There are a number of options
to scale the geopotential difference so that it represents a height difference (that is, with distance
units). The most natural height (but not necessarily the most realizable height from atheoretical
viewpoint) is the orthometric height, H, defined as the distance along the (curved) plumb line
from the level surface (a local geoid), that passes through the datum origin, to the point in
guestion. With sufficient accuracy, we may neglect the curvature of the plumb line and
approximate the orthometric height as a distance along the ellipsoida normal. Anaogous to
Figure 3.2, we then have

H=h-N, (3.37)

where N is the distance from the ellipsoid to the level surface that passes through the origin
point. Thisisthe (local) geoid undulation. It is equal to the global geoid undulation minus the
offset of the origin point or local vertical datum from the global geoid.

For North America, the National Geodetic Vertical Datum of 1929 (NGVD29) served the
U.S. for vertical control until the late 1980’s; and Canada's Geodetic Vertical Datum of 1928
(CGVD28) is till the official datum for vertical control. The origin of NGVD29 was actually
based on several defined heights of zero at 21 coastal (mean sea level) tide-gauge stations in the
U.S. and 5in Canada. Similarly, a suitable set of coastal tide gauge stations served to define the
origin of CGVD28. Defining zero height at different points of mean sea level caused distortions
in the network since, as noted above, mean sealevel isnot alevel surface. Additional distortions
were introduced because leveled heights were not corrected rigorously for the non-parallelism of
the level surfaces.

In 1988 a new vertical datum was introduced, the North American Vertical Datum of 1988
(NAVDS88). Its origin is a single station with a defined height (not zero) at Pointe-au-Pére
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(Father’s Point), on the St. Lawrence river in Rimouski, Québec, which is also the origin point
for the International Great Lakes Datum of 1985 (IGLD85). Despite this location for the origin,
NAVD88 was never officially adopted by Canada. Defining the origin at a single point
eliminated the theoretical problem of constraining a level surface to a non-level surface (mean
sea level). Also, the leveled heights were more rigorously corrected for the non-parallelism of
the level surfaces.

However, recent analyses determined**, with improved gravity models and GPS (providing N
and h, respectively, in equation (3.37)), that the entire network has a tilt error of more than 1
meter from the east coast (where the origin lies) to the west coast. This is due in part to the
propagation of systematic leveling errors, but also to remaining model errors in the
implementation of the theory of orthometric height determination.

To rectify these problems (among others), NGS plans to replace NAV D88 by a geopotential
model. The Geodetic Survey Division (GSD) of Natural Resources Canada likewise is planning
to replace CGVD28 with a geopotential model. Both NGS and GSD are working together
toward a unified North American Vertical Datum using this new paradigm, which constitutes a
re-definition of the system for vertical control. In essence, there will be no physical benchmark
to define the origin of the datum. Instead, a chosen value, W, of the gravity potential will serve
the function of defining the geoid. With an accurate geopotential model, it is then just a matter
of determining the ellipsoidal height of a point (using GPS) and determining the geoid
undulation, N, for this point from the gravity model. Making use of equation (3.37) then yields
the orthometric height, H. Clearly, the geopotential model must be very accurate so that the
computational error in N is commensurate with that of h. The goal is cm-level accuracy for H
over the entire continent.

“ Proceedings of the 2010 Federal Geospatial Summit on Improving the National Spatial Reference System.
http://www.ngs.noaa.gov/2010Summit/2010Federal Geospati al SummitProceedings.pdf

Geometric Reference Systems 3-33 Jekeli, January 2012



Chapter 4
Celestial Reference System

Ultimately the orientation of the terrestrial reference system istied to an astronomic system, as it
has always been throughout history. The astronomic reference system, or more correctly, the
celestial reference system is supposed to be an inertial reference system in which our laws of
physics hold without requiring corrections for rotations. For geodetic purposes it serves as the
primal reference for positioning since it has no dynamics. Conversely, it is the system with
respect to which we study the dynamics of the Earth as arotating body. And, finaly, it serves,
of course, also as areference system for astrometry.

We will study primarily the transformation from the celestial reference frame to the
terrestrial reference frame and this requires some understanding of the dynamics of Earth
rotation and its orbital motion, as well as the effects of observing celestial objects on a moving
and rotating body such as the Earth. The definition of the celestial reference system was until
very recently (1998), in fact, tied to the dynamics of the Earth, whereas, today it is defined as
being ailmost completely independent of the Earth. The change in definition is as fundamental as
that which transferred the origin of the regional terrestrial reference system (i.e., the horizontal
geodetic datum) from a monument on Earth’s surface to the geocenter. It is, as aways, a
guestion of accessibility or realizability. Traditionally, the orientation of the astronomic or
celestial reference system was defined by two naturally occurring direction in space, the north
celestial pole, basically defined by Earth’s spin axis (or close to it), and the intersection of the
celestial equator with the ecliptic, i.e., the vernal equinox (see Section 2.2). Once the dynamics
of these directions were understood, it was possible to define mean directions that are fixed in
space and the requirement of an inertial reference system was fulfilled (to the extent that we
understand the dynamics). The stars provided the accessibility to the system in the form of
coordinates (and their variation) as given in a fundamental catalog, which is then the celestial
reference frame. Because the defining directions (the orientation) depend on the dynamics of the
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Earth (within the dynamics of the mutually attracting bodies in our solar system), even the mean
directions vary slowly in time. Therefore, the realization of the system included an epoch of
reference; i.e., a specific time when the realization held true. For any other time, realization of
the frame required transformations based on the motion of the observable axes, which in turn
required a dynamical theory based on a fundamental set of constants and parameters. All this
was part of the definition of the celestial reference system.

On the other hand, it is known that certain celestia objects, called quasars (quasi-stellar
objects), exhibit no perceived motion on the celestial sphere due to their great distance from the
Earth. These are also naturally occurring directions, but they have no dynamics, and as such
would clearly be much preferred for defining the orientation of the celestial system. The
problem was their accessibility and hence the realizability of the frame. However, a solid history
of accurate, very-long-baseline interferometry (VLBI) measurements of these quasars has
prompted the re-definition of the celestial reference system as one whose orientation is defined
by a set of quasars. In thisway, the definition has fundamentally changed the celestial reference
system from a dynamic system to a kinematic (or, geometrical) system. The axes of the celestial
reference system are still (close to) the north celestial pole and vernal equinox, but are not
defined dynamically in connection with Earth’s motion, rather they are tied to the defining set of
guasars whose coordinates are given with respect to these axes. Moreover, there is no need to
define an epoch of reference, because (presumably) these directions will never change in inertial
space (at least in the foreseeabl e future of mankind).

The IERS International Celestial Reference System (ICRS), thus, is defined to be an inertial
system (i.e., non-rotating) whose first and third mutually orthogonal coordinate axes (equinox
and pole) were realized initially (1995) by the coordinates of 608 compact extra-gal actic sources
(quasars), as chosen by the Working Group on Reference Frames of the International
Astronomical Union (IAU); see Feissel and Mignard (1998). Of these, 212 sources defined the
orientation, and the remainder comprised candidates for additiona ties to the reference frame.
The origin of the ICRS is defined to be the center of mass of the solar system (barycentric
system) and is realized by observations in the framework of the theory of general relativity.

By recommendations from the International Astronomical Union (and duly adopted) the pole
and equinox of the ICRS are supposed to be close to the mean dynamical pole and equinox of
J2000.0 (Julian date, 2000, see below). Furthermore, the adopted pole and equinox for ICRS, for
the sake of continuity, should be consistent with the directions realized for FK5, which is the
fundamental catalogue (fifth version) of stellar coordinates that refers to the epoch J2000.0 and
served as realization of a previously defined celestial reference system. Specifically, the origin
of right ascension for FK5 was originally defined on the basis of the mean right ascension of 23
radio sources from various catalogues, with the right ascension of one particular source fixed to
its FK4 value, transformed to J2000.0. Similarly, the FK5 pole was based on its J2000.0
direction defined using the 1976 precession and 1980 nutation series (see below). The FK5

! Feissel, M., Mignard, F. (1998): The adoption of ICRS on 1 January 1998: Meaning and consequences. Astron.
Astrophys., 331, L33-L36.
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directions are estimated to be accurate to + 50 milliarcsec for the pole and + 80 milliarcsec for
the equinox; and, it is now known, from improved observations and dynamica models
(McCarthy, 1996%, McCarthy and Petit, 2003, Petit and Luzum, 2010%), that the ICRS pole and
equinox are close to the mean dynamical equinox and pole of J2000.0, well within these
tolerances. Thus, the definition of the ICRS origin of right ascension and pole are only
gualitative with respect to FK5 — fundamentally they are defined to be geometric axes fixed by a
set of quasars. The precise transformation to a dynamical system, such as defined by modern
theories, is briefly discussed in Section 4.1.3.

The redization of the ICRS, the International Celestial Reference Frame (ICRF) is
accomplished with VLBI measurements of the quasars, and, as observations improve the
orientation of the ICRF will be adjusted so that it has no net rotation with respect to previous
realizations (analogous to the ITRF). The original realization was designated ICRF1; and, it was
extended in 1999 and again in 2002 with additional objects observed with VLBI, thus totaling
667 and 717, respectively. The next significant realization, designated ICRF2, was constructed
in 2009, where now 295 quasars define the system (being more stable and better distributed in
the sky than for ICRF1), and which also includes an additional 3119 extragalactic sources.
Aside from VLBI, the principa redlization of the ICRS is through the Hipparcos catalogue,
based on recent observations of some 120,000 well-defined stars using the Hipparcos (High
Precision Parallax Collecting Satellite), optical, orbiting telescope. This catalogue is tied to the
ICRF with an accuracy of about 0.6 mas (milliarcsec) in each axis. Additional catalogues for up
to 100 million stars are described by Petit and Luzum (ibid.).

4.1 Dynamics of the Pole and Equinox

Despite the simple, geometric (kinematic) definition and realization of the ICRS, we do live and
operate on a dynamical body, the Earth, whose naturally endowed directions (associated with its
spin and orbital motion) in space vary due to the dynamics of motion according to gravitational
and geodynamical theories. Inasmuch as we observe celestial objects to aid in our realization of
terrestrial reference systems, we need to be able to transform between the ICRF and the ITRF,
and therefore, we need to understand these dynamics to the extent, at least, that allows us to
make these transformations. The description of the transformation, comprising Earth orientation
parameters, has also changed in recent years. Here, both the traditional description and the
modern transformation are treated, where the traditional one is perhaps a bit more accessible in

2 McCarthy, D.D. (ed.) (1996): IERS Conventions (1996). |ERS Tech. Note 21, Observatoire de Paris, Paris.

3 McCarthy, D.D., Petit, G. (2003): IERS Conventions 2003. |ERS Technical Note 32, U.S. Naval Observatory,
Bureau International des Poids et Mesures.

* Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010. IERS Technical Note No.36, Verlag des Bundesamts
fur Kartographie und Geodéasie, Frankfurt am Main.
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terms of physica intuition, whereas, the latter tends to hide these concepts. Furthermore, the
opportunity was taken in the new approach to implement certain nuances necessary for an
unambiguous definition of Earth rotation. Thus, we start with the traditional approach and
evolve this into the modern transformation formulas.

Toward this end, we need, first of al, to define a system of time (since the theoretical
description of dynamics inherently requires it). We call the relevant time scale the Dynamic
Time, referring to the time variable in the equations of motion describing the dynamical behavior
of the mass bodies of our solar system. Rigorously (with respect to the theory of general
relativity), the dynamic time scale can refer to a coordinate system (coordinate time) that is, for
example, barycentric (origin at the center of mass of the solar system) or geocentric, and is thus
designated barycentric coordinate time (TCB) or geocentric coordinate time (TCG); or, it refers
to a proper time, associated with the frame of the observer (terrestrial dynamic time (TDT), or
barycentric dynamic time (TBD)); see Section 5.3 on further discussions of the different
dynamical time scales. The dynamic time scale, based on proper time, is the most uniform that
can be defined theoretically, meaning that the time scale in our local experience, as contained in
our best theories that describe the universe, is constant.

Dynamic time is measured in units of Julian days, which are close to our usual days based on
Earth rotation, but they are uniform; whereas, solar days (based on Earth rotation) are not, for the
simple reason that Earth rotation is not uniform. The origin of dynamic time, designated by the
Julian date, JO.0, is defined to be Greenwich noon, 1 January 4713 B.C. Julian days, by
definition, start and end when it is noon (dynamical time) in Greenwich, England. Furthermore,
by definition, there are exactly 365.25 Julian days in a Julian year, or exactly 36525 Julian days
in a Julian century. With the origin as given above, the Julian date, J1900.0, corresponds to the
Julian day number, JD2,415,021.0, being Greenwich noon, 1 January 1900; and the Julian date,
J2000.0, corresponds to the Julian day number, JD2,451,545.0, being Greenwich noon, 1 January
2000 (see Figure 4.1). We note that Greenwich noon represents mid-day in our usua
designation of days starting and ending at midnight, and so JD2,451,545.0 is also 1.5 January
2000. Continuing with this scheme, 0.5 January 2000 is really Greenwich noon, 31 December
1999 (or 31.5 December 1999).
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Figure 4.1: One Julian century.

An epoch is an instant in time (as opposed to a time interval which is the difference between
two epochs). We need to define three epochs, as follows:

t, : the fundamental or basic epoch for which the values of certain constants and parameters are
defined that are associated with the dynamical theories of the transformation (previously,
the reference system).

t: the epoch of date, being the current or some other time at which the dynamics should be
realized (e.g., the time of observation).

t-: an epoch that is fixed and arbitrary, representing another epoch with respect to which the
theory could be devel oped.

The distinction between t, and t. is a matter of convenience, where t, aways refers to the
epoch for which the constants are defined.

41.1 Precession

The gravitationa interaction of the Earth with the other bodies of the solar system, including
primarily the moon and the sun, but also the planets, cause Earth’s orbital motion to deviate from
the simple Keplerian model of motion of two point masses in space. Also, because the Earth is
not a perfect homogeneous sphere, its rotation is affected likewise by the gravitational action of
the bodies in the solar system. If there were no other planets (only the Earth/moon system) then
the orbit of the Earth/moon system around the sun would be essentially a plane fixed in space.
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This plane defines the ecliptic (see adso Section 2.3.2). But the gravitational actions of the
planets cause this ecliptic plane to behave in adynamic way, called planetary precession.

If the obliquity of the ecliptic (Section 2.3.2) were zero (or the Earth were not flattened at its
poles), then there would be no gravitational torques due to the sun, moon, and planets acting on
the Earth. But since £ #0 and f #0, the sun, moon, and planets do cause a precession of the
eguator (and, hence, the pole) that is known as luni-solar precession and nutation, depending on
the period of the motion. That is, the equatorial bulge of the Earth and its tilt with respect to the
ecliptic alow the Earth to be torqued by the gravitational forces of the sun, moon, and planets,
since they al lie approximately on the ecliptic. Planetary precession together with luni-solar
precession is known as general precession.

The complex dynamics of the precession and nutation is a superposition of many periodic
motions originating from the myriad of periods associated with the orbital dynamics of the
corresponding bodies. Smooth, long-period motion is termed luni-solar precession, and short-
periodic (up to 18.6 years) is termed nutation. The periods of nutation depend primarily on the
orbital motion of the moon relative to the orbital period of the Earth. The most recent models for
nutation also contain short-periodic effects due to the relative motions of the planets.

We distinguish between precession and nutation even though to some extent they have the
same sources. In fact, the modern approach mentioned earlier combines the two into one model
(as seen later in Section 4.1.3). Since precession is associated with very long-term motions of
the Earth’s reference axes in space, we divide the total motion into mean motion, or average
motion, that is due to precession and the effect of short-period motion, due to nutation, that at a
particular epoch describes the residual motion, so to speak, with respect to the mean. First, we
discuss precession over an interval of time. The theory for determining the motions of the
reference directions was developed by Simon Newcomb at the turn of the 20th century. Its basis
lies in celestial mechanics and involves the n-body problem for planetary motion, for which no
analytical solution has been found (or exists). Instead, iterative, numerical procedures have been
developed and formulated. We can not give the details of this (see, e.g., Woolard, 1953°), but
can only sketch some of the results.

In the first place, planetary precession may be described by two angles, 7z, and /7,, where
the subscript, A, refers to the “accumulated” angle from some fixed epoch, say t,, to some other
epoch, say t. Figure 4.2 shows the geometry of the motion of the ecliptic due to planetary
precession from t, to t, as described by the angles, 77, and /7,. The pictured ecliptics and
equator are fictitious in the sense that they are affected only by precession and not nutation, and
as such are called “mean ecliptic” and “mean equator”. The angle, 7z, , is the angle between the
mean ecliptics at t, and t; while /7, isthe ecliptic longitude of the axis of rotation of the ecliptic
dueto planetary precession. The vernal equinox at t, isdenoted by Y.

® Woolard, E.W. (1953): Theory of the rotation of the Earth around its center of mass. Nautical Almanac Office,
U.S. Naval Observatory, Washington, D.C.
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Figure 4.2: Planetary precession.

