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Foreword 
 
These notes are the result of combining two graduate courses, Geometric Geodesy and Geodetic 
Astronomy, taught for many years at Ohio State University to students pursuing the Master of 
Science degree in Geodesy.  Since the early 1990s, parts of these two courses have become 
irrelevant, anachronistic, and in need of revision.  The resulting course, now called Geometric 
Reference Systems, combines the geometrical aspects of terrestrial and celestial reference 
systems with an emphasis on modern realizations of these geodetic coordinate systems.  The 
adjective, geometric, implies that no attempt is made to introduce the Earth’s gravity field, which 
historically (more so than today) formed such an integral part of geodetic control.  Of course, the 
gravity field still holds a prominent place in geodesy and it is covered in other courses.  But with 
the advent of the Global Positioning System (GPS), it arguably has a more specialized role to 
play in establishing and realizing our reference systems, restricted essentially to traditional 
vertical control.  For this reason, the vertical datum is covered only briefly, since a thorough 
understanding (especially with respect to transformations between vertical datums) can only be 
achieved with a solid background in geopotential modeling. 
 
These notes are fashioned after corresponding texts of the previous courses, notably R.H. Rapp’s 
lecture notes and P.K. Seidelmann’s supplement to the Astronomical Almanac.  The present 
exposition is largely self-contained, however, and the reader need only refer to these and other 
texts in a few instances to obtain an extended discussion.  The new reference system conventions 
recently (2003, 2010) adopted by the International Astronomical Union (IAU) and the 
International Earth Rotation and Reference Systems Service (IERS) have been added in a way 
that emphasizes and illustrates the evolution of reference systems that new satellite and space 
observations have wrought.  The current (2012) edition of these notes replaces the previous 
(2006) edition with several revisions that correct errors or better elaborate some concepts and 
that bring the entire content up to date in view of the IERS Conventions of 2010. 
 
Problems are included to help the reader get involved in the derivations of the mathematics of 
reference systems and to illustrate, in some cases, the numerical aspects of the topics. 
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Chapter 1 
 

Introduction 
 
 
Geodesy is the science of the measurement and mapping of the Earth’s surface, and being 
essentially an application of mathematics it makes use of coordinates and associated reference 
systems.  The object of this book is to study the various local, regional, and global reference 
systems that are in use to describe coordinates of points on the Earth’s surface or in near space 
and to relate them to each other as well as to some "absolute" frame, visually, a celestial frame.  
As the title of the book implies, we deal mostly with the geometry of these systems, although the 
physics of the Earth plays a very important part.  However, the relevant geophysics and 
geodynamics is discussed more comprehensively in other courses on gravimetric geodesy and 
geodynamics.  Also, we do not treat the mapping of points and their coordinates onto the plane, 
that is, map projections.  The purpose is mainly to explore the geometric definition of reference 
systems and their practical realizations. 
 To establish coordinates of points requires that we set up a coordinate system with origin, 
orientation, and scale defined in such a way that all users have access to these.  Only until 
recently, the most accessible reference for coordinates from a global perspective was the celestial 
sphere of stars that were used primarily for charting and navigation, but also served as a 
fundamental system to which other terrestrial coordinate systems could be oriented.  Still today, 
the celestial reference system is used for that purpose and may be thought of as the ultimate in 
reference systems.  At the next level, we define coordinate systems attached to the Earth with 
various origins (and perhaps different orientations and scale).  We thus have two fundamental 
tasks before us: 
 

1) to establish an external ("inertial") coordinate system of our local universe that we 
assume remains fixed in the sense of no rotation; and 
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2) to establish a coordinate system attached to our rotating and orbiting Earth, and in 
so doing to find the relationship between these two systems. 
 

 In fact, we will develop the terrestrial coordinate system before discussing the celestial 
system, since the latter is almost trivial by comparison and the important aspects concern the 
transformation between the systems. 
 
 
 
1.1 Preliminary Mathematical Relations 
 
Clearly, spherical coordinates and spherical trigonometry are essential tools for the mathematical 
manipulations of coordinates of objects on the celestial sphere.  Similarly, for global terrestrial 
coordinates, the early map makers used spherical coordinates, although, today, we rarely use 
these for terrestrial systems except with justified approximations.  It is useful to review the polar 
spherical coordinates, according to Figure 1.1, where θ  is the co-latitude (angle from the pole), 
λ  is the longitude (angle from the x-axis), and r  is radial distance of a point.  Sometimes the 
latitude, φ , is used instead of the co-latitude – but we reserve φ  for the "geodetic latitude" 
(Figure 2.5) and use ψ  instead to mean "geocentric" latitude. 
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Figure 1.1: Spherical polar coordinates. 

 
 
 On a unit sphere, the “length” (in radians) of a great circle arc is equal to the angle subtended 
at the center (see Figure 1.2).  For a spherical triangle, we have the following useful identities 
(Figure 1.2): 
 



 
Geometric Reference Systems 1 - 3 Jekeli, January 2012 

 
 

 law of sines:     sin sin sin
sin sin sin

a b c
α β γ

= = ; (1.1) 

 
 law of cosines:     cos cos cos sin sin cosc a b a b γ= + . (1.2) 
 
If we rotate a set of coordinate axes about any axis through the origin, the Cartesian coordinates 
of a given point change as reckoned in the rotated set.  The coordinates change according to an 
orthogonal transformation, known as a rotation, defined by a 3 3×  matrix, e.g., ( )R α : 
 

 ( )
new old

x x
y R y
z z

α
   
   =   
   
   

, (1.3) 

 
where α  is the angle of rotation (positive if counterclockwise as viewed along the axis toward 
the origin). 
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Figure 1.2: Spherical triangle on a unit sphere. 

 
 
 Specifically (see Figure 1.3), a rotation about the x -axis (1-axis) by the angle, α , is 
represented by 
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 ( )1

1 0 0
0 cos sin
0 sin cos

R α α α
α α

 
 =  
 − 

; (1.4) 

 
a rotation about the y -axis (2-axis) by the angle, β , is represented by 
 

 ( )2

cos 0 sin
0 1 0

sin 0 cos
R

β β
β

β β

− 
 =  
 
 

; (1.5) 

 
and a rotation about the z -axis (3-axis) by the angle, γ , is represented by 
 

 ( )3

cos sin 0
sin cos 0
0 0 1

R
γ γ

γ γ γ
 
 = − 
 
 

; (1.6) 

 
where the property of orthogonality yields 
 
 1 T , 1, 2,3j jR R j− = = . (1.7) 

 
The rotations may be applied in sequence and the total rotation thus achieved will always result 
in an orthogonal transformation.  However, the rotations are not commutative; in general, 

( ) ( ) ( ) ( )R R R Rα β β α≠ . 
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Figure 1.3: Rotations about coordinate axes. 
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1.2 Reference Systems and Frames 
 
It is important to understand the difference between a reference system for coordinates and a 
reference frame since these concepts apply throughout the discussion of coordinate systems in 
geodesy.  According to the International Earth Rotation and Reference Systems Service (IERS, 
see Section 3.3): 
 

A Reference System is a set of prescriptions and conventions together with the 
modeling required to define at any time a triad of coordinate axes. 
 