The angles, 77, and /7,, can be expressed as time series where the coefficients are based on
the celestial dynamics of the planets. Usually, the series are given in the form:

sin7,sin /7, =s(t —t,) +s,(t —to)2 +s, (t —t0)3 Hoen “
sin7z, cos /7, =c(t—t,) +c (t —t0)2 +c, (t _t0)3 . '

The epoch about which the series is expanded could aso be t., but then the coefficients would
obviously have different values. Seidelmann (1992, p.104)° gives the following series; see also
Woolard, 1953, p.44"):

7,sin 77, = (41976 -0.75250T +0.000431T?) 7
+(0.19447 +0.000697T ) 72 —0.0001797° [arcsec]
(4.2)
71, cos 77, = (-46.8150 ~0.00117T +0.005439T?) 7

+(0.05059 -0.003712T ) 7% +0.0003447° [arcsec]

where the units associated with each numerical coefficient are arcsec and the time variables, T
and 7, are (unit-less) fractions of a Julian century, given by

t. —t, ottt

=—F 0 r=———F (4.3)
36525 [day] 36525 [day]

® Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill
Valley, CA.

"Woolard, E.W. (1953): Theory of the rotation of the Earth around its center of mass. Nautical Almanac Office,
U.S. Naval Observatory, Washington, D.C.
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where the epochs, t,, t., and t, are Julian dates given in units of Julian days. It is noted that this
two-epoch approach to formulating precession has been largely abandoned in modern theories
with no difference in accuracy.

The luni-solar precession depends on the geophysical parameters of the Earth. No analytic
formula based on theory was used for this due to the complicated nature of the Earth’s shape and
internal constitution. Instead, Newcomb gave an empirical parameter, (now) called Newcomb’'s
precessional constant, B, based on observed rates of precession. In fact, this “constant” rate is
not strictly constant, as it depends slightly on time according to

R=Rt Fi(t _to)’ (4.4)

where B =-0.00369 arcsec/century (per century) is due to changes in eccentricity of Earth’s
orbit (Lieske et al., 1977, p.10)®. Newcomb’s precessional constant depends on Earth’s moments
of inertiaand enters in the dynamical equations of motion for the equator due to the gravitational
torques of the sun and moon. It is not accurately determined on the basis of geophysical theory,
rather it is derived from observed general precession rates. It describes the motion of the mean
eguator along the ecliptic according to therate:

¢ =R, cosg, —Ry, (4.5)

where &, is the obliquity of the ecliptic at t,, and P, is a general relativistic term called the
geodesic precession. The accumulated angle in luni-solar precession of the equator along the
eclipticisgivenby ¢, .

Figure 4.3 shows the accumulated angles of planetary and luni-solar precession, as well as
general precession (in longitude). The precession angles, as given in this figure, describe the
motion of the mean verna equinox as either along the mean ecliptic (the angle, ¢, , due to
motion of the mean equator, that is, luni-solar precession), or along the mean equator (the angle,
Xa» due to motion of the mean ecliptic, that is, planetary precession). The accumulated general
precession in longitude is the angle, as indicated, between the mean vernal equinox at epoch, t,,
and the mean vernal equinox at epoch, t. Even though (for relatively short intervals of several
years) these accumulated angles are small, we see that the accumulated general precession is not
simply an angle in longitude, but motion due to a compounded set of rotations.

8 Lieske, JH., Lederle, T., Fricke, W., Morando B. (1977): Expressions for the Precession quantities based upon the
IAU (1976) system of astronomical constants. Astron. Astrophys., 58, 1-16.
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Figure 4.3: General precession = planetary precession + |uni-solar precession.

It is easier to formulate the relationships between the various types of precession by
considering the limits of the accumulated angles as the time interval goes to zero, that is, by
considering the rates. Following conventional notation, we denote rates by the corresponding
un-subscripted angles:

dx,

= by
dt

dy
l// et 1A ,
t=t, dt

: (4.6)
t=t, dt

X:

t=t,

From Figure 4.3, we thus have the following relationship between the precession rates (viewing
the geometry of the accumulated motionsin the differential sense):

p=¢ - xCosé&,, (4.7)

where the second term is merely the projection of the planetary precession onto the ecliptic.
Now, applying the law of sinesto the spherical triangle MPY” in Figure 4.3, we find

sin x,sin(180°-¢) =sinm,sin /7, 49
= X Sine=sinm,sin /7, '

Substituting the first of equation (4.1) and taking the time derivative according to equation (4.6),
we have for the rate in planetary precession
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S
X=—, (4.9)
sing,

where second-order terms (e.g., due to variation in the obliquity) are neglected. Putting
equations (4.9) and (4.5) into equation (4.7), the rate of general precession (in longitude) is given
by

p =R, cosg, — P, —scoté&,. (4.10)

More rigorous differential equations are given by Lieske et al. (1977, p.10, ibid.).

Equation (4.10) snows that Newcomb’s precessional constant, B, is related to the general
precession rate; and, thisis how it is determined, from the observed rate of general precession at
epoch, t,. This observed rate was one of the adopted constants that constituted the definition of
the celestial reference system when it was defined dynamically. The other constants included P,
(the time dependence of Newcomb's constant), B, (the geodesic precession term), &, (the
obliquity at epoch, t,), and any other constants needed to compute the coefficients, s,s,,c,c,, on
the basis of planetary dynamics. Once these constants are adopted, al other precessiond
parameters can be derived.

The rate of general precession in longitude can also be decomposed into rates (and
accumulated angles) in right ascension, m, and declination, n. From Figure 4.4, we have the
accumulated general precession in declination, n,, and in right ascension, m,:

Ny, =¢,sing,
(4.112)
M, =YACOSE, ~ Xa

and, in terms of rates:
n=¢sng,
(4.12)
M= COSE, — X

Finally, the rate of general precession in longitudeis then also given by:

P =MCOSE, +NSing,. (4.13)
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Figure 4.4: General precession in right ascension and declination.

The rate, n, (and accumulated angle, n,) is one of three precessional elements that are used
to transform from the mean pole and equinox at t, (or some other fundamental epoch) to the
mean pole and equinox at another epoch, t. The accumulated general precession in declination is
also designated, 8,. Instead of the accumulated angle in right ascension, m,, as defined above,
two other precessional elements are used that facilitate the transformation. Referring to Figure
4.5, showing also the result of general precession, but now just in terms of motions of the pole
and equinox, we definetwo angles, z, and ¢, , inright ascension. The mean pole, Z,, at epoch,
t,, moves as aresult of general precession to its position, Z, at epoch, t; and the connecting great
circle arc clearly is the accumulated general precession in declination. The general precession
rate in right ascension can be decomposed formally into rates along the mean equator at epoch,
t,, and along the mean equator at a differential increment of time later:

m=¢+z. (4.14)

We see that the great circle arc, Z/OZQ intersects the mean equator of t, at right angles
because it is an hour circle with respect to the pole, Z,; and it intersects the mean equator of t at
right angles because it is also an hour circle with respect to the pole, Z. Consider a point on the
celestial sphere. Let its coordinates in the mean celestia reference frame of t, be denoted by
(@y,9,) and in the mean frame at epoch, t, by (a,,,d,,) . Intermsof unit vectors, let

Cosa, COSI, cosa,, Coso,,
r,=| sina,cosd, |, r. =| sina,, cosd,, |. (4.15)
sing, sind,
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Then, with the angles as indicated in Figure 4.5, we have the following transformation between
the two frames:

Fn = RS(_ZA) R2(+0A) Rs(_ZA)"o
(4.16)

=Pr,

where P is called the precession transformation matrix. Again, note that thisis a transformation
between mean frames, where the nutations have not yet been taken into account.

ascending node
of the equator

rF Qe \

Figure 4.5: Precessional elements.

Numerical values for the precessional constants, as adopted by the International
Astronomical Union in 1976, are given by
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p =5029.0966 arcsec/Julian century

B, = -0.00369 arcsec/Julian century
(4.17)
Pg =1.92 arcsec/Julian century

£, =23°26'21.448"

and refer to the fundamental epoch, t,=J2000.0. Based on these, the following series
expressions are given by Seidelmann (1992, p.104)° for the various precessional quantities and
elements:

7, = (47.0029-0.06603T +0.000598T°) 7+

(4.18)
(~0.03302 +0.000598T ) 72 +0.000060r > [arcsec]
I1, = 174°52'34.982"+3289.4789T +0.60622T + @19
(~869.8089 —0.50491T ) 7 +0.035367 [arcsec] '
W, = (5038.7784 +0.49263T ~0.000124T?) 7 + 420
(~1.07259-0.001106T) 7> ~0.0011477° [arcsed] '
X, = (10.5526 -1.88623T +0.000096T?)7 + .
(~2.38064 ~0.000833T ) 72 —0.0011257° [arcsec] |
P, = (5029.0066 +2.22226T ~0.000042T2) 7 + w2
(1.11113-0.000042T ) 7> ~0.0000067° [arcsed] |
{, = (2306.2181+1.39656 T ~0.000139T2)7 + w2
(0.30188-0.000344T ) 7% +0.0179987> [arcsec] |
z, = (2306.2181+1.39656 T ~0.000139T°) 7 +
(4.24)

(1.09468+0.000066 T ) 72 +0.018203r° [arcsec]

® Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill
Valley, CA.
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8, = (2004.3109-0.85330T ~0.000217T?) 7 +

(4.25)
(-0.42665-0.000217T ) 7> —0.041833r° [arcsec]

Ey= 23°26'21.448"-46.8150T +0.00059T2 +0.001813T?3 +
(-46.8150-0.00117T +0.005439T?) 7 +( -0.00059 +0.005439T ) 7 + (4.26)
0.0018137° [arcsec]

where, as before, T and 7 are given by equations (4.3). The series, given by equations (4.18)
through (4.26) are expansions with respect to an arbitrary (but fixed) epoch, t:, but based on the
precessional constants valid for t,. If we set t. =t,, then, of course, T =0, and
7 =(t-t,)/(36525 days).

If, for the sake of convenience, we do set t. =t,, then we see that the coefficient of 7 in
these series represents the rate of the corresponding precessional element at t =t, (i.e., 7 =0).
For example,

i(// Al =5038.7784 arcsec/Julian century
dr 4|, (4.27)

= 50 arcsec/year

which is the rate of luni-solar precession, causing the Earth’s spin axis to precess with respect to
the celestial sphere and around the ecliptic pole with a period of about 25,800 years. The luni-
solar effect is by far the most dominant source of precession. We see that the rate of changein
the obliquity of the ecliptic is given by

d

5 = -46.8150 arcsec/Julian century
T

. (4.28)
= 0.47 arcseclyear

and the rate of the westerly motion of the equinox, due to planetary precession, is given by

d
——Xa

5 =10.5526 arcsec/Julian century
T

-0 (4.21)
= 0.11 arcseclyear

Note that these rates would change with differently adopted precessional constants.
In 2000, the IAU recommended a revision of the precession model, combined with a
significant revision of the nutation model (see below) based on a least-squares adjustment to
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current VLBI data, based on the work of Mathews et al. (2002)*°. Principally, this new model
corrects the longitude and obliquity precession rates. A new dynamical theory for precession
was developed™ and adopted in 2006 that accounts for terms up to fifth order in the polynomial
expressions and formulates the dynamical luni-solar precession consistent with the precession
rates obtained by the 2000 IAU model.

4.1.2 Nutation

Up to now we have considered only what the dynamics of the pole and equinox are in the mean
over longer periods. The nutations describe the dynamics over the shorter periods. Also, for
precession we determined the motion of the mean pole and mean equinox over an interval, from
t, tot. The transformation due to precession was from one mean frame to another mean frame.
But for nutation, we determine the difference between the mean position and the true position for
a particular (usually the current) epoch, t (also known as the epoch of date). The transformation
due to nutation is one from a mean frame to a true frame at the same epoch. Since we will deal
with true axes, rather than mean axes, it is important to define exactly the polar axis with respect
to which the nutations are computed (as discussed later, we have a choice of spin axis, angular
momentum axis, and “figure” axis). Without giving a specific definition at this point (see,
however, Section 4.3.2), we state that the most suitable axis, called the Celestial Ephemeris Pole
(CEP) corresponding to the angular momentum axis for free motion, being also close to the spin
axis, represents the Earth’s axis for which nutations are computed. More, recently (with the
2003 IERS Conventions, see Section 4.1.3) the axis for nutations has been refined dlightly and is
called the Celestial Intermediate Pole (CIP); see also the IERS Conventions 2010™. We will use
this new designation, but also discuss the original CEP in some detail in section 4.3.2.

Recall that nutations are due primarily to the luni-solar attractions and hence can be modeled
on the basis of a geophysica model of the Earth and its motions in space relative to the sun and
moon. The nutations that we thus define are also called astronomic nutations. The
transformation for the effect of nutation is accomplished with two angles, 4¢ and 4y , that
respectively describe (1) the change (from mean to true) in the tilt of the equator with respect to
the mean ecliptic, and (2) the change (again, from mean to true) of the equinox along the mean
ecliptic (see Figure 4.6). We do not need to transform from the mean ecliptic to the true ecliptic,
since we are only interested in the dynamics of the true equator (and by implication the true
pole). Thetrue vernal equinox, Y5, isaways defined to be on the mean ecliptic.

19 Mathews, P.M., Herring, T.A., and Buffett, B.A. (2002): Modeling of nutation-precession: New nutation series for
nonrigid Earth, and insights into the Earth’ sinterior. J. Geophys. Res., 107(B4), 10.1029/2001JB000390.

1 Capitaine, N., Wallace, P.T., Chaprone, J. (2003): Expressions for | AU 2000 precession quantities. Astronomy
and Astrophysics, 412(2), 567-586.

12 Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010. |ERS Technical Note No.36, Verlag des Bundesamts
fur Kartographie und Geodéasie, Frankfurt am Main.
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1-axis ’\

mean ecliptic at t

mean equator at t

AN

true equator at t

Figure 4.6: Nutational elements.

With respect to Figure 4.6, it is seen that Ay isthe nutation in longitude. It is due mainly to
the ellipticities of the Earth’s and moon’s orbits, causing non-uniformity in the luni-solar
precessiona effects. The nutation in obliquity, 4¢, is due mainly to the moon’s orbital plane
being out of the ecliptic (by about 5.145 degrees). Models for the nutation angles are given in
the form

A‘s:Zn:CI COSA, Al//:Zn:S,sinA, (4.29)

where the angle
A =al+bl'+cF +d D +eQ (4.30)

represents a linear combination of fundamental arguments, being combinations of angles, or
ecliptic coordinates, of the sun, moon (and their orbital planes) on the celestial sphere. The
multipliers, a,...,&, correspond to different linear combinations of the fundamental arguments
and describe the corresponding periodicities with different amplitudes, C, and S . The reader is
referred to (Seidelmann, 1992, p.112-114)™ for the details of these nutation series. Table 4.1
below gives only some of these terms; there are 97 more with lower magnitudes for the 1980
nutation series. 7 isgiven by equation (4.3) with t =t,:

t—t,

r=— 0 (4.31)
36525 [day]

3 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill
Valley, CA.
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where t, and t are the Julian day numbers for J2000.0 and the epoch of date, respectively.
Table 4.2 provides series expressions for the fundamental arguments in terms of the 1980 IAU
nutation model.

The 1980 IAU theory of nutation is based on a non-rigid Earth model and the resulting series
replaces the previous nutation series by Woolard of 1953. Subsequent theory developed by
Mathews et al. (2002)* includes the effects of the actual non-rigidity of the Earth (see below).
The predominant terms in the nutation series have periods of 18.6 years, 0.5 years, and 0.5
months as seen in Table 4.1. Figure 4.7 depicts the motion of the pole due to the combined luni-
solar precession and the largest of the nutation terms. This diagram also shows the so-called
nutational ellipse which describes the extent of the true motion with respect to the mean motion.
The “semi-axis’ of the ellipse, that is orthogonal to the mean motion, is the principal term in the
nutation in obliquity and is also known as the constant of nutation. The values for it and for the
other “axis’, given by Ay sine (Figure 4.6), can be inferred from Table 4.1. The total motion
of the pole (mean plus true) on the celestial sphere, of course, is due to the superposition of the
genera precession and all the nutations.

Table 4.1: Some terms of the series for nutation in longitude and obliquity, referred to the mean
ecliptic of date (1980 IAU theory of nutation).

period S [10™ arcsec] C [10™ arcsec]
[days]
6798.4 -171996 17421 * 92025 +8.971
3399.2 2062 +0.21 —895 +0.571
182.6 -13187 -1.671 5736 =311
365.3 1426 =34r 54 -0.1r71
121.7 517 +1.21 224 —0.671
13.7 2274 -0.271 977 0571
27.6 712 +0.17 —/
13.6 -386 -04r 200
9.1 =301 129 -0.1r

*r is given by equation (4.31).

% Mathews, P.M., Herring, T.A., Buffett, B.A. (2002): Modeling of nutation-precession: New nutation series for
nonrigid Earth, and insights into the Earth’ sinterior. J. Geophys. Res., 107(B4), 10.1029/2001JB000390.
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Table 4.2: Fundamental arguments for the nutation angles (1980 IAU Nutation series, from
Seidelmann (ibid.)
! =134°57'46.733"+(1325r +198°52'02.633") r +31.310" 72 +0.064"7°
('= 357°31'39.804"+‘( 99’ +359°03'01.224")} -0.577"r? -0.012"r°
F :93°16'18.877"+(\1‘342r +82°01'03.137")r -13.257"r* +0.011" 73

D = 297°51'01.307"+(1236' +307°06'41.328" | 7 —6.891" r? +0.019"7°
2 =135°02'40.280"- (5 +134°08'10.539" ) r +7.455"7° +0.008"7°

Ay

7

¢ = the mean longitude of the Moon minus the mean longitude of the Moon’s perigee;
(' = the mean longitude of the Sun minus the mean longitude of the Sun’s perigee;

F = the mean longitude of the Moon minus the mean longitude of the Moon’s node;
D = the mean longitude of the Moon minus the mean longitude of the Sun;

Q = the longitude of the mean ascending node of the lunar orbit on the ecliptic measured from
the mean equinox of date.

- luni-solar precession

mean motion of CIP

A¢g, constant of nutation = 9.2"
mean

ecliptic
pole

nutational ellipse

true motion of CIP

18.6yr=6.2"

Figure 4.7: Luni-solar precession and nutation.
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The transformation at the current epoch (epoch of date) from the mean frame to the true
frame accounts for the nutation of the CIP. Referring to Figure 4.6, we see that this
transformation is accomplished with the following rotations:

r=R (e -2e)R(~40)R ()1,

(4.32)
=Nr,
where £ isthe mean obliquity at epoch, t, and
COSa COSO
r =| Sina coso (4.33)
sind

is the vector of coordinates in the true frame at the current epoch. The combined transformation
due to precession and nutation from the mean epoch, t,, to the current epoch, t, is given by the
combination of equations (4.16) and (4.32):

r = NPr,. (4.34)

Approximate expressions for the nutation matrix, N, can be formulated since 4¢ and Ay are
small angles (Seidelmann, 1992, p.120)*>; in particular, they may be limited to just the principal
(largest amplitude) terms, but with reduced accuracy. The new convention for the
transformation, analogous to equation (4.34), was adopted in 2003 by the IERS and is discussed
in Section 4.1.3.

Over the last decade, the IAU has recommended new models for precession (see Section
4.1.1) and nutation. Upon a recommendation in 2000, the IAU 1976 precession and IAU 1980
nutation models were replaced officialy in 2003 by a new precession-nutation model of
Mathews et al. (2002), designated IAU 2000A. In addition to correcting the longitude and
obliquity precession rates, this model accounts for the mantle anelasticity, the effects of ocean
tides, electromagnetic couplings between the mantle, the fluid outer core, and the solid inner
core, aswell as various non-linear terms not previously considered. The new series contains 678
luni-solar terms and 687 planetary terms. For additional details and availability see Petit and
Luzum (2010)*°. An abbreviated version for those not needed ultimate precision is designated
IAU 2000B. The revision of the precession components of this 2000 IAU model (see Section

15 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill
Valley, CA.

18 Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010. |ERS Technical Note No.36, Verlag des Bundesamts
fur Kartographie und Geodéasie, Frankfurt am Main.
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4.1.1) forms the newly recommended (2006) and adopted (2009) combined IAU 2006/2000A
precession-nutation model. It is accurate to about 0.3 milliarcsec (mas).

Finally, it is noted that previous and current nutation models are supplemented for those
seeking the highest accuracy and temporal resolution by small corrections (called “celestial pole
offsets’) obtained from continuing VLBI observations. For example, the most recent models do
not contain the diurnal motion called free-core nutation caused by the interaction of the mantle
and the rotating fluid outer core'’. |ERS publishes differential elements in longitude, Jy , and
obliquity, ¢ (previously also denoted dA4y and dAg) that can be added to the elements
implied by the 1980 nutation series (see also equations (4.53) and (4.54) under the new
conventions):

Ay = Ay (model) + oy
(4.35)
Ae = As(model) +de

4.1.3 New Conventions

The method of describing the motion of the CIP on the celestial sphere according to precession
and nutation, as given by the matrices in equations (4.16) and (4.32), has been critically analyzed
by astronomers, in particular by N. Capitaine (Capitaine et al., 1986, Capitaine, 1990™) at the
Paris Observatory. Several deficiencies in the conventions were indicated especialy in light of
new and more accurate observations and because of the new kinematical way of defining the
Celestial Reference System (CRS). Specificaly, the separation of motions due to precession and
nutation was considered somewhat artificial since no clear distinction can be made between
them. Also, with the kinematical definition of the Celestial Reference System, there is no longer
any reason to use the mean vernal equinox on the mean ecliptic as an origin of right ascensions.
In fact, doing so imparts additional rotations to right ascension due to the rotation of the ecliptic
that then must be corrected when considering the rotation of the Earth with respect to inertial
gpace (Greenwich Sidereal Time, or the hour angle at Greenwich of the vernal equinox, see
Section 2.3.4; see adso Section 5.2.1). Similar “imperfections’ were noted when considering the
relationship between the CIP and the terrestrial reference system, which will be addressed in
Section 4.3.1.1.

In 2000 the International Astronomical Union (IAU) adopted a set of resolutions that
precisely adhered to a new, more accurate, and simplified way of dealing with the transformation

7 Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010. |ERS Technical Note No.36, Verlag des Bundesamts
fur Kartographie und Geodéasie, Frankfurt am Main.

18 Capitaine, N., Guinot, B., Souchay, J. (1986): A non-rotating origin on the instantaneous equator - definition,
properties, and use. Celestial Mechanics, 39, 283-307.

19 Capitaine, N. (1990): The celestial pole coordinates. Celes. Mech. Dyn. Astr., 48, 127-143.
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between the celestial and terrestrial reference systems. The IERS, in 2003, similarly adopted the
new methods based on these resolutions®®. These were reinforced with IAU resolutions in 2006
and adopted as part of the IERS Conventions 2010. In addition to revising the definitions of the
Celestial Ephemeris Pole (CEP), now caled the Celestia Intermediate Pole (CIP), the new
conventions revised the origins for right ascensions and terrestrial longitude in the intermediate
frames associated with the transformations between the Celestia and Terrestrial Reference
Systems. The new definitions were designed so as to ensure continuity with the previously
defined quantities and to eliminate extraneous residua rotations from their reaization. These
profoundly different methods and definitions simplify the transformations and solidify the
paradigm of kinematics (rather than dynamics) upon which the celestial reference system is
based. On the other hand the new transformation formulas tend to hide some of the dynamics
that lead up to their development.

In essence, the position of the (instantaneous) pole, P, on the celestial sphere at the epoch of
date, t, relative to the position at some fundamental epoch, t,, can be described by two
coordinates (very much like polar motion coordinates, see Section 4.3.1) in the celestial system
defined by the reference pole, R, and by the reference origin of right ascension, 2, as shownin
Figure 4.8. In this figure, the pole, P, is displaced from the pole, P,, and has celestial
coordinates, d (co-declination) and E (right ascension). The true (instantaneous) equator (the
plane perpendicular to the axis through P) at time, t, intersects the reference equator (associated
with P)) at two nodes that are 180° apart. The hour circle of the node, N, is orthogonal to the
great circle arc |5;|5; therefore, the right ascension of the ascending node of the equator is 90°
plus the right ascension of the instantaneous pole, P. The origin for right ascension at the epoch
of date, t, is defined kinematically under the condition that there is no rotation rate in the
instantaneous coordinate system about the pole due to precession and nutation. This is the
concept of the so-called non-rotating origin (NRO) that is now also used to define the
instantaneous origin for longitudes (see Section 4.3.1.1). This origin for right ascensions on the
instantaneous equator is now called the Celestial Intermediate Origin (CIO), denoted o in
Figure 4.8 (it has also been called the Celestial Ephemeris Origin, CEO).

Rather than successive transformations involving precessional elements and nutation angles,
the transformation is more direct in terms of the coordinates, (d,E), and the additional
parameter, s, that defines the instantaneous origin of right ascensions:

r=Q'r, (4.36)
where
Q" =Ry(-s)R,(-E)R,(d)R,(E). (4.37)

% McCarthy, D.D., Petit, G. (2003): IERS Conventions 2003. |ERS Technical Note 32, U.S. Naval Observatory,
Bureau International des Poids et Mesures.
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which is easily derived by considering the successive rotations as the origin point transforms
from the CRS origin, 2,, to the instantaneous origin, o (Figure 4.8). Equation (4.36)
essentially replaces equation (4.34), but also incorporates the new conventions for defining the
origin in right ascension. Later (in Section 5.2.1) we will see the relationship to the previously
defined transformation. We adhere to the notation used in the IERS Conventions 2003 which
defines the transformation, Q, as being from the system of the instantaneous pole and origin to
the CRS.

P, (reference pole)

true equator at t

Figure 4.8: Coordinates of instantaneous pole in the celestial reference system.

It remains to determine the parameter, s. The total rotation rate of the pole, P, in inertia
space is due to changes in the coordinates, (d,E), and in the parameter, s. Defining three non-
colinear unit vectors, n,, m, n, essentially associated with these quantities, as shown in Figure
4.8, we may express the total rotation rate as follows:

O =n,E +md —n(E +S), (4.38)

where the dots denote time-derivatives. Now, s is chosen so that the total rotation rate, @ , has
no component along ». That is, s defines the origin point, g, on the instantaneous equator that
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has no rotation rate about the corresponding polar axis (non-rotating origin). This condition is
formulated as @ [ =0, meaning that there is no component of the total rotation rate aong the
instantaneous polar axis. Therefore,

0=nli,E +nhd —(E +3); (4.39)

and, since nlin =0, nlh, = cosd, we have
$=(cosd -1)E. (4.40)
For convenience, we define coordinates X, Y, and Z:
sind cosE

X
Y |=| sindsinE |. (4.41)
Z cosd

Then, it is easily shown that
XY =YX = —E(cos’d -1); (4.42)

and, substituting this together with Z =cosd into equation (4.40) and integrating yields

XY - YX
5% I 1+Z (4.43)

where 5, =s(t,) is chosen so as to ensure continuity with the previous definition of the origin
point at the epoch 1 January 2003.
The transformation matrix, Q, equation (4.37), is given more explicitly by:

1-cos’E(1-cosd) -sinEcosE(1-cosd) sindcosE

Q=| -sinEcosE(1-cosd) 1-sin?E(l1-cosd) sindsinE |R,(s). (4.44)
—sind cosE -sindsinE cosd

With the coordinates, (X,Y,Z), defined by equation (4.41), and 1-cosd =asin’d, where
a=1/(1+cosd), it is easy to derive that
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Q=| -aXY 1-aY? Y R(s). (4.45)
-X Y 1-a(X?+Y?)

Expressions for X and Y can be obtained directly from precession and nutation equations with
respect to the celestial system (see references mentioned in Section 4 of (Capitaine, 1990)). For
the latest IAU 2006/2000A precession-nutation models, Petit and Luzum (2010)%* give the
following:

X =-0.016617 +2004.1918987 —0.4297829r°
—0.198618347° +0.0000075787* +0.00000592857 °

+Z ((as,o)j sin (arcuUMENT) + (8, )j cos(ArRGUM ENT)) (4.46)

J

+Z ((am)j rSin(ARGUMENT) + (acyl)j T COS(ARGUMENT))

I

+Z((a&2)j TZSin(ARGUMENT) +(aC’2)J_ r2 COS(ARGUMENT)) +.-- [arcsec]

I

Y = -0.006951 -0.025896 1 —22.40727471>
+0.00190059 72 +0.0011125267* +0.00000013587°

+Z((bs,0),— sin( ARGUMENT) +(bc,0),- COS(ARGUMENT)) (4.47)
+Z((bs,1)j 7 Sin( ARGUMENT ) +(bC’1)j T COS(ARGUMENT))
+Z((b3'2)j TZSin(ARGUMENT) +(b0'2)j TZCOS(ARGUMENT)) +..- [arcsec]

where 7 =(t -t,)/(36525 [day]) witht and t, the Julian day numbers for the epoch of date and
J2000.0, respectively; and, the coefficients (%,k)j, (ank)j (bs,k)j’ (bc,k)j are available” in
tabulated form for each of the corresponding fundamental arguments, ArcuMENT, Of the nutation
model. These arguments are similar to those given in equation (4.30), but now include ecliptic

longitudes of the planets. A full description is given by Petit and Luzum (ibid., Section 5.7).

2 petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010. |ERS Technical Note No.36, Verlag des Bundesamts
fur Kartographie und Geodéasie, Frankfurt am Main.
% ttp://tai bipm.org/iers/conv2010/chapters/
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Also, for the parameter, s, the following includes all termslarger than 0.5 parcsec, aswell as
the constant, s:

s= . XY +94 +3808.657 —122.68r* -72574.11r°

2
_ _ _ (4.48)
+Zk: C.sina, +Z D,rsing, +Z E.7 cosy, +Zk: F.r*sing, [uarcsec]

where the coefficients, C,, D,, E,, F , and the arguments, a,, £, V.. 6., are elaborated by
Petit and Luzum (ibid., Chapter 5, p.59).

We note that the newly adopted IAU 2006/2000A model for precession-nutation (on which
expressions (4.46), (4.47), and (4.48) are based) replace the IAU 2000 model (and, of course, the
old IAU 1976 precession and IAU 1980 nutation models). The new models are described in
detail in (ibid.) and yield accuracy of about 0.3 mas in the position of the pole. Furthermore,
these transformation equations referring to the kinematic pole of the ICRS incorporate the
“frame bias’ described below.

To see how the coordinates, (d, E), are related to the traditional precession and nutation
angles, it is necessary to consider how the Celestia Reference System was defined prior to the
new, current kinematic definition. The dynamic definition was based on the mean equator and
mean equinox at a certain fundamental epoch, t,. Recall that the precession and nutation of the
equator relative to the mean ecliptic at t, is due to the accumulated luni-solar precessions in
longitude, ¢, , and in the obliquity of the ecliptic, w, (which differsfrom &, by the rotation of
the mean ecliptic; see Figure 4.4), as well as the nutations, A¢, and Ag,, in longitude and in the
obliquity at t, (again, differing from corresponding quantities at t). Let (d_ , E) be coordinates,
similar to (d,E), of the instantaneous pole in the dynamic mean system. Then, defining
()?,V,Z) similar to (X,Y,Z), it is easy to derive the following identity from the laws of sines
and cosines applied to the spherical triangle, Y, Y N, in Figure 4.9:

X\ (sind cosE sin(w, + 4g)sin(y, + Ay)
Y |=| sindsinE |=| sin(w, +4g)cos(y, +4y,)cose, —cos(w, +Ag)sng, |.  (4.49)
z cosd sin(aw, + 4g ) cos(y, + Ay, )sing, +cos(w, +A4g)cos &

Further expansions of X and Y as series derivable from series expansions for the quantities,
W,, w,, Ay, and As, may befound in Capitaine (1990)*.

The dynamic mean pole, P,, is offset from the kinematic pole of the ICRS, as shown in
Figure 4.10, by small angles, &, in X and 77, inY. Also, a small rotation, da,, separates the
mean equinox from the origin of the ICRS. These offsets, called frame bias, are defined for the

2 Capitaine, N. (1990): The celestial pole coordinates. Celes. Mech. Dyn. Astr., 48, 127-143.
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mean dynamic system in the ICRS, so that the transformation between ()?,V,Z) and (X,Y,Z)
isgiven by

X X
Y: :Rl(_”o)Rz(fo)Ra(dao) Y
Z Z

(4.50)

=|-da, 1 ,||Y
& 1 )\Z

where the approximation, equation (1.9) was used. Or, setting Z =1, and neglecting second-
order terms,

X =X+& —da,Y
(4.51)
Y =Y +7, +da,X

McCarthy and Petit (2003, Ch.5, p.9,12)* give the following values for these offsets based on
the AU 2000 nutation model (they have not changed for the AU 2006/2000A model);

¢, = —16.6170 £0.01 mas
1, = —6.8192 £0.01 mas (4.52)
da, = -14.60 £0.05 mas

The rotation, da,, refers to the offset of the mean dynamic equinox of an ecliptic interpreted as
being inertial (i.e., not rotating). In the past, the rotating ecliptic was used to define the dynamic
equinox. The difference (due to a Coriolis term) between the two equinoxes is about 93.7
milliarcsec (Standish, 1981)%, so care in definition must be exercised when applying the
transformation, equations (4.51), with values given by equations (4.52). Note that Figure 4.10
only serves to define the offsets according to equation (4.51), but does not show the actual
numerical relationships (equations (4.52)) between the ICRS and the CEP(J2000.0) since the
offsets are negative. Again, these offsets are already included in the expressions (4.46) and
(4.47) for Xand Y.

2 McCarthy, D.D., Petit, G. (2003): IERS Conventions 2003. |ERS Technical Note 32, U.S. Naval Observatory,
Bureau International des Poids et Mesures.

% Standish, E.M. (1981): Two differing definitions of the dynamical equinox and the mean obliquity. Astron.
Astrophys., 101, L17-L18.
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The celestial pole offsets in longitude and obliquity, (dy,de), that correct the IAU
2006/2000A precession-nutation model on the basis of VLBI observations are not included,
however, and must be added. The corrections are published by IERS in terms of corrections to X
and Y. The coordinates of the CEP thus are (Petit and Luzum, 2010, Ch.5, p.57)

X = X (IAU 2006/2000A) +0X, Y =Y (IAU 2006/2000A) +0Y , (4.53)

where

OX = dqpsing, +(,cose, — x,) O

_ (4.54)
OY = Je—((f,coSE, — X, ) Y Sine,

mi

P, (mean poleat t,)

P

truepoleat t

mean
ecliptic
at,

true equator at t

Figure 4.9: Coordinates of the true pole at t in the dynamic system of t,.
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Figure 4.10: Definition of offset parameters of dynamic mean system in the ICRS.
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414 Problems

1. a Make a rough estimate of the present declination and right ascension of the vernal
equinox in 120 B.C., the date when precession was discovered.

b) Determine the mean coordinates at J1950.0 of the vernal equinox of the celestial frame
defined at J2000.0. Then determine the mean coordinates at J2000.0 of the vernal equinox of the
celestial frame defined at J1950.0. In both cases use the precession expressions derived for the
constants defined at the fundamental epoch J2000.0. Compare the precessional elementsin each
case and compare the resulting coordinates. Use 10-digit precision in your computations.