A Reference Frame realizes the system by means of coordinates of definite points 
that are accessible directly by occupation or by observation. 

 
A simple example of a reference system is the set of three axes that are aligned with the Earth’s 
spin axis, a prime (Greenwich) meridian, and a third direction orthogonal to these two.  That is, a 
system defines how the axes are to be established (e.g., mutual orthogonality), what theories or 
models are to be used (e.g., what we mean by a spin axis), and what conventions are to be used 
(e.g., how the x-axis is to be chosen – where the Greenwich meridian is).  A simple example of a 
frame is a set of points globally distributed whose coordinates are given numbers (mutually 
consistent) in the reference system.  That is, a frame is the physical realization of the system 
defined by actual coordinate values of actual points in space that are accessible to anyone.  A 
frame cannot exist without a system, and a system is of no practical value without a frame.  The 
explicit difference between frame and system was articulated fairly recently in geodesy (see, e.g., 
Moritz and Mueller, 1987, Ch.9)1, but the concepts have been embodied in the terminology of a 
geodetic datum that can be traced to the eighteenth century and earlier (Torge, 19912; Rapp, 
19923).  Indeed, the definition of a datum today refers specifically to the conventions that 
establish how the system is attached to the Earth – its origin, its orientation and its scale.  In this 
sense the definition of a datum has not changed.  The meaning of a datum within the context of 
frames and systems is explored in more detail in Chapter 3. 
 
 

                                                 
1 Moritz, H. and I.I. Mueller (1987): Earth Rotation, Theory and Observation, Ungar Publ. Co., New York 
2 Torge, W. (1991): Geodesy, Second Edition. W. deGruyter, Berlin. 
3 Rapp, R.H. (1992): Geometric Geodesy, Part II.  Lecture Notes; Department of Geodetic Science and Surveying, 

Ohio State University. http://hdl.handle.net/1811/24409 
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1.3 The Earth’s Shape 
 
The Figure of the Earth is defined to be the physical (and mathematical, to the extent it can be 
formulated) surface of the Earth.  It is realized by a set of (control) points whose coordinates are 
determined in some well defined coordinate system.  The realization of the system applies 
traditionally to land areas, but is extended today to include the ocean surface and ocean floor 
with appropriate methods for their realizations. 
 The first approximation to the figure of the Earth is a sphere; and the coordinates to be used 
would naturally be the spherical coordinates, as defined above.  Even in antiquity it was 
recognized that the Earth must be (more or less) spherical in shape.  The first actual numerical 
determination of the size of the Earth is credited to the Greek scholar Eratosthenes (276 – 195 
B.C.) who noted that at a particular time of year when the sun is directly overhead in Syene 
(today’s Aswan) it makes an angle, according to his measurement, of 7 12 '°  in Alexandria4.  
Further measuring the arc length between the two cities, he used simple geometry (Figure 1.4): 
 

 sR
ψ

= , (1.8) 

 
to arrive at a radius of 6267 kmR = , which differs from the actual mean Earth radius by only 
104 km (1.6%) (scholars think that it may be a lucky result, considering the various assumptions 
that were made5). 
 
 

                                                 
4 which, however, is slightly ( 3° ) west of Aswan in longitude. 
5 see, e.g., http://en.wikipedia.org/wiki/History_of_geodesy 
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Figure 1.4: Eratosthenes’ determination of Earth’s radius. 

 
 
 A few other determinations were made, but not until the middle of the Renaissance in Europe 
(16th century) did the question seriously arise regarding improvements in determining Earth’s 
size.  Using very similar, but more elaborate procedures, several astronomers and scientists made 
various determinations with not always better results.  Finally by the time of Isaac Newton (1643 
– 1727) the question of the departure from the spherical shape was debated.  Various arc 
measurements in the 17th and 18th centuries, as well as Newton’s (and others’) arguments based 
on physical principles, gave convincing proof that the Earth is ellipsoidal in shape, flattened at 
the poles, with approximate rotational symmetry about the polar axis. 
 The next best approximation to the figure of the Earth, after the ellipsoid, is known as the 
geoid, the equipotential surface of the Earth’s gravity field that closely approximates mean sea 
level.  An equipotential surface is a surface on which the gravity potential is a constant value.  
While the mean Earth sphere deviates radially by up to 14 km (at the poles) from a mean Earth 
ellipsoid (a surface generated by rotating an ellipse about its minor axis; see Chapter 2), the 
difference between the mean Earth ellipsoid and the geoid amounts to no more than 110 m, and 
in a root-mean-square sense by only 30 m.  Thus, at least over the oceans (over 70% of Earth’s 
surface), the ellipsoid is an extremely good approximation (5 parts per million) to the figure of 
the Earth.  Although this is not sufficient accuracy for geodesists, it serves as a good starting 
point for many applications; the ellipsoid is also the mapping surface for most national and 
international control surveys.  Therefore, we will study the geometry of the ellipsoid in some 
detail in the next chapter. 
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1.4 Problems 
 
1. Write both the forward and the reverse relationships between Cartesian coordinates, ( ), ,x y z , 
and spherical polar coordinates, ( ), ,r θ λ . 
 
 
2. Write the law of cosines for the spherical triangle, analogous to (1.2), when the left side is 
cosb .  Also, write the law of cosines for the triangle angles, instead of the triangle sides (consult 
a book on spherical trigonometry). 
 
 
3. Show that for small rotations about the x -, y -, and z -axes, by corresponding small angles, 
α , β , and γ , the following approximation holds: 
 

 ( ) ( ) ( )3 2 1

1
1

1
R R R

γ β
γ β α γ α

β α

− 
 = − 
 − 

; (1.9) 

 
and that this is independent of the order of the rotation matrices. 
 
 
4. Determine the magnitude of the angles that is allowed so that the approximation (1.9) does 
not cause errors greater than 1 mm when applied to terrestrial coordinates (use the mean Earth 
radius, 6371 kmR = ). 
 
 
5. Research the length of a “stadium”, as mentioned in (Rapp, 1991, p.2)6, that was used by 
Eratosthenes to measure the distance between Syene and Alexandria.  How do different 
definitions of this unit in relation to the meter change the value of the Earth radius determined by 
Eratosthenes?  Also, research the various assumptions made by Eratosthenes in arriving at his 
result. 
 

                                                 
6 Rapp, R.H. (1991): Geometric geodesy, Part I.  Lecture Notes; Department of Geodetic Science and Surveying, 

Ohio State University. http://hdl.handle.net/1811/24333 
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Chapter 2 
 

Coordinate Systems in Geodesy 
 
 
Coordinates in geodesy traditionally have conformed to the Earth’s shape, being spherical or a 
type of ellipsoidal coordinates for regional and global applications, and Cartesian for local 
applications where planar geometry suffices.  Nowadays, with satellites providing essential 
reference systems for coordinates, the Cartesian type is as important and useful for global 
geospatial referencing.  Because the latitude/longitude concept will always have the most direct 
appeal for terrestrial applications (surveying, near-surface navigation, positioning and mapping), 
we consider in detail the coordinates associated with an ellipsoid.  In addition, since astronomic 
observations have a profound historical significance in defining and realizing our reference 
systems and should be in the knowledge bank of any geodesist, both natural (astronomic) and 
celestial coordinates are covered.  Local coordinates are based on the local vertical and deserve 
special attention not only with respect to the definition of the vertical but in regard to their 
connection to global coordinates.  In all cases the coordinate systems are orthogonal, meaning 
that surfaces of constant coordinates intersect always at right angles.  Some Cartesian coordinate 
systems, however, are left-handed, rather than the usual right-handed, and this will require extra 
(but not burdensome) care. 
 
 
 
2.1 The Ellipsoid and Geodetic Coordinates 
 
We treat the ellipsoid of revolution, its geometry, associated coordinates of points on or above 
(below) it, and geodetic problems of positioning and establishing networks in an elementary 
way.  The motivation is to give the reader a more practical appreciation and utilitarian approach 
rather than a purely mathematical treatise of ellipsoidal geometry (especially differential 
geometry), as well as a window into past geodetic practices.  The reader may argue that even the 
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present text is rather mathematical, which, however, cannot be avoided (and no apologies are 
made), and, that forays into historical methods have little bearing on modern geodesy, but they 
offer a deeper appreciation for the marvels of satellite-based geodetic control. 
 
 
2.1.1 Basic Ellipsoidal Geometry 
 
It is assumed that the reader is familiar at least with the basic shape of an ellipse (Figure 2.1).  
The ellipsoid for geodetic applications is formed by rotating an ellipse about its minor axis, 
which for present visualization we assume to be parallel to the Earth’s spin axis.  This creates a 
surface of revolution that is symmetric with respect to the polar axis and the equator.  Because of 
this symmetry, we often depict the ellipsoid simply as an ellipse (Figure 2.1).  The basic 
geometric construction of an ellipse is as follows: for any two points, 1F  and 2F , called focal 
points, the ellipse is the locus (path) of points, P , such that the sum of the distances 

____ ____

1 2PF PF+  is 
a constant. 
 
 

F1 F2
x

z

b

aE

P

F1 F2
x

z

b

aE

P

 
Figure 2.1: The ellipsoid represented as an ellipse. 

 
 
 Introducing a coordinate system ( ),x z  with origin halfway on the line 

_____

1 2F F  and z -axis 
perpendicular to 

_____

1 2F F , we see that if P  is on the x -axis, then that constant is equal to twice the 
distance from P  to the origin; this is the length of the semi-major axis; call it a : 
 

 
____ ____

1 2 2PF PF a+ = . (2.1) 
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Moving the point, P , to the z -axis, and letting the distance from the origin point to either focal 
point ( 1F  or 2F ) be E , we also find that 
 
 2 2E a b= + , (2.2) 
 
where b  is the length of the semi-minor axis.  E  is called the linear eccentricity of the ellipse 
(and of the ellipsoid).  From these geometrical considerations it is easy to prove (left to the 
reader), that the equation of the ellipse is given by 
 

 
2 2

2 2 1x z
a b
+ = . (2.3) 

 
 An alternative geometric construction of the ellipse is shown in Figure 2.2, where points on 
the ellipse are the intersections of the projections, perpendicular to the axes, of points sharing the 
same radius to concentric circles with radii, a  and b , respectively.  The proof is as follows: 
 
Let , ,x z s  be distances as shown in Figure 2.2.  Now 
 

 
2 2

2 2~ z s z sOCB ODA
b a b a

∆ ∆ ⇒ = ⇒ = ; 

 

but 2 2 2x s a+ = ; hence   
2 2 2 2 2

2 2 2 20 1z a x x z
b a a b

−= − = + − . QED 
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Figure 2.2: Ellipse construction. 

 
 
 We see that the ellipse, and hence the ellipsoid, is defined by two essential parameters: a 
shape parameter and a size (or scale) parameter (unlike the circle or sphere that requires only one 
parameter, the radius which specifies its size).  In addition to the semi-major axis, a , that usually 
serves as the size parameter, any one of a number of shape parameters could be used.  We have 
already encountered one of these, the linear eccentricity, E .  The following are also used; in 
particular, the flattening: 
 

 a bf
a
−= ; (2.4) 

 
the first eccentricity: 
 

 
2 2a be
a
−= ; (2.5) 

 
and, the second eccentricity: 
 

 
2 2

' a be
b
−= . (2.6) 
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Note that the shape parameters (2.4), (2.5), and (2.6) are unit-less, while the linear eccentricity, 
(2.2) has units of distance.  We also have the following useful relationships among these 
parameters (which are left to the reader to derive): 
 
 2 22e f f= − , (2.7) 
 
 E ae= , (2.8) 
 

 ( )( )
2 2

2 2 2 2
2 2

' , ' , 1 1 ' 1
1 ' 1

e ee e e e
e e

= = − + =
+ −

, (2.9) 

 

 
( )

2
2

2
2'
1
f fe

f
−=
−

. (2.10) 

 
 When specifying a particular ellipsoid, we will, in general, denote it by the pair of 
parameters, ( ),a f .  Many different ellipsoids have been defined in the past.  The current 
internationally adopted mean Earth ellipsoid is part of the Geodetic Reference System of 1980 
(GRS80) and has parameter values given by 
 