2. @) The coordinates of astar at J2000.0 are: a =16 hr 56 min 12.892 sec, 0 =82°12'39.03".
Determine the accumulated precession of the star in right ascension during the year 2001.

b) Determine the general precession, p,, accumulated over 1 Julian minute at J1998.0.
3. Show that the precession rates, mand n, at epoch, t., are given by

m=4612.4362 + (2.79312T —0.000278T2) [arcsec]

(4.55)
n=2004.3109 +( -0.85330T -0.000217T?) [arcsec]

4. Give a procedure (flow chart with clearly identified input, processing, and output) that
transforms coordinates of a celestial object given in the celestial reference system of 1900 (1900
constants of precession) to its present true coordinates. Be explicit in describing the epochs for
each component of the transformation and give the necessary equations.

5. Derive the following: equation (4.43) starting with equation (4.40); equation (4.45) starting
with equation (4.37); and equation (4.49).

6. Show that
_1 1 2 2
a_§+§(x #Y2) 4o, (4.56)

where a is defined after equation (4.44).

7. Derive equations (4.54).
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4.2 Observational Systematic Effects

The following sections deal with effects that need to be corrected in order to determine true
coordinates of celestial objects from observed, or apparent coordinates. These effects are due
more to the kinematics of the observer and the objects being observed than the dynamics of
Earth’s motion.

4.2.1 Proper Motion

Proper motion refers to the actual motion of celestial objects with respect to inertial space. As
such their coordinates will be different at the time of observation than what they are in some
fundamental reference frame that refers to an epoch, t,. We consider only the motion of stars
and not of planets, since the former are used, primarily (at least historically), to determine
coordinates of points on the Earth (Section 2.3.5). Proper motion, also known as space motion
and stellar motion, can be decomposed into motion on the celestial sphere (tangential motion)
and radial motion. Radial stellar motion would be irrelevant if the Earth had no orbital motion
(see the effect of parallax in Section 4.2.3).

Accounting for proper motion is relatively simple and requires only that rates be given in
right ascension, in declination, and in the radia direction (with respect to a particular celestial
reference frame). If r(to) isthe vector of coordinates of astar in a catalogue (celestial reference
frame) for fundamental epoch, t,, then the coordinate vector at the current epoch, t, is given by

r(t)=r(t)+(t-t)7(t), (4.57)

where this linearization is sufficiently accurate because the proper motion, #, is very small (by
astronomic standards). With

r coSO cosa
r=|rcosdsna |, (4.58)
rsno

where a and & areright ascension and declination, as usual, and r =|r|, we have
Fcosdcosa—racosdsina —rdsindcosa

i =| fcosdsina +racosdcosa —rdsindsina |. (4.59)
FSiNd+rdcosd
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The units of proper motion in right ascension and declination, ¢ and J, typically are
rad/century and for the radial velocity, r, the units are AU/century, where 1 AU is one
astronomical unit, the mean radius of Earth’s orbit:

1 AU =1.49598077739x10" m; 1 km/s =21.095 AU/century . (4.60)

Theradia distanceis given as (see Figure 4.11)

[ = 1‘AU | (4.61)
sinit

where 77 is called the parallax angle (see Section 4.2.3). This is the angle subtended at the
object by the semi-magjor axis of Earth’s orbit. If this angle is unknown or insignificant (e.g.,
because the star is at too great a distance), then the coordinates of the star can be corrected
according to

a(t) =a (t,) +(t ~t)a (1)
(4.62)
J(t) = J(to) +(t _to) 5(to)

For further implementation of proper motion corrections, see Section 4.3.3.
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Figure 4.11: Geometry of star with respect to solar system. See also Figure 4.13 for the
geometry on the celestial sphere.

422 Aberration

Aberration is a displacement of the apparent object from its true position on the celestial sphere
due to the velocity of the observer and the finite speed of light. The classic analog is the
apparent slanted direction of verticaly falling rain as viewed from a moving vehicle; the faster
the vehicle, the more slanted is the apparent direction of the falling rain. Likewise, the direction
of incoming light from a star is distorted if the observer is moving at a non-zero angle with
respect to the true direction (see Figure 4.12). In general, the apparent coordinates of a celestial
object deviate from the true coordinates as a function of the observer’s velocity with respect to
the direction of the celestial object.
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Figure 4.12: The effect of aberration.

Diurnal aberration is due to the observer’s velocity associated with Earth’s rotation; and,
annual aberration is due to the observer’s velocity associated with Earth’s orbital motion (there
is also secular aberration due to the velocity of the solar system, but thisis not observable-itisa
constant). These aberrations are grouped as stellar aberrations, as opposed to planetary
aberrations, where the motions of both the observer and the celestial body are considered. We
do not consider planetary aberration. Furthermore, aberration differs from the light-time effect
that accounts for the distance the light must travel from the time it is emitted to the time it is
actually observed (thus, again, the apparent coordinates of the object are not the same as the true
coordinates). This effect must be considered for planets, and it is familiar to those who process
GPS data, but for stars this makes little sense since many stars are tens, hundreds, and thousands
of light-years distant.

We treat stellar aberration using Newtonian physics, and only mention the special relativistic
effect. Accordingly, the direction of the source will appear to be displaced in the direction of the
velocity of the observer (Figure 4.12). That is, suppose in a stationary frame the light is coming
from the direction given by the unit vector, p. Then, in the frame moving with velocity, v, the
light appears to originate from the direction defined by the unit vector, p', which is proportiona
to the vector sum of the two velocities, v and ¢p:

p =P (4.63)
[v+cp|

where c is the speed of light (in vacuum). Taking the cross-product on both sides with p and
extracting the magnitudes, we obtain, with |[px p|=sin46, |pxv|=vsing, and |px p| =0, the
following:
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prop)
_ vsing
) V2 +¢2 +2vccosd

sinAaé

(4.64)

V.
=—_sn@+---
c

where v is the magnitude of the observer’'s velocity, and higher powers of v/c are neglected.
Accounting for the effects of special relativity, Seidelmann (1992, p.129)* gives the second-
order formula

2
gnA9:X9n0—1(ngn20+u. (4.65)
C 4\ c

Realizing that the aberration angleisrelatively small, we use the approximate formula:

26="sng. (4.66)
C

With respect to Figure 4.13, let S denote the true position of the star on the celestial sphere with
true coordinates, (55, 0/5), and let S' denote the apparent position of the star due to aberration
with corresponding aberration errors, 40 and Aa , in declination and right ascension. Note that
S' is on the great circle arc, SF, where F denotes the point on the celestial sphere in the
direction of the observer’s velocity (that is, the aberration angle is in the plane defined by the
velocity vectors of the observer and the incoming light). By definition:

3= 8, — A0
(4.67)
as=ag -Aa

% Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill
Valley, CA.
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_— equator

sphere

Figure 4.13: Geometry on the celestial sphere for aberration and parallax. For aberration,
u =v =velocity of the observer; for parallax, u = e, =direction of barycenter.

We have from the small triangle, SS'S":

Aa cosdg
cosy =—————=, 4.68
W 6 (4.68)
and
: A0
sny =-==. 4.69
Y=g (4.69)

Fromtriangle S—NCP - F, by the law of sines, we have
singcosy = cosd; sin(a: —as), (4.70)

where the coordinates of F are (J;,a;). Substituting equation (4.68) into equation (4.66) and
using equation (4.70) yields
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Aa cosdg = \—ésinﬁcosw
= \—écode sin(a; —as) (4.71)

v : :
==cosJ; (Sina; cosag —cosa. sinag)
c

Now, the velocity, v, of the observer, in the direction F on the celestial sphere, can be
expressed as

X) (Vecoso. cosar
y |=| vcosoe sina;: |, (4.72)
z VSin o,

\4

where v=|v|. Hence, using equation (4.72) in equation (4.71), the effect of aberration on right
ascension is given by

Aa:(%cosas —%sinasjsecds. (4.73)

For the declination, we find, again from the triangle, S—NCP -F , now by the law of cosines,
that:
SiNd- =sin o;cosf—-cos & sin &siny . (4.74)

Also, with the unit vector defining the position of the star on the celestial sphere,

COSOg COS g
p=|cosdssinag |, (4.75)
Sindg

we have the scalar product, using equation (4.72):

p ¥ =vcosd

4.76
= XC0SOg COSAg + Y COSOs SiN ag +2SiN O (4.76)

We solve equation (4.76) for cos@ and substitute this into equation (4.74), which is then solved
for sn@siny to get
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y

sin@dsinyg =—sind5cosag +—siNdsSin g —— COSOg . (4.77)
Vv Vv Vv

From equations (4.69) and (4.66), we finally have

AlJz—ZsinJScosaS Ygin O Sin ag +Ecos§s. (4.78)
c c c

For diurnal aberration, the observer (assumed stationary on the Earth’s surface) has only
eastward velocity with respect to the celestial sphere due to Earth’s rotation rate, a),; it is given
by (see Figure 4.14):

v=ay, (N +h)cosg, (4.79)

where N is the ellipsoid radius of curvature in the prime vertica and (¢, h) are the geodetic
latitude and ellipsoid height of the observer (see Section 2.1.3.1). In this case (see Figure 4.15):

X =vcos(ag +tg —270°)
y =vsin(ag +tg —270°) (4.80)
2=0

where tg is the hour angle of the star. Substituting equations (4.80) into equations (4.73) and
(4.78), we find the diurnal aberration effects, respectively, in right ascension and declination to
be:

v
Aa =—costgsecdg
C

(4.81)

AIJ:XsintSszecdS
c

In order to appreciate the magnitude of the effect of diurnal aberration, consider, using equation
(4.79), that

Vo8 N*D osp=0.3000 " 1"
C c a a

cos @larcsec], (4.82)
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which is also called the “constant of diurnal aberration”. Diurnal aberration, thus, is always less
than about 0.32 arcsec.

|atitude
circleon
Earth

Figure 4.14: Velocity of terrestrial observer for diurnal aberration.

celestial
equator 90° - (360° - (s +ts))
=qy +tg —270°

Figure 4.15: Celestial geometry for diurnal aberration.

Annual aberration, on the other hand, is two orders of magnitude larger! In this case, the
velocity of the observer is due to Earth’s orbital motion and the velocity vector isin the ecliptic
plane. The”constant of annual aberration” is given by

_ 2 AUlyr

= 310 =10 =20 arcsec. (4.83)
S

\Y
Cc

From this, one can determine (left to the reader) how accurately Earth’s velocity must be known
in order to compute the annual aberration to a given accuracy. Accurate velocity components are

Geometric Reference Systems 4-38 Jekeli, January 2012



given in the Astronomical Almanac (Section B, p.44)?’ in units of 10° AU/day in the
barycentric system. Note that the second-order effect, given in equation (4.65), amounts to no
more than:

2
%(Xj ~0.25x10® =5x10™ arcsec. (4.84)
C

We further note that, aside from the approximations in equations (4.73) and (4.78), other
approximations could be considered in deriving the annual aberration formulas, e.g., taking
Earth’s orbit to be circular. In this case, corrections may be necessary to account for the actual
non-constant speed along the eliptical orbit. Also, if the velocity coordinates are given in a
heliocentric system, then the motion of the sun with respect to the barycentric system must be
determined, as must the effect of the planets whose motion causes the heliocentric velocity of the
Earth to differ from its barycentric velocity.

4.2.3 Parallax

Parallax is a displacement of the apparent object on the celestial sphere from its true position
due to the shift in position of the observer. Diurnal parallax is due to the observer’s change in
position associated with Earth’s rotation; annual parallax is due to the observer’s change in
position associated with Earth’s orbital motion. For objects outside the solar system, the diurnal
parallax can be neglected since the Earth’s radius is much smaller than the distance even to the
nearest stars. Therefore, we consider only the annual paralax. For quasars, which are the most
distant objectsin the universe, the parallax is zero.

Returning to Figure 4.11, the coordinates of E, denoted by the vector, (X, Vs, 25" , are given
in the barycentric frame. The parallax angle, 77, of a star is the maximum angle that the radius,
Pe, of Earth’s orbit (with respect to the barycenter) subtends at the star (usually, o istaken as
the semi-magjor axis of Earth’s elliptical orbit, or with sufficient accuracy, 1 AU). From the law
of sines applied to the triangle, EBS, according to the figure:

sinAHZ&

. =1, (4.85)
sng g

where rg isthe distance to the star. The effect of parallax, is therefore, approximately

A8 = 1rsin 6. (4.86)

" The Astronomical Almanac, issued annually by the Nautical Almanac Office of the U.S. Naval Observatory,
Washington, D.C.
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Clearly, this formula has a strong similarity to the aberration effect, equation (4.66); and,
indeed, we can use the same Figure 4.13 as before, but now identify the point, F, with the
direction from the observer to the barycenter of the celestial coordinate frame. Also, from Figure
4.11, the angle between F and Sin Figure 4.13 is 8+ A6 in the parallax case. But thisis of no
consequence since this angle enters only as an intermediate quantity in the derivations, not in the
final result (moreover, equation (4.86) is approximate to first order in 46); we will ignore this
difference. The unit vector defining F is, therefore,

Y
Pe COSJ; COSa-
p= Yo | = coso: sina; |, (4.87)
Pe sind,
-5
Pe

(note the negative signsin p are due to the geocentric view). From equations (4.68) and (4.86),
Aa =7sin Gcosy sec oy . (4.88)

Substituting equations (4.70) and (4.87), we obtain the effect of annual parallax on right
ascension:

Aa = n(ﬁsin as _Js coscrsjsecdS : (4.89)

Pe E
Similarly, from equations (4.69) and (4.86),
A0 =-A0singsiny . (4.90)

Using equation (4.77) with appropriate substitutions for the unit vector components, we find

A5=n(%cosassinc§+hsin cgsincg—icos cgj. (4.91)
E

E E

In using equations (4.89) and (4.91), we can approximate o =1 AU and then the coordinate

vector, (X5, s, 25) » should have units of AU.
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424 Refraction

As light (or any electromagnetic radiation) passes through the atmosphere, being a medium of
non-zero mass density, its path deviates from a straight line due to the effect of refraction, thus
causing the apparent direction of avisible object to depart from its true direction. We distinguish
between atmospheric refraction that refers to light reflected from objects within the atmosphere,
and astronomic refraction that refers to light coming from objects outside the atmosphere.
Atmospheric refraction isimportant in terrestrial surveying applications, where targets within the
atmosphere (e.g., on the ground) are sighted. We concern ourselves only with astronomic
refraction of light. In either case, modeling the light path is difficult because refraction depends
on the temperature, pressure, and water content (humidity) along the path.

For a sphericaly symmetric (i.e., spherically layered) atmosphere, Snell’s law of refraction
leads to (Smart, 1960, p.63)*:

nr sin z = constant , (4.92)

where n is the index of refraction, assumed to depend only on the radia distance, r, from Earth’s
center, and z is the angle, at any point, P, along the actua path, of the tangent to the light path
with respect to r (Figure 4.16). It is assumed that the light ray originates at infinity, which is
reasonable for all celestial objects in this application. With reference to Figure 4.16, zg is the
true topocentric zenith distance of the object, topocentric meaning that it refers to the terrestrial
observer. The topocentric apparent zenith distance is given by z,; and, as the point, P, moves
along the actual light path from the star to the observer, we have

0<z<yz. (4.93)

We define auxiliary angles, Z, and z,, in Figure 4.16, and note that

Z, =2, +2. (4.94)

Also, the total angle of refraction is defined here by

Az=17,-1zg, (4.95)

% Smart, W.M. (1977): Textbook on Spherical Astronomy. Cambridge University Press, Cambridge.
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interpreted as an error in the observed zenith distance. The error is generaly negative, and then
the correction (being the negétive of the error) is positive. The angle, Z,, is the apparent zenith
distance of the point, P, asit travels along the path, and the defined quantity,

A2, =7, -2,=2, +Z -1, (4.96)

then varies from —A4z to 0 as P moves from infinity to the observer. Thetotal angle of refraction
isthus given by

0
fz= j dAz, . (4.97)
-4z
apparent
direction
of star
Zenith light path
z
7, P true, topocentric
direction of star
3 Zg
observer
r
%
geocenter

Figure 4.16: Geometry for astronomic refraction.