 
6378137 m
1 298.257222101

a
f
=
=

 (2.11) 

 
From (Rapp, 1991, p.169)1, we have Table 2.1 of ellipsoids defined in modern geodetic history.  
The parameter estimates of the best-fitting ellipsoid (in the mean tide system) were published in 
20042 as 
 

 
6378136.72 0.1 m

1 298.25231 0.00001
a

f
= ±
= ±

 (2.12) 

 
Note that these values do not define an adopted ellipsoid; they include standard deviations and 
merely give the best determinable values based on current technology.  On the other hand, 
certain specialized observing systems, like the TOPEX satellite altimetry system, have adopted 
ellipsoids that differ from the standard ones like GRS80 or WGS84.  It is, therefore, extremely 

                                                 
1 Rapp, R.H. (1991): Geometric geodesy, Part I.  Lecture Notes; Department of Geodetic Science and Surveying, 

Ohio State University. http://hdl.handle.net/1811/24333 
2 Groten, E. (2004): Fundamental parameters and current (2004) best estimates of the parameters of common 

relevance to astronomy, geodesy, and geodynamics.  Journal of Geodesy, 77(10-11), 724-797. 



 
Geometric Reference Systems 2 - 6 Jekeli, January 2012 

 
 

important that the user of any system of coordinates or measurements understands what ellipsoid 
is implied.  It is noted that the IERS (2010)3 recommends the use of the GRS80 ellipsoid. 
 
 
Table 2.1: Terrestrial Ellipsoids. 
Ellipsoid Name (year computed) semi-major axis, a  [m] inverse flattening, 1 f  
Airy (1830) 6377563.396 299.324964 
Everest (1830) 6377276.345 300.8017 
Bessel (1841) 6377397.155 299.152813 
Clarke (1866) 6378206.4 294.978698 
Clarke (1880) 6378249.145 293.465 
Modified Clarke (1880) 6378249.145 293.4663 
International (1924) 6378388. 297. 
Krassovski (1940) 6378245. 298.3 
Mercury (1960) 6378166. 298.3 
Geodetic Reference System (1967), GRS67 6378160. 298.2471674273 
Modified Mercury (1968) 6378150. 298.3 
Australian National 6378160. 298.25 
South American (1969) 6378160. 298.25 
World Geodetic System (1966), WGS66 6378145. 298.25 
World Geodetic System (1972), WGS72 6378135. 298.26 
Geodetic Reference System (1980), GRS80 6378137. 298.257222101 
World Geodetic System (1984), WGS84 6378137. 298.257223563 
TOPEX/Poseidon (1992) (IERS recomm.)4 6378136.3 298.257 

 
 

                                                 
3 Petit, G., Luzum, B. (2010): IERS Conventions (2010).  IERS Technical Note No.36, Verlag des Bundesamts für 

Kartographie und Geodäsie, Frankfurt am Main. 
4 McCarthy, D.D. (ed.) (1992): IERS Standards.  IERS Technical Note 13, Observatoire de Paris, Paris. 
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2.1.1.1  Problems 
 
1. From the geometrical construction described prior to equation (2.3), derive the equation for 
an ellipse, (2.3).  [Hint: For a point on the ellipse, show that 
 

 ( ) ( )2 22 2 2x E z x E z a+ + + − + = . 

 
Square both side and show that 
 

 ( ) ( )2 22 2 2 2 2 22a x E z x E z x E z− − − = + + − + . 

 
Finally, square both sides again and reduce the result to find (2.3).] 
What would the equation be if the center of the ellipse were not at the origin of the coordinate 
system? 
 
 
2. Derive equations (2.7) through (2.10). 
 
 
3. Consider the determination of the parameters of an ellipsoid, including the coordinates of its 
center, with respect to the Earth.  Suppose it is desired to find the ellipsoid that best fits through a 
given number of points at mean sea level.  Assume that the orientation of the ellipsoid is fixed a 
priori so that its axes are parallel to the global, geocentric coordinate frame attached to the Earth. 
 a) What is the minimum number of points with known ( ), ,x y z  coordinates that are needed 
to determine the ellipsoid and its center coordinates?  Justify your answer. 
 b) Describe cases where the geometry of a given set of points would not allow 
determination of 1) the flattening, 2) the size of the ellipsoid. 
 c) What distribution of points would give the strongest solution?  Provide a sufficient 
discussion to support your answer. 
 d) Set up the linearized observation equations and the normal equations for a least-squares 
adjustment of the ellipsoidal parameters (including its center coordinates). 
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2.1.2 Ellipsoidal Coordinates 
 
In order to define practical coordinates of points in relation to the ellipsoid, we consider the 
ellipsoid with conventional ( ), ,x y z  axes whose origin is at the center of the ellipsoid.  We first 
define the meridian plane for a point as the plane that contains the point, as well as the minor 
axis of the ellipsoid.  For any particular point, P , in space, its longitude is given by the angle in 
the equatorial plane from the x -axis to the meridian plane.  This is the same as the spherical 
longitude (due to the rotational symmetry); see Figure 1.1.  For the latitude, we have a choice.  
The geocentric latitude of P  is the angle, ψ , at the origin and in the meridian plane from the 
equator to the radial line through P  (Figure 2.3).  Note, however, that the geocentric latitude is 
independent of any defined ellipsoid and is identical to the complement of the polar angle 
defined earlier for the spherical coordinates. 
 Consider the ellipsoid through P  that is confocal (sharing the same focal points) with the 
ellipsoid, ( ),a f ; that is, it has the same linear eccentricity, E .  Its semi-minor axis is u  (Figure 
2.4), which can also be considered a coordinate of P .  We define the reduced latitude, β , of P  
as the angle at the origin and in the meridian plane from the equator to the radial line that 
intersects the projection of P , along the perpendicular to the equator, at the sphere of radius, 

2 2v E u= + . 
 Finally, we introduce the most common latitude used in geodesy, appropriately called the 
geodetic latitude.  This is the angle, φ , in the meridian plane from the equator to the line through 
P  that is also perpendicular to the basic ellipsoid ( ),a f ; see Figure 2.5.  The perpendicular to 
the ellipsoid is also called the normal to the ellipsoid.  Both the reduced latitude and the geodetic 
latitude depend on the underlying ellipsoid, ( ),a f . 
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Figure 2.3: Geocentric latitude. 
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Figure 2.4: Reduced latitude.  Ellipsoid ( ),a f  and the ellipsoid through P  have the same E . 
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Figure 2.5: Geodetic latitude. 

 
 
 In order to find the relationship between these various latitudes, we determine the ( ),x z  
coordinates of P  in terms of each type of latitude.  It turns out that this relationship is 
straightforward only when P  is on the ellipsoid; but for later purposes, we derive the Cartesian 
coordinates in terms of the latitudes for arbitrary points.  For the geocentric latitude, ψ , simple 
trigonometry gives (Figure 2.3): 
 
 cos , sinx r z rψ ψ= = . (2.13) 
 
For the reduced latitude, simple trigonometric formulas applied in Figure 2.4 as in Figure 2.2 
yield: 
 
 cos , sinx v z uβ β= = . (2.14) 
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 For the geodetic latitude, consider first the point, P , on the ellipsoid, ( ),a f .  From Figure 
2.6, we have the following geometric interpretation of the derivative, or slope, of the ellipse: 
 

 ( )tan 90 dz
dx

φ°− =
−

. (2.15) 

 
The right side is determined from equation (2.3): 
 

 
2 2 2

2 2
2 2 21 2 2x b dz b xz b z dz x dx

a a dx a z
 

= − ⇒ = − ⇒ =  − 
; (2.16) 

 
and, when substituted into equation (2.15), this yields 
 
 4 2 2 4 2 2sin cosb x a zφ φ= . (2.17) 
 
We also have from equation (2.3): 
 
 2 2 2 2 2 2b x a z a b+ = . (2.18) 
 
Now, multiply equation (2.18) by 2 2sinb φ−  and add it to equation (2.17), thus obtaining 
 
 ( )2 2 2 2 2 4 2cos sin sinz a b bφ φ φ+ = , (2.19) 

 
which reduces to 
 

 
( )2

2 2

1 sin

1 sin

a e
z

e

φ

φ

−
=

−
. (2.20) 
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Figure 2.6: Slope of ellipsoid. 
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With a similar procedure, multiplying equation (2.18) by 2 2cosa φ , adding it to equation (2.17), 
and simplifying, one obtains (the reader should verify this): 
 

 
2 2

cos
1 sin

ax
e

φ
φ

=
−

. (2.21) 

 
 To find the ( ),x z  coordinates of a point above (or below) the ellipsoid, we need to introduce 
a height coordinate, in this case the ellipsoidal height, h , above the ellipsoid (it is negative, if P  
is below the ellipsoid); h  is measured along the perpendicular (the normal) to the ellipsoid 
(Figure 2.6).  It is a simple matter now to express ( ),x z  in terms of geodetic latitude and 
ellipsoidal height: 
 

 
( )2

2 2 2 2

1 sincos cos , sin
1 sin 1 sin

a eax h z h
e e

φφ φ φ
φ φ

−
= + = +

− −
. (2.22) 

 
 It is easy to find the relationship between the different latitudes, if the point is on the ellipsoid 
( 0h = ).  Combining equations (2.13), (2.14), both specialized to the basic ellipsoid ( u b= ), with 
equations (2.20) and (2.21), we obtain the following relationships among these three latitudes, 
using the ratio z x : 
 

 
2

2tan tan tanb b
a a

ψ β φ= = , (2.23) 

 
which also shows that 
 
 ψ β φ≤ ≤ . (2.24) 
 
Again, we note that the relationship (2.23) holds only for points on the ellipsoid.  For arbitrary 
points in space the problem is not straightforward and is connected with the problem of finding 
the geodetic latitude from given rectangular (Cartesian) coordinates of the point (see Section 
2.1.5). 
 The ellipsoidal height, geodetic latitude, and longitude, ( ), ,h φ λ , constitute the geodetic 
coordinates of a point with respect to a given ellipsoid, ( ),a f .  It is noted that these are 
orthogonal coordinates, in the sense that surfaces of constant h , φ , and λ  are orthogonal to each 
other.  However, mathematically, these coordinates are not that useful, since, for example, the 
surface of constant h  is not a simple shape (it is not an ellipsoid).  Instead, the triple of 
ellipsoidal coordinates, ( ), ,u β λ , also orthogonal, is more often used for mathematical 
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developments; but, of course, the height coordinate (and also the reduced latitude) is less 
intuitive and, therefore, less practical. 
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2.1.2.1  Problems 
 
1. Derive the following expressions for the differences between the geodetic latitude and the 
geocentric, respectively, the reduced latitudes of points on the ellipsoid: 
 

 ( ) ( )
2

2 2

sin 2tan
2 1 sin

e
e

φφ ψ
φ

− =
−

, (2.25) 

 

 ( ) sin 2tan
1 cos 2

n
n

φφ β
φ

− =
+

, (2.26) 

 
where ( ) ( )n a b a b= − + .  (Hint: see Rapp, 1991, p.26.)5 
 
 
2. Calculate and plot the differences (2.25) and (2.26) for all latitudes, 0 90φ≤ ≤ °  using the 
GRS80 ellipsoid parameter values. 
 
 

3. Show that the difference ( )φ β−  is maximum when ( )11 cos
2

nφ −= − . 

 
 
4. Mathematically and geometrically describe the surfaces of constant u , β , and, λ , 
respectively.  As the linear eccentricity approaches zero, what do these ellipsoidal coordinates 
and surfaces degenerate into? 
 

                                                 
5 Rapp, R.H. (1991): Geometric geodesy, Part I.  Lecture Notes; Department of Geodetic Science and Surveying, 

Ohio State University. http://hdl.handle.net/1811/24333 
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2.1.3 Elementary Differential Geodesy 
 
In the following we derive differential elements on the surface of the ellipsoid and, in the 
process, describe the curvature of the ellipsoid.  The differential elements are used in developing 
the geometry of geodesics on the ellipsoid and in solving the principal problems in geometric 
geodesy, namely, determining coordinates of points on geodesics. 
 
 
2.1.3.1  Radii of Curvature 
 
Consider a curve on a surface, for example a meridian arc or a parallel circle on the ellipsoid, or 
any other arbitrary curve.  The meridian arc and the parallel circle are examples of plane curves, 
curves that are contained in a plane that intersects the surface.  The amount by which the tangent 
to the curve changes in direction as one moves along the curve indicates the curvature of the 
curve.  We define curvature geometrically as follows: 
 

The curvature, χ , of a plane curve is the absolute rate of change of the slope angle of 
the tangent line to the curve with respect to arc length along the curve. 