Now, taking differentials in equation (4.92), we have

d(nr)sinz+nrcoszdz=0, (4.98)

which leads to
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a(m)

dz=-tanz (4.99)

From Figure 4.17, which represents the differential displacement of the point, P, along the light
path, we also have

rdz,
dr

tanz=

dz, = % tanz. (4.100)

Substituting equations (4.99) and (4.100) for the differential on the right side of equation (4.96),
we find:

d(4z,)=dz, +dz
_ (d(nr) er (4.101)
=-tanz| —L -—

nr r

This can be simplified using d(nr) =rdn+ndr , yielding

d(4z,)= —d—:tan z. (4.102)

Substituting equation (4.99) now gives

dn nr
Az,))=————
d(4z) n d(nr)
_ rdn
ndr +rdn
dn
"ar
= dndz

n+r—
dr

dz

(4.103)
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zenith z

dr

rdz,

geocenter
Figure 4.17: Differential change of P along light path.

Putting this change of integration variable from Az, to zinto equation (4.97), we have

A
Az:I dr g, (4.104)
0

where the limits of integration are obtained by noting that when P — «, z=0, and when P is at
the observer, z=z,. Again, note that equation (4.104) yields the refraction error; the correction
isthe negative of this.

To implement formula (4.104) requires a model for the index of refraction, and numerical
methods to calculate it are indicated by Seidelmann (1992, p.141-143)*°. The errors in the
observed coordinates are obtained as follows. From equation (2.187), we have

Sindg = Ccos A  cos@sin zg +sin @coszg, (4.105)

where A isthe azimuth of the star. Under the assumptions, 4A; =0 and 4® =0, thisleadsto

% Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill
Valley, CA.
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265=—22 (cosAs cos @coszg —sin @sinzg), (4.106)
COSOq

Similarly, from equation (2.179), it can be shown easily that

tant, =— Sn A . (4.107)
sin @ cos Ay —cos@ cot zg

Again, with 4A; =0 and 4® =0, and noting that Aty = —Aag, one readily can derive (left to
the reader — use equation (2.179)!) that:

Ao =-SNsCOSP (4.108)
Sin z4 COSOg
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4.25 Problems
1. Derive equations (4.92) and (4.108).

2. In VLBI (Very Long Baseline Interferometry), we analyze signals of a quasar (celestial
object at an extremely large distance from the Earth) at two points on the Earth to determine the
directions of the quasar at these two points, and thus to determine the terrestrial coordinate
differences, Ax,4y,A4z. The coordinates of the quasar are given in the ICRF. State which of the
following effects would have to be considered for maximum accuracy in our coordinate

determination in the ITRF (note that we are concerned only with coordinate differences):
precession, nutation, polar motion, proper motion, annual parallax, diurna paralax, annual
aberration, diurnal aberration, refraction. Justify your answer for each effect.
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4.3 Relationship to the Terrestrial Frame

Previous Sections provided an understanding of the relationship between catalogued coordinates
of celestial objects (i.e., in a celestial reference frame) and the coordinates as would be observed
on the rotating and orbiting Earth. Thus, we are amost ready to transform these apparent
coordinates to the terrestrial frame. But the axes that define the terrestrial reference system differ
from the axes whose dynamics were described in Section 4.1. In fact, the spin axis and various
other “natural” axes associated with Earth’s rotation exhibit motion with respect to the Earth’s
crust due to the natural dynamics of the rotation, but the axes of the terrestrial reference system
are fixed to Earth’s crust. Euler’s equations describe the motion of the natural axes for arigid
body, but because the Earth is partialy fluid and elastic, the motion of these axes is not
accurately predictable. The reader is referred to Moritz and Mueller (1987)% for theoretical and
mathematical developments of the dynamics equations for rotating bodies;, we restrict the
discussion to a description of the effects on coordinates. However, a heuristic discussion of the
different types of motion of the axesis also given here, leading ultimately to the definition of the
Celestial Intermediate Pole, CIP (previously also called the Celestial Ephemeris Pole, CEP).
The recent changes in the fundamental conventions of the transformation between the celestia
reference system and the CIP have also been extended to the transformation between the
terrestrial reference system and the CIP; and these are described in Sections 4.3.1.1 and 4.3.2.1.
The last sub-section then summarizes the entire transformation from celestial to terrestrial
reference frames.

4.3.1 Polar Motion

The motion of an axis, like the instantaneous spin axis, of the Earth with respect to the body of
the Earth is called polar motion. In terms of coordinates, the motion of the axis is described as
(xp, yp) with respect to the reference pole, CIO, or IRP, of the Conventional Terrestria
Reference System. Figure 4.18 shows the polar motion coordinates for the CIP (see Section
4.3.2); they are functions of time (note the defined directions of x and y). Since they are small
angles, they can be viewed as Cartesian coordinates near the reference pole, varying periodically
around the pole with magnitude of the order of 6 m; but they are usually given as angles in units
of arcsec.

% Moritz, H., Mueller, 1.1. (1987): Earth Rotation, Theory and Observation. Ungar Pub. Co., New Y ork.
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Figure 4.18: Polar motion coordinates.

The principal component of polar motion is the Chandler wobble. This is basically the free
Eulerian motion which would have a period of about 304 days, based on the moments of inertia
of the Earth, if the Earth were arigid body. Due to the elastic yielding of the Earth, resulting in
displacements of the maximum moment of inertia, this motion has a longer period of about 430
days. S.C. Chandler observed and analyzed this discrepancy in the period in 1891 and Newcomb
gave the dynamical explanation (Mueller, 1969, p.80)**. The period of this main component of
polar motion is called the Chandler period; its amplitude is about 0.2 arcsec. Other components
of polar motion include the approximately annual signal due to the redistribution of masses by
way of meteorologica and geophysical processes, with amplitude of about 0.05-0.1 arcsec, and
the nearly diurnal free wobble, due to the slight misalignments of the rotation axes of the mantle
and liquid outer core (also known as free core nutation, magnitude of 0.1-0.3 mas). Finaly,
there is the so-called polar wander, which is the secular motion of the pole. During 1900 —
2000, Earth’s spin axis wandered about 0.004 arcsec per year in the direction of the 80° W
meridian. Figure 4.19 shows the Chandler motion of the pole for the period 2000 to 2010, and
also the general drift for the last 110 years.

3 Mueller, I.1. (1969): Spherical and Practical Astronomy as Applied to Geodesy. Frederick Ungar Publ. Co., New
York.
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Figure 4.19: Polar motion from 2000 to 2010, and polar wander since 1900. Polar motion
coordinates were obtained from |ERS* and smoothed to obtain the trend.

The transformation of astronomic terrestrial coordinates and azimuth from the instantaneous
pole (the CIP) to the terrestrial reference pole fixed on the Earth’s crust (the CIO or IRP) is
constructed with the aid of Figures 4.20 and 4.21. Let &, /A, A denote the apparent
(observed) astronomic latitude, longitude, and azimuth at epoch, t, with respect to the CIP; and
let @, N, A denote the corresponding angles with respect to the terrestrial pole, such that

MN=N-A (4.109)

represent the corrections to the apparent angles. In linear approximation, these corrections are
the small angles shown in Figures 4.20 and 4.21.

% http://www.iers.org/nn_10968/I ERS/EN/DataProducts/EarthOrientationData/eop.html?__nnn=true
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Figure 4.20: Relationship between apparent astronomical coordinates at current epoch, t, and
corresponding coordinates with respect to the terrestrial reference frame.

We introduce the polar coordinates, d and &, so that:

X, =d cosé

. (4.110)
Y, =dsiné

Then, for the latitude, we have from the triangle, CIP-IRP —F :

A® =dcos(180° -/ -6)
=-dcos/| cosd +dsin/ sin8 (4.111)

=Y,SNn/ —X, cos/\
For the azimuth, using the law of sines on the spherical triangle, CIP - IRP -Q, we have:

sin(-4A) _sin(180°- A -6)
snd  sn(90°-9)

(4.112)

With the usual small angle approximations, this leads to

Y- (sin /| cosé +cos/| sinb)
cos@ (4.113)

= (X, Sin/| +Yy, cos/,)sec®
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Finally, for the longitude we again apply the law of sines to the triangle, QRM , Figure 4.21, to
obtain:

sin(-4A in90°
(~4A) _sin90® (4.114)
sin(-44) sing,
From this and with equation (4.113), we have
AMN=sn®, AA
: (4.115)
=—(X,sin/, +y, cos/ )tan@
Relationships (4.111) and (4.115) can also be derived from
cos®, cos/| cos@cos/
cos®,sin/| |=R(Y,)R,(x,)| cos@sinA |, (4.116)
sn@, sn@

where the vectors on either side represent unit vectors in the direction of the tangent to the local
plumb line, but in different coordinate systems; and the rotation matrices are given by equations
(1.4) and (1.6). The combined rotation matrix, in equation (4.116), for polar motion is aso
denoted by W, representing the transformation from the terrestrial pole to the celestial pole:

W=R (¥R (%) (4.117)

The polar motion coordinates are tabulated by the IERS as part of the Earth Orientation
Parameters (EOP) on the basis of observations, such as from VLBI and satellite ranging. Thus,
W is a function of time, but there are no analytic formulas for polar motion as there are for
precession and nutation.
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Figure 4.21: Relationship between the apparent longitude with respect to the CIP and the
longitude with respect to IRP.

4311 New Conventions

As described in Section 4.1.3, the celestial coordinate system associated with the instantaneous
pole (the CIP) possesses a newly defined origin point for right ascensions: a non-rotating origin
(NRO), o, cdled the Celestial Intermediate Origin, CIO (previously also called the Celestial
Ephemeris Origin, CEO; and not to be confused the conventional international origin — the pre-
1980s name for the reference pole). The instantaneous pole can also be associated with an
instantaneous terrestrial coordinate system, where likewise, according to resolutions adopted by
the IAU (and IERS), the origin of longitudes is a non-rotating origin, called the Terrestrial
Intermediate Origin, TIO (previously also called the Terrestrial Ephemeris Origin, TEO). It
should be noted that neither the CIO nor the T1O represents an origin for coordinates of pointsin
areference system. They are origin points associated with an instantaneous coordinate system,
moving with respect to the celestial sphere (the CIO) or with respect to the Earth’s crust (T10),
whence their previous designation, “ephemeris’ and now simply “intermediate”.

With this new definition of the instantaneous terrestrial coordinate system, the polar motion
transformation, completely analogous to the precession-nutation matrix, Q', equation (4.37), is
now given as

W= R (-s)R,(F)R,(g) R (F). (@119
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where the instantaneous pole (CIP) has coordinates, (g, F), in the terrestrial reference system.
As shown in Figure 4.22, g is the co-latitude (with respect to the instantaneous equator) and F is

the longitude (with respect to the TIO, w); and we may write:
(4.119)

singcosF
Yo |=| —SingsSInF |,
cosg

%

XP
where the adopted polar motion coordinates, (., Y ), are defined as before (Figure 4.20), with

Yy, along the 270° meridian.

F
IRP (reference pole)

g
instantaneous pole P
Q= 90° M
S +F g
w 90° reference
equator

true equator at t

Figure 4.22: Coordinates of instantaneous pole in the terrestrial reference system.

With a completely analogous derivation as for the precession-nutation matrix, Q, we find that

Jekeli, January 2012
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1-a'%  a'%Yp ~Xp
W=R(-s)| a'%y, 1-a'y; Yo , (4.120)
Xp ~Yr l_al(xg +yg)

where a'=1/(1+cosg) =1/2+(x} +y?)/8. Also, the parameter, ', defining the location of the
TI1O as anon-rotating origin on the instantaneous equator, is given (analogous to equation (4.43))
by

t

| - 1 Xy _yXP
s'=g '+ | 22 PP gt 4121
S j 7 (4.121)

again, noting that y, is positive along the 270° meridian. The constant, s,', may be chosen to
bezero(i.e, s'iszeroat t =t,).

It is easy to show that by neglecting terms of third and higher orders, the exact expression
(4.120) is approximately equal to

W=R(-$)R [ S53, JR (%) R, ) @122

Furthermore, s' is significant only because of the largest components of polar motion and an
approximate model is given by*

2

s'= —0.0015(% +a§j r [arcsed], (4.123)

where a, and a, are the amplitudes, in arcsec, of the Chandler wobble O(0.2 arcsec) and the
annual wobble 0(0.05 arcsec). Hence, the magnitude of s* is of the order of 0.1 mas. The
|ERS Conventions 2003 and 2010 also neglect the second-order terms (being of order 0.2 was)
in equation (4.122) and give:

W=R,(=s)R(¥s) R (%). (4.124)

which is the traditional transformation due to polar motion, equation (4.117), with the additional
small rotation that exactly realizes the instantaneous zero meridian of the instantaneous pole and
equator.

% McCarthy, D.D., Petit, G. (2003): IERS Conventions 2003. |ERS Technical Note 32, U.S. Naval Observatory,
Bureau International des Poids et Mesures.
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The polar motion coordinates should now also contain short-period terms in agreement with
the new definition of the intermediate pole. Thus, according to the IERS Conventions 2010*,
which describes these in detall,

(XP! yP) = (X’ y)IERS +(AX’Ay)tides +(AXaAy)|ibrati0n ' (4.125)

where (x,y) .. are the polar motion coordinates published by the IERS, (4x,4y), . are
modeled tidal components in polar motion derived from tide models (mostly diurnal and sub-
diurnal variations), and (Alx,ély)Iibr <o, € long-period polar motion effects corresponding to
short-period (less than 2 days) nutations. The latter should be added according to the new
definition of the intermediate pole that should contain no nutations with periods shorter than 2

days.

* Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010. |ERS Technical Note No.36, Verlag des Bundesamts
fur Kartographie und Geodéasie, Frankfurt am Main.
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4312 Problems

1. Derive equations (4.120) and (4.122).

2. @ Fromtheweb site:

http://www.iers.org/nn_10968/IERS/EN/DataProducts/ EarthOrientationData/eop.html?__nnn=true
extract the polar motion coordinates (Earth orientation parameters (EOP)) from 1846 to 2010 at
0.05 year (0.1 year) intervals.

b) Plot the polar motion for the intervals 1900.0 - 1905.95 and 2000.0 — 2005.95.
Determine the period of the motion for each interval. Describe the method you used to
determine the period (graphical, Fourier transform, least-squares, etc.).

¢) Using the period determined (use an average of the two) in b) divide the whole series
from 1846 to 2010 into intervals of one period each. For each such interval determine the
average position of the CIP. Plot these mean positions and verify the polar wander of 0.004
arcsec per year in the direction of —80° longitude.

3.(advanced) From the data obtained in 1a) determine the Fourier spectrum in each coordinate
and identify the Chandler and annual components (to use a Fourier transform algorithm, such as
FFT, interpolate the data to a resolution of 0.05 year, where necessary). For each polar motion
coordinate, plot these components separately in the time domain, as well as the residual of the
motion (i.e., the difference between the actual motion and the Chandler plus annual
components). Discuss your results in terms of relative magnitudes. What beat-frequency is
recognizable in aplot of the total motion in the time domain?
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4.3.2 Celestial EphemerisPole

This section describes the previoudly defined Celestial Ephemeris Pole (CEP), as the precursor to
the newly defined Celestial Intermediate Pole (CIP). Both are the same at a certain level of
precision, where the CIP is a refinement on the CEP owing to the increased resolution afforded
by new VLBI observations. In order to understand how the CEP was chosen as the defining axis
for which nutation (and precession and polar motion) are computed, it is necessary to consider
briefly the dynamics and kinematics of Earth rotation. The theory is given in detail by Moritz
and Mueller (1987)*. We consider the following axes for the Earth:

1. Instantaneousrotation axis, R. Itisthe direction of the instantaneous rotation vector, @, .

2. Figure axis, F . Itisthe principal axis of inertia that corresponds to the moment of inertia
with the maximum value. These terms are explained as follows. Every body has an associated
inertia tensor, |, which is the analogue of (inertial) mass. (A tensor is a generaization of a
vector, in our case, to second order; that is, a vector is really a first-order tensor.) The tensor
may be represented as a 3x3 matrix of elements, |, , that are the second-order moments of the
mass distribution of a body with respect to the coordinate axes. Specifically, the moments of
inertia, |, occupy the diagonal of the matrix and are given by

| = I (r2-)dm, | =123, (4.126)

1
mass

where r? = x7 +x; +x; ; and the products of inertia, |, , are the off-diagonal elements expressed
as

e =—j xxdm, | k. (4.127)

mass

Thus, the inertiatensor is given by
I
L=l T Dy (4.128)
I

The products of inertia vanish if the coordinate axes coincide with the principal axes of inertia
for the body. This happens with a suitable rotation of the coordinate system (with origin
assumed to be at the center of mass) that diagonalizes the inertia tensor (this can aways be

% Moritz, H., Mueller, 1.1. (1987): Earth Rotation, Theory and Observation. Ungar Pub. Co., New Y ork.
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assumed possible). Heuristically, these principal axes represent the axes of symmetry in the
mass distribution of the body.

3. Angular momentum axis, H . It is defined by the direction of the angular momentum vector,
H , asaresult of rotation. We have, by definition,

H=lw,. (4.129)

This shows that the angular momentum vector, H, and the angular velocity vector, @,
generally are not paralel. Equation (4.129) is the analogue to linear momentum, p, being
proportional (hence always parallel) to linear velocity, v ( p =mv, where m isthe tota mass of

the body).