 
If α  is the slope angle and s  is arc length, then 
 

 d
ds
αχ = . (2.27) 

 
With regard to Figure 2.7a, let λλλλ  be the unit tangent vector at a point on the curve; λλλλ  identifies 
the slope of the curve at that point.  Consider also the plane that locally contains the 
infinitesimally close neighboring tangent vectors; that is, it contains the direction in which λλλλ  
changes due to the curvature of the curve.  For plane curves, this is the plane that contains the 
curve.  The unit vector that is in this plane and perpendicular to λλλλ , called µµµµ , identifies the 
direction of the principal normal to the curve.  Note that the curvature, as given in equation 
(2.27), has units of inverse-distance.  The reciprocal of the curvature is called the radius of 
curvature, ρ : 
 

 1ρ
χ

= . (2.28) 

 
The radius of curvature is a distance along the principal normal to the curve.  In the special case 
that the curvature is a constant, the radius of curvature is also a constant and the curve is (the arc 
of) a circle.  We may think of the radius of curvature at a point of an arbitrary curve as being the 
radius of the circle tangent to the curve at that point and having the same curvature. 
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 A curve on the surface may also have curvature such that it cannot be embedded in a plane.  
A corkscrew is such a curve.  Geodesics on the ellipsoid are geodetic examples of such curves.  
In this case, the curve has double curvature, or torsion.  We will consider only plane curves for 
the moment. 
 
 

λ

µ

dx
dzds

a) b)

λ

µ

λ

µ

dx
dzds

dx
dzds

a) b)  
Figure 2.7: Curvature of plane curves. 

 
 
 Let ( )z z x=  describe the plane curve in terms of space coordinates ( ),x z .  In terms of arc 
length, s , we may write ( )x x s=  and ( )z z s= .  A differential arc length, ds , is given by 
 
 2 2ds dx ds= + . (2.29) 
 
This can be re-written as 
 

 
2

1 dzds dx
dx

 = + 
 

. (2.30) 

 
Now, the tangent of the slope angle of the curve is exactly the derivative of the curve, dz dx ; 
hence 
 

 1tan dz
dx

α −  =  
 

. (2.31) 

 
Using equations (2.27) and (2.30), we obtain for the curvature 
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 2

2 2 2

1 1

1 1

d d dx
ds dx ds

d z
dxdz dz

dx dx

α αχ = =

=
   + +      

 (2.32) 

 
so that, finally, 
 

 

2

2

3 22

1

d z
dx

dz
dx

χ =
  +     

. (2.33) 

 
 For the meridian ellipse, we have from equations (2.15) and (2.16): 
 

 
2

2
cos
sin

dz b x
dx a z

φ
φ

= − = − ; (2.34) 

 
and the second derivative is obtained as follows (the details are left to the reader): 
 

 
22 2 2

2 2 2
1 1d z b a dz

dx a z b dx
  = − +     

. (2.35) 

 
Making use of equations (2.19), (2.34), and (2.35), the curvature, equation (2.33), becomes 
 

 

( )

2 2 2 22 2 2 2 2

2 2 2 2

3 22

2

3 22 2
2

cos sin cos sin
sin sin

cos1
sin

1 sin

a bb a b
a b b

b e
a

φ φ φ φ
φ φχ

φ
φ

φ

+ +

=
 
+ 

 

= −

 (2.36) 

 
 This is the curvature of the meridian ellipse; its reciprocal is the radius of curvature, denoted 
conventionally as M : 
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( )

( )
2

3 22 2

1

1 sin

a e
M

e φ

−
=

−
, (2.37) 

 
where equation (2.5) was used.  Note that M  is a function of geodetic latitude (but not 
longitude, because of the rotational symmetry of the ellipsoid).  Using the expression (2.27) for 
the curvature, we find that 
 

 1 d
M ds

φ= , (2.38) 

 
since the slope angle of the ellipse is 90 φ°−  (see Figure 2.6); and, hence, since 0M >  (always) 
 
 meridiands Mdφ= , (2.39) 
 
which is the differential element of arc along the meridian.  The absolute value is removed with 
the convention that if 0dφ> , then 0ds > ; and, if 0dφ< , then 0ds < . 
 The radius of curvature, M , is the principal normal to the meridian curve; and, therefore, it 
lies along the normal (perpendicular) to the ellipsoid (see Figure 2.8).  At the pole ( 90φ= °) and 
at the equator ( 0φ= ° ) it assumes the following values, from equation (2.37): 
 

 
( )2

equator

pole 2

1

1

M a e a

aM a
e

= − <

= >
−

 (2.40) 

 
showing that M  increases monotonically from equator to either pole, where it is maximum.  
Thus, also the curvature of the meridian decreases (becomes less curved) as one moves from the 
equator to the pole, which agrees with the fact that the ellipsoid is flattened at the poles.  The 
length segment, M , does not intersect the polar axis, except at 90φ= ° .  We find that the 
"lower" endpoint of the radius falls on a curve as indicated in Figure 2.8.  The values 1∆  and 2∆  
are computed as follows 
 

 

( )2 2
1 equator

2
2 pole

1

'

a M a a e ae

aM b b beb
a

∆

∆

= − = − − =

= − = − =  (2.41) 

 
Using values for the ellipsoid of the Geodetic Reference System 1980, equation (2.11), we find 
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 1

2

42697.67 m
42841.31 m

∆
∆
=
=

 (2.42) 
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Figure 2.8: Meridian radius of curvature. 

 
 
 So far we have considered only the meridian curve.  At any point on the ellipsoid, we may 
consider any other curve that passes through that point.  In particular, imagine the class of curves 
that are generated as follows.  At a point on the ellipsoid, let ξ  be the unit vector defining the 
direction of the normal to the surface.  By the symmetry of the ellipsoid, ξ  lies in the meridian 
plane.  Now consider any plane that contains ξ ; it intersects the ellipsoid in a curve known as a 
normal section ("normal" because the plane contains the normal to the ellipsoid at a point) (see 
Figure 2.9).  The meridian curve is a special case of a normal section; but the parallel circle is 
not a normal section; even though it is a plane curve, the plane that contains it does not contain 
the normal, ξ .  We note that a normal section on a sphere is a great circle.  However, we will see 
below that normal sections on the ellipsoid do not indicate the shortest path between points on 
the ellipsoid – they are not geodesics (great circles are geodesics on the sphere). 
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Figure 2.9: Normal section (shown for the prime vertical). 