For rigid bodies, Euler’s equation describes the dynamics of the angular momentum vector in
a body-fixed frame (coordinate axes fixed to the body):

L=H"+w xH", (4.130)

where I’ is the vector of externa torques applied to the body (in our case, e.g., luni-solar
gravitational attraction acting on the Earth). The superscript, b, in equation (4.130) designates
that the coordinates of each vector are in a body-fixed frame. In the inertial frame (which does
not rotate), equation (4.130) specializesto

L=H'. (4.131)

Again, the superscript, i, designates that the coordinates of the vector arein the inertial frame. If
L' =0, then no torques are applied, and this expresses the law of conservation of angular
momentum: the angular momentum of a body is constant in the absence of applied torques. That
is, H' =0 clearly impliesthat H remainsfixed ininertial space.

In general, equation (4.130) is a differential equation for H® with respect to time. Its
solution shows that both H® and @, (through equation (4.129)) exhibit motion with respect to
the body, even if I’ =0. Thisis polar motion. Also, if I” 20, H® changes direction with
respect to an inertial frame. Indeed, in the presence of external torques, all axes change with
respect to the inertial frame — we have aready studied this as precession and nutation.
Comprehensively, we define the following:

Polar Motion: the motion of the Earth’s axis (R, F, or H) with respect to the body of the
Earth.

Nutation: the motion of the Earth’saxis (R, F, or H) with respect to theinertia frame.
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Both polar motion and nutation can be viewed as either motion in the absence of torques (free
motion) or motion in the presence of torques (forced motion). Thus, there are four possible types
of motion for each of the three axes. However, for one axis we can rule out one type of motion.
For arotating body not influenced by external torques (L =0), the angular momentum axis, H ,
has no nutation (as shown above, it maintains a constant direction in the inertial frame).
Therefore, H has no free nutation. On the other hand, the direction of the angular momentum
axisin spaceisinfluenced by external torques, and so H exhibits forced nutations.
We thus have the following types of motion:

i) forced polar motionof R, F,or H;
i) freepolar motionof R, F,or H;
iii) forced nutationof R, F,or H;

iv) freenutationof R or F .

We aso note that for a rigid body, F has no polar motion (free or forced) since it is an axis
defined by the mass distribution of the body, and therefore, fixed within the body. On the other
hand, the Earth is not arigid body, which impliesthat F isnot fixed to the crust of the Earth — it
follows the principal axis of symmetry of the mass distribution as the latter changesin time (e.g.,
dueto tidal forces). In summary, the consideration of nutation and polar motion involves:

a) threeaxes, R, F,and H (and one more fixed to the Earth, the CIO or IRP; we call it O);
b) rigid and non-rigid Earth models;
¢) freeand forced motions.

From a study of the mechanics of body motion applied to the Earth, it can be shown that (for

an elastic Earth model; see Figure 4.23):

a) the axes R,, F,, and H,, corresponding to free polar motion, al lie in the same plane;
similarly the axes, R, F, and H , corresponding to the (actual) forced motion also must lie
in one plane;

b) forced polar motion exhibits nearly diurnal (24-hr period) motion, with amplitudes of
~60 cm for R, ~40 cm for H, and ~ 60 meters for F;

c) free nutation exhibits primarily nearly diurnal motion.

On the other hand (again, see Figure 4.23):

d) free polar motion is mostly long-periodic (Chandler period, ~ 430 days), with amplitudes of
~6m for R, and H,, and ~2m for F,;

e) forced nutation is mostly long-periodic (18.6 yr , semi-annual, semi-monthly, etc.).
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F

Figure 4.23: Free (zero-subscripted) and forced polar motions of axes for an elastic Earth.
(Not to scale; indicated amplitudes are approximate.)

Free motion (polar motion and nutation) cannot be modeled by simple dynamics, and can
only be determined empirically on the basis of observations. It is rather irregular. Forced
motion, being due to torques from well known external sources, can be predicted quite accurately
from luni-solar (and planetary) ephemerides.

If the Earth were arigid body, then the F -axis would be fixed to the Earth (F =F, =0 in
this case) and could serve as the reference for polar motion of the H - and R-axes. However,
for anon-rigid Earth, in particular, for an elastic Earth, the F -axis deviates substantially from a
fixed point on the Earth with a daily polar motion of amplitude ~60 m. Thus, F cannot serve
as reference axis either for polar motion or for nutation.

In Figure 4.23, the point O is a fixed point on the Earth’s surface, representing the mean
polar motion (for the elastic Earth), and formally is called the mean Tisserand figure axis. It can
be shown that free polar motion affects the nutations of the O- and R-axes, while the nutation
of the H -axis is unaffected by free polar motion. This is because the motion of the angular
momentum axis is determined dynamically from the luni-solar torques (equation (4.129)) and not
by the internal constitution of the Earth. This makes H a good candidate for the reference axis
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for nutations, since its (forced) nutation is unaffected by difficult-to-model free polar motion,
and it has no free nutation.

However, it still has forced polar motion (diurnal and erratic). Therefore, the IAU in 1979
adopted H, asthe CEP (i.e, the celestial reference pole), since H, has no forced polar motion
(by definition); and it, like H, has no free nutation. Thus H, has no nearly diurnal motions
according to b) and c) above — it is rather stable with respect to the Earth and space. Note that
H, still has free polar motion and forced nutation. On the other hand, as mentioned above, the
(forced) nutation of H, does not depend on free polar motion. And since the O-axis (being
fixed to the Earth’s crust) aso has no polar motion (i.e., by definition), its forced nutation, like
that of H,, does not depend on free polar motion. Therefore, both the O-axis and the H-axis
have the same forced nutations. All these properties of H, make it the most suitable candidate
for the Celestial Ephemeris Pole (CEP).

4321 Cedlestial Intermediate Pole

The Celestia Ephemeris Pole (CEP) was defined to be a pole that has no nearly diurnal motions
with respect to inertial space and with respect to the Earth’s crust. This pole served as the
intermediate pole in the transformation between the celestial and terrestrial reference systems.
That is, polar motion referred to the motion of the CEP relative to the terrestrial reference pole,
and nutation referred to the motion of the CEP relative to the celestial reference pole. As such,
the realization of the CEP depends on the model developed for nutations and it also depends on
observations of polar motion. Moreover, modern observation techniques, such as VLBI®, are
now able to determine motion of the instantaneous pole with temporal resolution as high as afew
hours, which means that no intermediate pole is defined for such applications. Also, the modern
theories of nutation and polar motion now include diurna and shorter-period motions
(particularly the variations due to tidal components). These developments have made it
necessary to define a new intermediate pole. Rather than defining it in terms some particular
physical model, such as the angular momentum axis, it is defined in terms of realizing frequency
components of motion, separating those that conventionally belong to space motion (nutation)
and those that can be treated as terrestrial motion (polar motion). In this way it is precisely an
intermediate pole used in the transformation between the celestial and terrestrial systems.

The new intermediate pole is called, to emphasize its function, the Celestial Intermediate
Pole (CIP). It separates the motion of the terrestrial reference pole (CIO or IRP) in the celestial
reference system into two parts (nutation and polar motion) according to frequency content.
According to a resolution adopted by the IAU, the precessiona and nutational motion of the CIP
with respect to the celestial sphere has only periods greater than 2 days (frequencies less than £
0.5 cycles per sidereal day). These are the motions produced mainly by external torques on the

% For an introduction to VL BI, see Seeber, G. (1993): Satellite Geodesy. Walter DeGruyter, Berlin.
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Earth. Also included are the retrograde diurnal polar motions since it can be shown that they are
eguivalent to nutations with periods larger than 2 days. The terrestrial motions of the CIP, on the
other hand, are defined to be those with frequencies outside the so-called retrograde diurnal
band (frequencies between —1.5 and —0.5 cycles per sidereal day). These are retrograde motions
with periods of the order of haf a day or less or periods greater than 2 days, as well as al
prograde polar motions. They include prograde diurnal and semi-diurnal nutations which can be
shown to be equivalent to polar motions. In that sense, the CIP is merely an extension of the
CEP in allowing higher frequency nutation components to be included (but as polar motions) in
the intermediate pole. They have minimal impact for most users, having at most a few tens of
micro-arcsec in amplitude (for the nutations) and up to a few hundred micro-arcsec for tidally
induced diurnal and semi-diurnal polar motions. The reader is referred to the IERS Conventions
2010 and the IERS Technical Note 29 for further summaries, details, and references.

4.3.3 Transformations

We are interested in transforming the coordinates of a celestial object as given in a Celestial
Reference Frame to the apparent coordinates as would be measured by a terrestria observer.
The transformation, of course, is reversible; but this direction of the transformation is most
applicable in geodesy, since we want to use the given coordinates of celestial objects in our
observation models (e.g., to determine the coordinates for terrestrial stations). The given
celestial frame coordinates are mean coordinates referring to some fundamental epoch and the
transformations account for precession up to the epoch of date, nutation at the epoch of date,
Earth rotation, polar motion, and various systematic effects due to proper motion of the object,
aberration, parallax, and refraction. Some other considerations are needed, as well, with respect
to the new definition of the ICRS. The transformation is formulated in terms of an algorithm for
geocentric and topocentric observers.

4331 Apparent Place Algorithm

The object of this procedure is to formulate a transformation to compute the apparent geocentric
coordinates of a star, given its mean position as listed in a catalogue. Apparent coordinates are
those that would be observed in a geocentric, intermediate (instantaneous) celestial frame with
annual aberration and parallax effects removed. Additional corrections for diurnal aberration

3 petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010. |ERS Technical Note No.36, Verlag des Bundesamts
fur Kartographie und Geodéasie, Frankfurt am Main.

3 Capitaine, N. (2002): Comparison of “old” and “new” concepts: the celestial intermediate pole and Earth
orientation parameters. In: IERS Technical Note No. 29, Capitaine, N., et al. (eds.), Verlag des Bundesamtsfu r
Kartographie und Geoda sie, Frankfurt am Main. Available on-line:
http://www.iers.org/iers/publications/tn/tn29/.
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(and diurnal parallax for objects in the solar system) are applied to obtain coordinates in a
topocentric, intermediate celestial frame. Applying polar motion and Earth rotation then brings
the coordinates into the terrestrial reference frame. Finally, refraction needs to be considered
when modeling observed coordinates.

The Apparent Place Algorithm follows the procedure described in the Astronomical
Almanac®. The coordinates of a star are given in some catalogue that is a realization of the
Celestial Reference System and includes also information on the velocity of the star (among
other parameters). The coordinates and velocity, using the notation of Hipparcos Catalogue, are
valid at the epoch, t;:

1) a,, 9, . cataloguecelestial coordinates and parallax angle of the star;
i) a=u,/cosd,, 50 = U5, fy=v: velocitiesof proper motion. (4.132)

The algorithm proceeds by first determining the geocentric coordinates of the star at the epoch of
the observation, t, still referred to the catalogue system. Usually, we have some time system in
which we operate, e.g., Universal Time (Chapter 5). The star catalogues and celestial reference
systems are established with respect to Barycentric Dynamic Time (TDB). Technically, one
should distinguish between Terrestrial (Dynamic) Time (TT) and TDB, but practically the
difference isless than 2 ms and can be ignored. We will define the relationship between TT and
Universal Time, and among other time scales in Chapter 5. For now, assume that the time of
observation, t, is in the scale of dynamic time, TT, in terms of Julian day numbers, e.g.,
t = 2455984.5 JD, which corresponds to 0" (midnight, civil time in UT) at Greenwich on the
morning of 27 February 2012. The time interval from the fundamental epoch, t,, of the
catalogue, in units of Julian centuries is given by equation (4.3). We will assume that t. =t,
(see also equation (4.31)), and for J2000.0, t, = 2451545.0 JD . The Julian day number for t can
be obtained from the Julian calendar (Astronomical Almanac, Section K); then we compute the
fraction of a Julian century using

. t—t, _t-2451545.0
36525 36525

(4.133)

To continue with the determination of geocentric coordinates of the star at the time of
observation, we require the location and velocity of the Earth at the time of observation in the
barycentric system of reference. We may aso need the barycentric coordinates of the sun for
light-deflection corrections. The Jet Propulsion Laboratory publishes the standard ephemerides

¥ The Astronomical Almanac, issued annually by the Nautical Almanac Office of the U.S. Naval Observatory,
Washington, D.C.
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for bodies of the solar system, called DE405*. The Astronomical Almanac, Section B, lists
some of these coordinates, as well, specifically, the vectors:

E, (t): barycentric coordinates of Earth at time, t, in the ICRS.
E, (t): barycentric velocity of Earth at time, t, in the ICRS.

We need only 3 and 5 digits of accuracy, respectively, to obtain milliarcsec accuracy in the star’s
coordinates. The barycentric coordinates of the sun in the ICRS, S, (t), are provided by DE405,
and the heliocentric coordinates of the Earth are then

E,(t)=E4(t)-Ss(t); (4.134)
Both Sy(t) and E,(t) are needed to compute the general relativistic light-deflection
correction.

The catalogued position of the star may be represented by the vector in the barycentric
systemin unitsof A.U.:

1y (t,) =1, (cosd, cosa, cosgysina, sing,)', (4.135)

with corresponding unit vector (direction), pg(t,)=ry(t,)/r,. From equation (4.57), the
coordinate vector of the star at time, t, due to proper motion is given by

1y (t) =1y (t) + 175 (1), (4.136)
where from equations (4.59), (4.61), and (4.132)

V7TCOS &, COS @, — M4, SiN & — 145 SiN g, COS @
iy (t) =1, | vircos g sin @y + 4. cosay — gy sin g sin gy | =rym (t,). (4.137)
v7TSin Q + 14 C0S G

Substituting the unit vector at t, into equation (4.136), the corresponding unit vector for the
star’ s direction at the epoch of dateis

Dg (to) +Tm (tO)

= ) 4,138
24 (t0) F o (1) (4.138)

ps(t)

“0 http://ssd.j pl.nasa.gov/?ephemeridestplanets
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It is, of course, also important to ensure that all terms in equation (4.137) have the same units
([rad/cent.] in this case, since 7, equation (4.133), is a fraction of a century). Note that the
correction for proper motion is performed in the catalogue reference system; that is, the vector,
Ds (t) , does not indicate mean coordinates at the epoch of date, because precession has not yet
been applied. With first-order approximation, we can also compute p, (t) as follows, using
equation (4.62):

cos(8, + 76, )cos(a, +1d,)
Ps (t): 005(50+r50)sin(a0+rdo) , (4.139)
sin(é'0 + TJO)

where d, may need to be derived from the catalogue data, if given through eguation (4.132).
The corrections of the other effects continue to be based on information described in the

catalogue coordinate system. We proceed by transforming from the barycentric to the geocentric
system, which corrects for parallax (see Figure 4.11):
rs(t) =rg () —E5(t). (4.140)

Now, substituting equations (4.136) and (4.61), we have

pe (to) +7m (t,) —7E (t) (4.141)

where the components of E, (t) aregivenintermsof AU. Again, we let

Us (1)
Us (1)

be the unit vector corresponding to Uy (t). These coordinates still refer to the catalogue
reference system, but now with the effects of annual parallax (and proper motion) applied.
Using angles, we augment equation (4.139) and get to first-order approximation:

(4.142)

cos(5O +70,+ AcS) cos(a, + 74, +4a)
pe(t)= cos(é'O +719, +A§)sin(agJ +ra, +4a) |, (4.143)
sin(dO +70,+ Aé)
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where Aa and 40 account for annual parallax and are given, respectively, by equations (4.89)
and (4.91).

One can now apply corrections for gravitational light-deflection and aberration according to
specific models. The light-deflection model utilizes E,, (t) and S (t) and the reader is referred
to (Seidelmann, 1992, p.149)*. We neglect this part as it only affects stars viewed near the sun.
The annual aberration can be included using vectors, according to equation (4.63), where the
aberrated coordinates are given in the form of aunit vector by

)+ Ea(t)c
|Po (t) + Eq (1) /d]

ps'(t) (4.144)

and, if Eg(t) is given in units of [AU/day], then the speed of light should be expressed
accordingly: ¢ =173.1446 AU/day . The formula given in the Astronomical Almanac* includes
specia relativistic effects:

v s ()4l 14 Pe ()T (1)
1-V(t)" ps (t) +|1 1+m V(t)

1+ ps (t) [I}’(t)

()= , (4.145)

where V (t)=Eg(t)/c, V(t)=|V(t)]. Alternatively, to first-order approximation, one can

simply augment the angular coordinates in equation (4.143) with the changes due to aberration
given by equations (4.73) and (4.78). In any case, the result yields coordinates at the epoch of
date that are geocentric and aberrated by Earth’s velocity, but still referring to the catalogue
reference system.

Finally, we apply precession and nutation to bring the coordinates from the ICRS to the
apparent coordinates in the intermediate (instantaneous) celestial frame. One may apply the
traditional transformations, as in equation (4.34) (caled the equinox method). However, the
small offset (frame bias) between the dynamical system and the new definition of the celestia
reference system should be included. Thus,

p(t)=N(t)P(t,t,) Bps (1), (4.146)

where P and N are given, respectively, by equations (4.16) and (4.32), and from equation (4.50),

! Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill
Valley, CA.

“*2 The Astronomical Almanac, issued annually by the Nautical Almanac Office of the U.S. Naval Observatory,
Washington, D.C.
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B=R (~77) R (&) Ry(day). (4.147)

Since pg (t) iSaunit vector, so is pT(t) ; and, its components contain the apparent coordinates

of the star, with p(t)=(pX P, pz).

a= tan‘lﬁ, J=tant— P2

P, Jpi+pt

Using the new conventions (Section 4.1.3), the alternative transformation procedure (called
the CIO method) substitutes equation (4.36) for equation (4.146), where Q is given by equation
(4.45) with X, Y, s, and a shown in equations (4.46), (4.47), (4.48), and (4.56), respectively:

(4.148)

p(t)=Q"ps'(t). (4.149)

Both methods give the same result if consistent models for precession and nutation (e.g., the IAU
2006/2000A precession-nutation models) are used. The corresponding apparent celestial
coordinates are given by equation (4.148).

To bring the coordinates of the star to the Terrestrial Reference Frame requires a
transformation that accounts for Earth’ s rotation rate and for polar motion. We have

pr (1) =W (t)R,(GAST (1)) p(t)., (4.150)

where GAST (t) is Greenwich Apparent Sidereal Time (Section 2.3.4; also Section 5.1, equation
5.32), and W is the polar motion matrix, given by equation (4.117). The coordinates, p; (t) , are
the apparent coordinates of the star at time, t, in the Terrestrial Reference Frame. With the new
conventions, the GAST in the transformation (4.150) is replaced by atime angle that refersto the
ClIO. Thisis the Earth rotation angle, defined in Section 5.2.1. The polar motion matrix, W, is
the same as before, but the extra rotation, s', may be included for higher accuracy (equation
(4.124)).

4332 Topocentric Place Algorithm

Topocentric coordinates of stars are obtained by applying diurnal aberration using the terrestrial
position coordinates of the observer. Diurnal parallax can be ignored, as noted earlier.
Furthermore, the topocentric coordinates and the velocity of the observer need only be
approximate without consideration of polar motion. We first find the observer’s geocentric
position in the inertial frame:
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g(t) =R,(-GAST)r, (4.151)

where r isthe terrestrial position vector of the (stationary) observer (Earth-fixed frame). g(t)
gives “true”’ coordinates at the time of observation. We find the velocity, g(t), according to

0 -w O
g(t)=R(-GAST)|wa, 0 Ofr, (4.152)
0O 0 0

since GAST =t , and apply nutation and precession to obtain the geocentric velocity in the
mean coordinate system of the fundamental epoch, t,:

G(t)=P"(t,t,)NT(t) g(t). (4.153)

This neglects asmall Coriolis term which occurs when taking time-derivativesin arotating (true)
system. Now the velocity of the observer, due to Earth’s rotation and orbital velocity, in the
barycentric reference system is given by

0, (t)=E; (t)+G(t), (4.154)

which would be used in equation (4.144) or (4.145) instead of Eg(t). The result, equation
(4.146) or (4.149), is then the topocentric place of the star.

A complete set of computationa tools is available from the U.S. Naval Observatory on its
internet  site:  http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas.
These are FORTRAN, C, or Python programs that compute the various transformations
discussed above with the older, as well as the new conventions. Details may be found, e.g., in
(Kaplan et al. 2011)*%.

3 Kaplan, G., Bartlett, J., Monet, A., Bangert, J., Puatua, W. (2011): User's Guide to NOVAS Version F3.1, Naval
Observatory Vector Astrometry Software. U.S. Naval Observatory, Washington, D.C.
http://www.usno.navy.mil/USNO/astronomi cal -applications/software-products/novas/novas-
fortran/NOVAS F3.1 Guide.pdf
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4333 Problems

1. Given the mean celestial coordinates of a star: a =195°, 0 =23° in the ICRS (assume that
the coordinates refer to t, = J2000.0), determine the apparent coordinates of the star for noon, 4
July 2020, in Greenwich. Apply the 1976 precession model, the 1980 nutation model (18.6 year,
semi-annual, and fortnightly terms, only), parallax, aberration, and space motion. Also apply the
frame bias. Use the Julian day calendar available in the Astronomical Almanac and the
following information:

a, = —0.003598723 rad/cent ,

&, = +0.000337430 rad/cent ,
f, = —22.2 kms,

71=3.6458x107° rad,

Eq 1)
Eq(t)

(0.200776901 -0.911150265 -0.394806169)" AU,
(16551216 3183909 1380187)" x107° AU/day .
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Chapter 5

Time

A system of time is aystemnjust like any other reference system (see Section 1.2)ptetke it
is one-dimensional. The definition of a time system involves som & theory associated
with changing phenomena. If the universe in its entirety wereglabety static, there would be
no time as we understand it, and the only reason we can peiogvis that things change. We
have relatively easy accessunits of time because many of the changes that we observe are
periodic. If the changing phenomenon varies uniformly, then the assbdciate scale is
uniform. Clearly, if we wish to define a time system thieshould have a uniform time scale;
however, very few observed dynamical systems have rigorouslyremiime units. In the past,
Earth’s rotation provided the most suitable and evident phenomenon ésaepthe time scale,
with the unit being a (solar) day. It has been recognized fongatime, however, that Earth’s
rotation is not uniform (it is varying at many different scales (dailyydekly, monthly, etc., and
even slowing down over geologic time scales; Lambeck (1288 addition to scale or units,
we need to define an origin for our time system; that is, @@e@int, or an epoch, at which a
value of time is specified. Finally, whatever system of tweedefine, it should be accessible
and, thereby, realizable, giving us a tiframe

Prior to 1960, a second of time wa@afinedas 1/8640C of a mean solar day. Today (since
1960), the time scale is defined by the natural oscillation of the cesiumaatball time systems
can be referred or transformed to this scale. Specifically$ki@ystéme Internationasecond
is defined as:

1 Slsec= 9,192,631,770 oscillations of the cesli®® atom between two
hyperfine levels of the ground state of thisrato (5.1)

! Lambeck, K. (1988)Geophysical Geodesglarendon Press, Oxford.
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There are four basic types of time systems in use:

1. Sidereal time scale defined by Earth’s rotation with respedhi® celestial sphere.

Universal time scale defined by Earth’s rotation with respedhi® mean sun.

3. Dynamic time scale defined by the time variable in the equmstiof motion describing
the dynamics of the solar system.

4. Atomic time scale defined by the number of oscillations ia #nergy states of the
cesium-133 atom.

n

We have already encountered sidereal time wherusisuoy astronomic coordinates (Section
2.3) and dynamic time when discussing precessidmatation (Section 4.1). We present these
again with a view toward transformation betweertiale systems.

5.1 Sidereal Time

Sidereal timegenerally, is the hour angle of the vernal eqgxinorepresents the rotation of the
Earth with respect to the celestial sphere anectflthe actual rotation rate of the Earth, plus
effects due to precession and nutation of the equirBecause of the nutation, we distinguish
betweerapparent sidereal timgAST), which is the hour angle of the true current aeequinox,
andmean sidereal tim@ST), which is the hour angle of the mean vernal egpifalso at the
current time).

The fundamental unit in the sidereal time systerhémean sidereal dayhich equals the
interval between two consecutive transits of themeernal equinox across the same meridian
(corrected for polar motion). Also,

1 sidereal day = 24 sidereal hours = 86400 sitisez@nds. (5.2)

The apparent sidereal time is not used as a tiale because of its non-uniformity, but it is used
as an epoch in astronomical observations. Th#aeship between mean and apparent sidereal
time derives from nutation. Referring to Fig 4v& have

AST= MST+ Ay cose, (5.3)

where the last term is called the “equation of ¢lq@inoxes” and is the right ascension of the
mean equinox with respect to the true equinox apa®r. Since the maximum-amplitude term
in the series for the nutation in longitude is amimately|A(//| =17.2 arcse, the magnitude of
the equation of the equinoxes i7.2cog 23.4%) arcsec 1.0, using the conversion,
15°=1hr.
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We specialize our definitions of sidereal timeadmg to the astronomic meridian to which
it refers, as followstocal sidereal timgLST) (meanLMST, and apparent,AST) andGreenwich
sidereal timgGST) (meanGMST, and apparenGAST), where

GST= LST-A, (5.4)

and the longitude/ , refers to the CIP, not the IRP. Clearly the ¢iguaof the equinoxes
applies equally t&STandLST. Due to precession (in right ascension), 24 hotissdereal time
do not correspond exactly to one rotation of theteaith respect to inertial space. The rate of
general precession in right ascension is approdiyngusing equation (4.14) with equations
(4.23) and (4.24)):

m=4612.4362 [arcsec/cent] 2.79312 [arcseofc]T , (5.5)

whereT is in Julian centuries. The amount for one day is

M _-0.126 arcsec/day 0.0084 s/day 611710 ragl#7.07 10" rad.. (5.6)

36525

5.2 Universal Time

Universal time is the time scale used for generalian time keeping and is based (only
approximately, since 1961) on the diurnal motiorth&f sun. However, the sun, as viewed by a
terrestrial observer, moves neither on the celestjaator, nor on the ecliptic (strictly speaking),
nor is the motion uniform on the celestial spheféerefore, the hour angle of the sun is not
varying uniformly. For these reasons and the rieed uniform time scale, a so-callédtitious,
or mean suns introduced, and the corresponding time forrtifwtion of the mean sun is known
asmean solar timgMT). The basic unit of universal time is thean solar daybeing the time
interval between two consecutive transits of themsun across the meridian. The mean solar
day has 24mean solar hourand 86400mean solar seconddJniversal time(UT) is defined as
mean solar time on the Greenwich meridian.

If t,, is the hour angle of the mean (or fictitious) suith respect to the local meridian, then
in terms of arepoch(an accumulated angle), mean solar time is giyen b

MT =t,, +180, (5.7)

where we have purposely written the units in teofm@sngles on the celestial equator to denote an
epoch. The angld,8C°, is added because when it is noon (the mean sumtise local meridian
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and t,, =0°), the mean solar time epoch is 12 hours, or 18feds. Again, in terms of an
angle, the universal time epoch in Greenwich is

UT =t +180C°. (5.8)

The relationship between the universal time andnstdereal time scales can be established
once the right ascension of the mean say,, is determined. Always in terms of angles
(epochs), we have from equations (2.181) and (5.8)

GMST=a,, + £

(5.9)
=a, +UT -180°

The right ascension of the mean sun is determingti® basis of an empirical expression (based
on observations), first obtained by Newcomb. TB8&4lversion (i.e., using modern adopted
constants) is as follows,

a, =18'41'50.5484%+( 8,640,184.812866 0.093104  000BZ°) [s]
(5.10)
=280.460618374+( 36000.7700586 0.000387933 6x20°7°) [deg

where 7 is the fraction of Julian centuries of 3652&an solar daysince the standard epoch
J2000.0. We note that Greenwich noon defines tir sf a Julian day; therefore, if we seek
a,, for midnight in Greenwich, the number of mean salays since J2000.0 (which is
Greenwich noon, 1 January 2000, or 1.5 January, Z#0Figure 4.1) is (from equation 4.31):

36525 =+ 0.5,+ 1.5+ 25,... (5.11)
Now, substituting equation (5.10) into equatior®j5and solving folJT (the epoch), we find

UT = GMST-100.46061837%-( 36000.7700586 0.000387933 x2G°7°) [deg.
(5.12)

The universal time scale relative to the meanrsaletime scale is obtained by taking the
derivative of equation (5.12) with respectitaqmean solar Julian centuries). We have

d(GMST-
dr

U |
L) =36000.7700536 [deg/cert| 0.000775867 7.8°18) [deg/cent.
(5.13)
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Hence, the number of degrees on the celestial eqgbatween the epoclGMSTandUT after
one mean solar dayl¢ =1/36525 cen) is

d(GMST- U'I):(36000.770053‘6+( 0.000775867 .8 “ifF) [()gg] 36 (5.14)

or, one mean solar day is a sidereal da§X or 86400 sidereal seconds) plus the excess being
the right-hand side, above, in degrees or sideseainds (see also Figures 5.1 and 5.2):

1*(MT) = 86400 + 236.55536790872( 5.098007 ~ U0~ aoglﬂzoz) ]. (5.15)

From this we find

19(MT) _ 86636.55536790872( 5.098097 10—  5:097'1p?)

1 (MST) 86400
(5.16)
=1.002737909350795 5.9086 tr- 5.9 t@*
Neglecting the small secular terms:
1 mean solar day 24 03 56.5554 in sidetizaé
(5.17)

1 mean sidereal day 2386 04.0905 in stitae

A mean solar day is longer than a sidereal dayusecan order for the sun to return to the
observer’s meridian, the Earth must rotate an stdit amount since it has advanced in its orbit
and the sun is now in a different position on tekestial sphere (see Figure 5.1).
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extra rotation needed to
/ complete 1 solar day

1 sidereal day (1 full rotation of the Earth)
Figure 5.1: Geometry of sidereal and solar days.

We note thatUT and ST are not uniform because of irregularities in Eartiotation rate.
The most important effect, however, in determinidd from observations is due to polar
motion; that is, the meridian with respect to whibk transit measurements are made refers to
the IRP (fixed meridian on the Earth’s surface),letT should refer to the instantaneous
rotation axis. Thus, one distinguishes betweerefioehs:

UTO: universal time determined from observations wébpect to the fixed meridian (the
IRP);
UT1: universal time determined with respect to theidien attached to the CIP.
From Figure 4.21 we have

N = Nge — 4N, (5.18)

where A/ is the polar motion in longitude. Hence, as shawfigure 5.2, the IRP meridian
will pass a point on the celestial sphere befoee @GiP meridian (assuming, without loss in
generality, thatd/A >0). Therefore, th&MSTepoch with respect to the IRP comes before the
GMSTepoch with respect to the CIP:

GMST,, = GMST, +4A. (5.19)
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Thus, from equation (5.12)

UT1=GMST, —...= GMSF, + 4/
=UTO0+4/

(5.20)

% IRP meridian

CIP meridian
>

Figure 5.2: Geometry for the relationship betwedi® andUT1.

UT1 is still affected by irregularities in Earth’station rate (length of day variations), which
can be removed to some extent (seasonal variatitms) yielding

UT2=UT1+ corrections for seasonal variatit. (5.21)

PresentlyUT2 is the best approximation bfT to a uniform time (although it is still affecteg b

small secular variations). HowevélT1 is used to define the orientation of the Greehwanean

astronomical meridian through its relationship @aditude, andJT1 has principal application

when observations are referred to a certain epiocke & represents the true rotation of the Earth.
In terms of the S| second, the mean solar daivendoy

1°(MT) = 86400- 27 [s, (5.22)
n

where At , in seconds, is the difference over a period days betweekT1 and dynamic time
(see Section 5.3):

Ar =UT1-TDT. (5.23)
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The time-derivative ofAr is also called thiength-of-day variation From observations over the
centuries it has been found that the secular vaniat the length of a day (rate of Earth rotation)
currently is of the order of 1.4 ms per centuryrtieeck, 1988, p.607)

521 Earth Rotation Angle

With the definitions of the Celestial Intermedi&@egin (ClIO) and the Terrestrial Intermediate
Origin (TIO), both being non-rotating origins oretlmstantaneous equator, we are able to define
UT1 more succinctly. The angle between the CIO &edTlO (Figure 5.3) is known as the
Earth Rotation Angle&. Since neither the CIO nor the TIO, by definitidrave angular rate
along the instantaneous equator due to precessmnuwation, the time associated with Earth’s
rotation rate, that i$)T1, is defined simply as being proportional@o

6(1r) = 271(Wo +@iTyr ), (5.24)
wherey, andy, are constants (with units of [cycle] and [cycle gay], respectively), and

I,y = JulianUT 1 date-t,, (5.25)

and the JuliatJT1 date is the Julian day number interpreted asrdag solar time) scale. The
fundamental epocht,, is, as usual, the Julian day number, 2451545s8pcated with
Greenwich noon, 1 January 2000. In practice, til@dUT1 day number is obtained from

UT1=UTC+(UTL- UTQ, (5.26)

where UTC is Coordinated Universal Time (an atomic time scaee Section 5.4), and the
difference,UT1-UTC, is either observed or provided by the IERS. @hestantsy/, andy,,
are derived below from theory and models; and thestant, 27z, , is Earth’s rotation rate in
units of [rad/day], ifr,; =1 d (= 86400 .

If the new transformation, equation (4.36), withtrnx, Q, is used to account for precession
and nutation, then the Earth Rotation Angk, should be used instead of the Greenwich
Apparent Sidereal TimeGAST), in the transformation between the Celestial dedrestrial
Reference Systems. The total transformation uniderold conventions from the Celestial
Reference System to the Terrestrial Reference Rystas given by equation (4.34) to account
for precession and nutation, and by equation (4.180account for polar motion and Earth
rotation, where we omit the observational effeftisthe moment:

2 Lambeck, K. (1988)Geophysical Geodesglarendon Press, Oxford.
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Urrs () =WT () R(GAST Nt B tduced 3. (5.27)

where u is a unit vector on the celestial sphere. The memsformation, based on IAU
resolutions adopted in 2000 and the new IERS 2@f)8/€éntions, is

Urrs(t) =W (1) Ry(6) D (Jucee (5.28)

where the polar motion transformatiow, is given by equation (4.124), and the precession-
nutation transformationQ, is given by equation (4.45). The Greenwich SideiTime GST)
now is no longer explicitly involved in the transfeation, but we can demonstrate the essential
equivalence of the old and new methods of transdition through the relationship between the
Earth Rotation Angled, and GST.

GAST
' N\
[
A
e N\

a(vn)

i _A( Ym)
Y . ©
Yo o (TI0)
(Cl0)

true (instantaneous) equator

\ )
a(o)
Figure 5.3: Relationship betwe@&@ASTand Earth Rotation Angle].