 
 
 The normal section drawn in Figure 2.9, another special case, is the prime vertical normal 
section – it is perpendicular to the meridian.  Note that while the prime vertical normal section 
and the parallel circle have the same tangent where they meet, they have different principal 
normals.  The principal normal of the parallel circle (its radius of curvature) is parallel to the 
equator, while the principal normal of the prime vertical normal section (or any normal section) 
is the normal to the ellipsoid – but at this point only! 
 In differential geometry, there is the following theorem due to Meusnier (e.g., McConnell, 
1957)6 
 
Theorem: For all surface curves, C , with the same tangent vector at a point, each having 
curvature, Cχ , at that point, and the principal normal of each making an angle, Cθ , with the 
normal to the surface, there is 
 
 cos constantC Cχ θ = . (2.43) 
 

cosC Cχ θ  is called the normal curvature of the curve, C , at a point.  Of all the curves that share 
the same tangent at a point, one is the normal section.  For this normal section, we clearly have, 

0Cθ = ° , since its principal normal is also the normal to the ellipsoid at that point.  Hence, the 
constant in equation (2.43) is 
 
 normal sectionconstant χ= . (2.44) 
 
The constant is the curvature of that normal section at the point. 
 For the prime vertical normal section, we define 

                                                 
6 McConnell, A.J. (1957): Applications of Tensor Analysis. Dover Publ. Inc., New York. 
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 prime vertical normal section
1
N

χ = , (2.45) 

 
where N  is the radius of curvature of the prime vertical normal section at the point of the 
ellipsoid normal.  The parallel circle through that point has the same tangent as the prime vertical 
normal section, and its radius of curvature is parallel circle1p χ= .  The angle of its principal normal, 
that is, p, with respect to the ellipsoid normal is the geodetic latitude, φ  (Figure 2.6).  Hence, 
from equations (2.43) - (2.45): 
 

 1 1cos
p N

φ = , (2.46) 

 
which implies that 
 
 cosp N φ= , (2.47) 
 
and that N  is the length of the normal to the ellipsoid from the point on the ellipsoid to its minor 
axis (see Figure 2.10). 
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Figure 2.10: Prime vertical radius of curvature. 

 
 
 The x -coordinate of a point on the ellipsoid whose y -coordinate is zero is given by equation 
(2.21); but this is also p .  Hence, from equation (2.47) 
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2 21 sin
aN

e φ
=

−
. (2.48) 

 
From Figure 2.10 and equation (2.20), we also find that the point of intersection of N  with the 
minor axis is the following distance from the ellipsoid center: 
 
 2sin sinN z Ne∆ φ φ= − = . (2.49) 
 
At the equator ( 0φ = ° ) and at the poles ( 90φ = ± °), the prime vertical radius of curvature 
assumes the following constants, according to equation (2.48): 
 

 
equator

pole 21

N a

aN a
e

=

= >
−

 (2.50) 

 
and we see that N  increase monotonically from the equator to either pole, where it is maximum.  
Note that at the pole, 
 
 pole poleN M= , (2.51) 
 
since all normal sections at the pole are meridians.  Again, the increase in N  polewards, implies 
a decrease in curvature (due to the flattening of the ellipsoid).  Finally, equatorN a=  agrees with 
the fact that the equator, being the prime vertical normal section for points on the equator, is a 
circle with radius, a . 
 Making use of the basic definition of curvature as being the absolute change in slope angle 
with respect to arc length of the curve, equation (2.27), we find for the parallel circle 
 

 1 d
p ds

λ= ; (2.52) 

 
and, therefore, again removing the absolute value with the convention that if 0dλ <  ( 0dλ > ), 
then also 0ds <  ( 0ds > ), we obtain: 
 
 parallel circle prime vertical normal sectioncosds N d dsφ λ= = , (2.53) 

 
where the second equality holds only where the parallel circle and the prime vertical normal 
section are tangent. 
 From equations (2.37) and (2.48), it is easily verified that, always, 
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 M N≤ . (2.54) 
 
Also, at any point M  and N  are, respectively, the minimum and maximum radii of curvature 
for all normal sections through that point.  M  and N  are known as the principal radii of 
curvature at a point of the ellipsoid.  For any arbitrary curve, the differential element of arc, 
using equations (2.39) and (2.53), is given by 
 
 2 2 2 2 2cosds M d N dφ φ λ= + . (2.55) 
 
 To determine the curvature of an arbitrary normal section, we first need to define the 
direction of the normal section.  The normal section azimuth, α , is the angle measured in the 
plane tangent to the ellipsoid at a point, clockwise about the normal to that point, from the 
(northward) meridian plane to the plane of the normal section.  Euler’s formula gives us the 
curvature of the normal section having normal section azimuth, α , in terms of the principal radii 
of curvature: 
 

 
2 21 sin COS

R N Mα
α

α αχ = = + . (2.56) 

 
 We can use the radius of curvature, Rα , of the normal section in azimuth, α , to define a 
mean local radius of the ellipsoid.  This is useful if locally we wish to approximate the ellipsoid 
by a sphere – this local radius would be the radius of the approximating sphere.  For example, we 
have the Gaussian mean radius, which is the average of the radii of curvature of all normal 
sections at a point: 
 

 

( )

2 2

2 2

0 0

2 2

1 1
2 2 sin cos

1
1 sin

G
dR R d

N M
a f

MN
e

π π

α
αα

π π α α

φ

= =
+

−
= =

−

∫ ∫
 (2.57) 

 
as shown in (Rapp, 19917, p.44; see also Problem 2.1.3.4.-1.).  Note that the Gaussian mean 
radius is a function of latitude.  Another approximating radius is the mean radius of curvature, 
defined from the average of the principal curvatures: 
 

                                                 
7 Rapp, R.H. (1991): Geometric Geodesy, Part I.  Lecture Notes, Department of Geodetic Science and Surveying, 

Ohio State University, Columbus, Ohio. http://hdl.handle.net/1811/24333 
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 1
1 1 1
2

mR

N M

=
 + 
 

. (2.58) 

 
 For the sake of completeness, we define here other radii that approximate the ellipsoid, but 
these are global, not local approximations.  We have the average of the semi-axes of the 
ellipsoid: 
 

 ( )1
3

R a a b= + + ; (2.59) 

 
the radius of the sphere whose surface area equals that of the ellipsoid: 
 

 
4AR Σ
π

= , (2.60) 

 
where Σ  is the area of the ellipsoid, given by (Rapp, 1991, p.42; see also Problem 2.1.3.4.-4.) 
 