From Figure 5.3, it is clear that @ASTis the hour angle, at the TIO, of the true vernal
equinox at the epoch of datethen

GAST=a(0)+6, (5.29)

where a (o) is the right ascension of the CIO relative to tie equinox at. It is also called
the equation of origins (analogous to the equatibthe equinoxes, (5.3)). The old precession
and nutation transformationB,andN, bring the reference 1-axis (reference equinoxhéotrue
equinox of date. Therefore, a further rotationuwtbe CIP bya(a) brings the 1-axis to the
CIO, o; and we have:

R(a(o))NP=Q, (5.30)
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since the CIO is the point to which the transfoiprgtQ’, brings the 1-axis due to precession
and nutation. Combining equations (5.29) and (5\8@ have

R,(6)Q = R(GAST N, (5.31)

showing that equations (5.27) and (5.28) are edprva

The GASTdiffers from the Greenwich Mean Sidereal Tin@&MST) due to nutation of the
vernal equinox. This was defined as the “equatibthe equinoxes” in Section 5.1. A more
complete expression may be found in (McCarthy aetlt,P2003, Chapter 5, p.T5pnd is
derived in (Aoki and Kinoshita, 1983, AppendiX;J} includes the complete periodic part of the
difference betwee®ASTandGMST Without details, we have from (ibid, equ.(A2-B9)

GAST= GMSF 4 Qiodic- (5.32)
Recall equation (5.9),

GMST=q,, + UTL-18C, (5.33)
where a,, is the right ascension of the mean sun and we hagdUT1, specifically referring
universal time to the instantaneous Earth spin @hes CIP pole). Substituting this and equation
(5.29) into equation (5.32), we have

6=UT1+a,, —180 + Al 04~ (). (5.34)

Now, the right ascension of the mean vernal equinc(Ym), consists of a periodic part and
a secular part, the periodic part being the egnaifdhe equinoxes, defined above, and a secular
part (due to nutation), given by

AQeeuar = —0.00385 [arcsed. (5.35)
Furthermore, from Figure 5.3, the right ascensiothh® mean vernal equinox is given by:

a(Y,)=a(o)+A(Y,), (5.36)

m

® McCarthy, D.D., Petit, G. (2003): IERS Conventid®®03. IERS Technical Note 32, U.S. Naval Obsenyat
Bureau International des Poids et Mesures.

* Aoki, A., Kinoshita, H. (1983): Note on the retati between the equinox and Guinot's non-rotatinigirr
Celestial Mechanic29, 335-360.

® Capitaine, N., Guinot, B., Souchay, J. (1986): énmotating origin on the instantaneous equatofiniien,
properties and us€elestial Mechanics39, 283-307.

Geometric Reference Systems 5-10 Jekeli, January 2012



where A(Ym) is the instantaneous right ascension of the meanal equinox relative to the
non-rotating origin,o (with sign convention of positive eastward). Agls (since the NRO
does not rotate on the equator during precessiprdefinition), —A(Ym) is the accumulated

precession in right ascension, having rate,as given in equation (5.5); see also Figure 4.4.
Therefore,

queriodic -a (U) =a ( Ym) - Aqsecular_ a (U) = A( Ym) - A q seculz; (537)

and

t
0=UTl+a, -180-Ad,.,. - j mdt. (5.38)
tO

Substituting the numerical values from equation$(p (5.5), and (5.35) yields

0(7,;)=2m(0.7790572732646 1.00273781191135449 1, (5.39)

wherer,; is the number of mean solar days since 1.5 Jarfl@f)§ (equation (5.25)), and where
UT1 in equation (5.38) should be interpreted@EL= 0.5 day+UT 1 day since 1.5 January
2000. Equation (5.39) is of the form of equati@24) and provides the linear relationship
between the Earth Rotation Anglg, and the time scale associated with Earth’s iatati

5.3 Dynamic Time

As already discussed in Chapter 4, thamic timescale is represented by the independent
variable in the equations of motion of bodies i@ slolar system. In theory it is the most uniform
time scale known since it governs all dynamicsuwflocal universe according to the best theory
(the theory of general relativity) that has beewvellgped to date. Prior to 1977, the “dynamical”
time was callegéphemeris tim¢eT). ET was based on the time variable in the theory diano
of the sun relative to the Earth — Newcomb’s ephea the sun. This theory suffered from
the omission of relativistic theory, the dependenneadopted astronomical constants that, in
fact, show a time dependency (such as the “coristdraberration). It also omitted the effects
of planets on the motion.

In 1976 and 1979, the IAU adopted a new dyname tscale based on the time variable in a
relativistic theory of motion of all the bodiestime solar system. The two systers,andDT,
were constrained to be consistent at their boun@apgarticular epoch); specifically
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DT = ET at 1977 January 1.0003725 (1"00m00 32°1&%actly). (5.40)

The extra fraction in this epoch was included sitilae would make the point of continuity
between the systems exactly 1977 January 1.0 miatome, TAI (Section 5.4). This is the
origin point of modern dynamic time. The unit fdynamic time is the SI second, or, also a
Julian day of 86400 S| seconds.

Because of the relativistic nature of the spacdiveein, the origin of the spatial coordinate
system in which the time is considered (in whicé @guations of motion are formulated) must
be specified. In particular, geocentric and banytee time scales must be defined. We have:

TDT: Terrestrial dynamic timés the dynamic time scale of geocentric ephemsrafébodies
in the solar system. It definedto be uniform and the continuation BT (which made
no distinction between geocentric and barycentoordinate systems). It is also
identical, by resolution, to the time scale oféstrial atomic physics.

TDB: Barycentric dynamic timé the time scale of barycentric ephemerides afid®in the
solar system. The difference betwd@ddB andTDT is due to relativistic effects caused
mainly by the eccentricity of Earth’s orbit, prodiug periodic variations.

In 1991, as part of a clarification in the usagethidse time scales in the context of general
relativity, the IAU adopted a change in the nam@&[dT to Terrestrial TimeTT). TT is aproper
time, meaning that it refers to intervals of time cepending to events as measured by an
observer in the same frame (world-line) as occupiedhe event. This is the time scale most
appropriate for near-Earth applications (e.qg.,|s&erbits), where the Earth-centered frame is
considered locally inertial TT is identical toTDT and has the same origin defined by equation
(5.40). Its scale is defined by the S| second.diffters from atomic time only because of
potential errors in atomic time standards (cursenth distinction is observed between the two
scales, but the epochs are offset as noted abdve).relationships betweehl and TDB and
other scales based on coordinate time in gendedivigy, the reader is directed to Seidelmann
(1992f, McCarthy (1996) Petit and Luzum (2010, Chapter 30pnd the Astronomical
Almanac (Section B8)

® Seidelmann, P.K. (ed.) (199Fxplanatory Supplement to the Astronomical Aimatstv. Science Books, Mill
Valley, CA.

" MccCarthy, D.D. (ed.) (1996): IERS Conventions (BR9IERS Tech. Note 21, Observatoire de ParidsPar

8 Petit, G., Luzum, B. (eds.) (2010): IERS Convemsi®010. |IERS Technical Note No.36, Verlag desd&@samts
fur Kartographie und Geodasie, Frankfurt am Main.

° The Astronomical Almanac, issued annually by theufical Almanac Office of the U.S. Naval Observgtor
Washington, D.C.
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5.4 Atomic Time

Atomic time refers to the time scale realized bg dscillations in energy states of the cesium-
133 atom, as defined in equation (5.1). The Sbiseécthus, is the unit that defines the scale; this
is also the time standard fémternational Atomic TimgTAl, for the Frenchifemps Atomique
Internationa) which was officially introduced in January 1977ZAl is realized by the BIPM
(Bureau International des Poids et Mesures) wharhlines data from over 200 high-precision
atomic clocks around the world in order to maintdia Sl-second scale as closely as possible.
TheTAl scale is published and accessible as a correttieach time-center clock. In the U.S.,
the official atomic time clocks are maintained Whe tU.S. Naval Observatory (USNO) in
Washington, D.C., and by the National Instituté&Stdndards and Technology (NIST) in Boulder,
Colorado. Within each such center several cesieambclocks are running simultaneously and
averaged. Other participating centers include miageries in Paris, Greenwich, Tokyo, Ottawa,
Braunschweig (Germany), and Berne (Switzerlandhe Tomparison and amalgamation of the
clocks of participating centers around the worlé accomplished by LORAN-C, satellite
transfers (GPS playing the major role), and actl@tk visits. Worldwide synchronization is
about 100 ns (Leick, 1995, p.3%) Since atomic time is computed from many clodkis also
known as gaper clockor astatistical clock

Due to the exquisite precision of the atomic ci&afgeneral relativistic effects due to the
spatially varying gravitational potential must lensidered. Therefore, the Sl second is defined
on the “geoid in rotation”, meaning also theAl is defined for an Earth frame and not in a
barycentric system.

Atomic time was not realized until 1955; and, fra®68 through 1968, the BIH maintained
the atomic time scale. The origin, or zero-pofat, atomic time has been chosen officially as
0"0™0°, January 1, 1958. Also, it was determined andsembently defined that of"0™ 0",
January 1, 1977TA), the ephemeris time epoch wa¥0™32.184, January 1, 1977E(). Thus,
with the evolving definitions of dynamic time:

ET-TAI=TDT- TAI= TT- TAE32.184. (5.41)

So far, no difference in scale has been detectedele@TAl andTT, but their origins are offset
by 32.184.

All civil clocks in the world now are set with gsct to an atomic time standard. But since
atomic time is much more uniform than solar timed get we still would like civil time to
correspond to solar time, a new atomic time scale @efined that keeps up with universal time
in discrete steps. This atomic time scale is dalaiversal Coordinated Tim@UTC). It is

10 eick, A. (1995):GPS Satellite Surveyingnd ed. John Wiley & Sons, New York.
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adjusted recurrently to stay close to universaétitdTC was established in 1961 by the BIH and
is now maintained by the BIPM. InitialldTC was adjusted so that

UT2-UTC<0.15, (5.42)

which required that the UTC be modeled according to

TAI-UTC= b+  t- ¢), (5.43)

whereb is a step adjustment argda frequency offset. As of 1972, the requiremamtthe
correspondence of UTC with universal time was loesketo

UT1-UTC<0.9 ¢, (5.44)

with b=1s ands=0. The step adjustmert, is called deap seconand is introduced either
July 1 or January 1 of any particular year. That laap second (as of January 2012) was
introduced at the end of December 2008. Historasitonomic evidence indicates that the
Earth’s rotation rate is decreasing, due to tidatibn, at the rate of roughly 1.4 msec/day per
century. Thus, the length of a day increases byuiali.4 msec per century. It has been
determined that the mean solar day today is agtadfibut 86400.0027 S| seconds long (which
means that it was exactly 86400 S| seconds lorapout 1820, 1.92 centuries ago). However,
this disparity in the scales of the defined Sl selcand the current mean solar day accumulates
about 1 second to UT1 every year; hence the inttomiuof the leap seconds. The difference,

DUT1=UT1-UTC, (5.45)

is broadcast along wit TC so that users can determid@1. There is current debateabout
the need to maintain a small difference betw&EC and UT1 considering the technical
inconveniences (if not outright difficulties) thismposes on the many civilian
telecommunications systems and other networkg@habn a precise time scale.

GPS time is also an atomic time scale, consistéhtTAI to within 1 i#s. Its zero point is

t,(GPS = January 6.0, 1980 JD24442, (5.46)

and it was the same BS C at that epoch only, since GPS time is not adjustelgéap seconds to
keep up with universal time. Thus, we have alviags

" Nelson, R.A., et al. (2001): The leap second hiitory and possible futuréMetrologia, 38, 509-529.
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t(GP9=TAI-19.0. (5.47)

These relationships among the various atomic ticaées are illustrated along with dynamic time
in Figure 5.4.

dynamic time
< ET < DT > TT >
32.184 s
)
(&)
3 1.4228 s
B A 4 /. TAI
E <« Y
a) 10.0s UTC
o e [ 19.0's
.1 s steps .
E P GPS time
leap second steps
(2.059)
UTl—/
Jan1.0 Jan1.0 Jan1.0 Janl1l.0 Jan6.0 1991
1958 1961 1972 1977 1980 .
dynamic time
origin  originfor 1967 TAI TDT  origin for renamed as a
for TAI UTC . officially adopted GPS time proper time
atomic adopted
second
adopted as
Sl second

Until 1960, the second was defined by mean Eattition

ET = Ephemeris Time, based on orbital motion oftfgagxcluding general relativistic effects

TDT = Terrestrial Dynamic Time; Earth-centered &aded on dynamics of Solar System incl. generativély
TT = Terrestrial Time; the same as TDT

TAI = Temps Atomique International (Internationaiofnic Time)

UTC = Coordinated Universal Time (atomic time sgale

GPS time is an atomic time scale used for the GlBbaitioning System (GPS)

UT1 = Universal Time based on Earth’s rotation mefg to the CIP

Figure 5.4: Relationships between atomic time scalel dynamic time (indicated leap seconds
are schematic only).
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Note in Figure 5.4 that the time scalesI& andTDT (TT) are the same (1 Sl second is the
same in both), but they are offset. Also, the tsoale folUTC is 1 Sl second, but occasionally
it is offset by 1 s. The time scale foifl is very close to 1 Sl second; that is, the diffiee
between thdJT1 and the TAI “clocks” is only about 30 s over 4@€ays (compare this to the
difference between mean solar time and mean sidémeaof 4 minutes per day!). The history
of TAI-UTC (only schematically shown in Figure 5.4) can béamted from the USNGE.
Currently (2012) the difference i8AI-UTC=34 s. Note, however, that this does not mean
that the Earth has slowed down at the rate of rtiae 30 s in the last fifty years. The continual
slowing of theUT1 clock relative to the TAI clock represents thewanulative effect of Earth’s
decreasing rate of rotation (a deceleration), wisaimly about 1.4 msec per day per century.

5.4.1 Determination of Atomic Time

Atomic time is currently the most precise and asit@s of the uniform scales of time. It is
determined usindrequency standardsor atomic clocks, that are based on atomic energy
oscillations. The standard for comparison is basedhe oscillations of the cesium atom, but
other atomic clocks are used with different chamastics in stability and performance. For any
signal generator, considered as a clock, we assumearly perfect sinusoidal signal voltage:

V(1) =(V, + V(1) sing(1), (5.48)

where oV (t) is the error in amplitude, which is of no consetue andw(t) is the phase of the
signal. The change in phase with respect to tsreemeasure of time. The phase is given by

o(t) = at+op(t), (5.49)
where w is the ideal (radian) frequency of the generata.,(w is constant), anqua(t)

represents the phase error; or, its time derivatEq&(t), is the frequency error. Note that in
terms of cycles per second, the frequency is

w
f=—. 5.50
oy (5.50)
Thus, let

12 ftp://maia.usno.navy.mil/ser7/tai-utc.dat
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y(1) :C_lﬂz(t) S0 (5.51)

be therelative frequency error
Now, the average of the relative frequency ers@rsome intervalr =t,,, —t, , is given by

== [ (1) dt=—=—((1.0) - 90(1)). (552)

Comfr

The stability of the clock, or its performancecigracterized by the sample variance of the first
N differences of contiguous averagé§s, with respect to the intervat,:

N

a,(r) =12%(7m -%.) (5.53)

k=1

This is known as thallan variance and o, represents thiactional frequency stabilitpf the
oscillator. Substituting equation (5.49) into etjpia (5.52) yields

Y :_(5¢(tk+1)_5¢(tk)_wr)- (5.54)

Putting this into equation (5.53) gives

N

s :W;(w(tk+z) ~28p(t,.) *+ A0(1,)) (5.55)

which is a form that can be used to compute thamVlariance from the indicated phaggt),
of the oscillator.

Most atomic clocks exhibit a stability as a fupatiof 7, characterized generally txyy(r)
decreasing as increases from near zero to an interval of theood a second. Theng, (7)
reaches a minimum over some range of averagingsfithes is called the “flicker floor” region
and yields the figure of merit in terms of stafilit For longer averaging times, after this
minimum, o, (r) again rises. Table 5.1 is constructed from theeutision by Seidelmann
(1992, p.60-61F; and, Figure 5.5 qualitatively depicts the behawibthe square root of the

13 Seidelmann, P.K. (ed.) (1998xplanatory Supplement to the Astronomical Almathftyv. Science Books, Mill
Valley, CA.
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Allan variance of different types of clocks as adtion of averaging time (see also Kamas and
Howe (1979Y".

Table 5.1: Fractional frequency stabilities forigas atomic (and other) clocks.

Clock stability (ming,) | range ofr
quartz oscillator >10™" 0.ls<7< 1da
cesium beam laboratory 1.5x10™ several years
commercial 2x10™" r<lyr
3x10™ r <1day
Block Il GPS o(10%) 7 <1day
rubidium laboratory >10™" r <1day
GPS 2x10" r <1day
hydrogen maser 2x10"° 10°<7r<10 <
10—11 N
10—12 a
quartz oscillator
10 -
1074 4 cesium beam
107"

hydrogen maser

10t 100 10 10 100 100 10 10
[s]
Figure 5.5: Fractional frequency stability for wars clocks.

4 Kamas, G., Howe, S. (1979): Time and frequencysiseanual. NBS Special Publication 559, Nationafdu
of Standards, Boulder, Colorado.
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