 2
2

1 1 12 ln
1 2 1

eb
e e e

Σ π − = + − + 
; (2.61) 

 
and, the radius of the sphere whose volume equals that of the ellipsoid: 
 

 
1 33

4VR V
π

 =  
 

, (2.62) 

 
where V  is the volume of the ellipsoid, given by 
 

 24
3

V a bπ= . (2.63) 

 
Using the values of GRS80, all of these approximations imply 
 
 6371 kmR = , (2.64) 
 
as the mean Earth radius, to the nearest km. 
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2.1.3.2  Normal Section Azimuth 
 
Consider again a normal section defined at a point, A , and passing through a target point, B ; see 
Figure 2.11.  We note that the points An  and Bn , the intersections with the minor axis of the 
normals through A  and B , respectively, do not coincide (unless, A Bφ φ= ).  Therefore, the 
normal plane at A  that also contains the point B , while it contains the normal at A , does not 
contain the normal at B .  And, vice versa!  Therefore, unless A Bφ φ= , the normal section at A  
through B  is not the same as the normal section at B  through A .  In addition, the normal 
section at A  through a different target point, 'B , along the normal at B , but at height 'Bh , will 
be different than the normal section through B  (Figure 2.12).  Note that in Figure 2.12, AABn  
and ' AAB n  define two different planes containing the normal at A . 
 Both of these geometries (Figures 2.11 and 2.12) affect how we define the azimuth at A  of 
the (projection of the) target point, B .  If ABα  is the normal section azimuth of B  at A , and 

'ABα  is the azimuth, at A , of the "reverse" normal section coming from B  through A , then the 
difference between these azimuths is given by Rapp (1991, p.59)8: 
 

 
22

2 1' sin cos cos tan
2 2AB AB AB A AB A

A A

e s s
N N

α α α φ α φ
   

− −   
   

! , (2.65) 

 
where s  is the length of the normal section.  This is an approximation where higher powers of 

As N  are neglected.  Furthermore, if 'ABα  is the normal section azimuth of 'B  at A , where 'B  
is at a height, 'Bh , along the ellipsoid normal at B, then Rapp (1991, p.63, ibid.) gives the 
difference: 
 

 2 2'
'

1' cos sin cos tan
2

B
AB AB A AB AB A

A A

h se
N N

α α φ α α φ
 

− − 
 

! . (2.66) 

 
Note that the latter difference is independent of the height of the point A (the reader should 
understand why!). 
 
 

                                                 
8 Rapp, R.H. (1991): Geometric Geodesy, Part I.  Lecture Notes, Department of Geodetic Science and Surveying, 

Ohio State University, Columbus, Ohio. http://hdl.handle.net/1811/24333 
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Figure 2.11: Normal sections at A  and B . 
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Figure 2.12: Normal sections for target points at different heights. 

 
 
2.1.3.3  Geodesics 
 
Consider the following problem: given two points on the surface of the ellipsoid, find the curve 
on the ellipsoid connecting these two points and having the shortest length.  This curve is known 
as the geodesic (curve).  Geodesics on a sphere are great circle arcs and these are plane curves; 
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but, as already mentioned, on the ellipsoid, geodesics have double curvature  – they are not plane 
curves and their geometry is more complicated.  We will find the conditions that must be 
satisfied by geodetic coordinates of points on a geodesic.  The problem can be solved using the 
calculus of variations, as follows. 
 Let ds  be the differential element of arc of an arbitrary curve on the ellipsoid.  In terms of 
differential latitude and longitude, we found the relationship, equation (2.55), repeated here for 
convenience: 
 
 2 2 2 2 2cosds M d N dφ φ λ= + . (2.67) 
 
If α  is the azimuth of the curve at a point then the element of arc at that point may also be 
decomposed according to the latitudinal and longitudinal elements using equations (2.39) and 
(2.53): 
 

 
cos
sin cos

ds Md
ds N d

α φ
α φ λ
=
=

 (2.68) 

 
Let I  denote the length of a curve between two points, P  and Q , on the ellipsoid.  The geodesic 
between these two points is the curve, s , that satisfies the condition: 
 

 min
Q

P
I ds= →∫ . (2.69) 

 
 The problem of finding the equation of the curve under the condition (2.69) can be solved by 
the method of the calculus of variations.  This method has many applications in mathematical 
physics and general procedures may be formulated.  In particular, consider the more general 
problem of minimizing the integral of some function, ( ) ( )( ), , 'F x y x y x , where 'y  is the 
derivative of y  with respect to x : 
 

 minI Fdx= →∫ . (2.70) 

 
It can be shown9 that the integral in equation (2.70) is minimized if and only if the following 
differential equation holds 
 

 0
'

d F F
dx y y
∂ ∂− =
∂ ∂

. (2.71) 

 
This is Euler’s equation.  Note that both total and partial derivatives are used in equation (2.71).  
It is an equation in ( )y x .  A solution to this equation (in essence, by integration) provides the 
necessary and sufficient conditions on ( )y x  that minimize the integral (2.70). 
 In our case, by comparing equations (2.69) and (2.70), we have 

                                                 
9 Arfken, G. (1970): Mathematical Methods for Physics.  Academic Press, New York. 
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 Fdx ds= ; (2.72) 
 
and, we will identify the points on an arbitrary curve by 
 
 ( )φ φ λ= . (2.73) 
 
That is, we choose λ  to be the independent variable of the functional description of the curve on 
the ellipsoid (i.e., y φ≡  and x λ≡  in the more general formulation above).  From equation 
(2.67), we have 
 

 ( )
2

22 2 2 2 2 2cos cosdds M d N d M N d
d
φφ φ λ φ λ
λ

 = + = + 
 

; (2.74) 

 
so that 
 

 ( ) ( )
2

22 cos , 'dF M N F
d
φ φ φ φ
λ

 = + = 
 

, (2.75) 

 
where ' d dφ φ λ= . 
 Immediately, we see that in our case F  does not depend on λ  explicitly: 
 

 0F
λ
∂ =
∂

. (2.76) 

 
Now let F  be that function that minimizes the path length; that is, F  must satisfy Euler’s 
equation.  From equation (2.76) we can get a first integral of Euler’s equation (2.71); it will be 
shown that it is given by 
 

 ' constant
'

FF φ
φ
∂− =
∂

. (2.77) 

 
 To prove this, we work backwards.  That is, we start with equation (2.77), obtain something 
we know to be true, and finally argue that our steps of reasoning can be reversed to get equation 
(2.77).  Thus, differentiate equation (2.77) with respect to λ : 
 

 ' 0
'

d FF
d

φ
λ φ
 ∂− = ∂ 

. (2.78) 

 
Explicitly, the derivative is 
 

 '' ' 0
' '

dF F d F
d d

φ φ
λ φ λ φ

∂ ∂− − =
∂ ∂

. (2.79) 
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Now, by the chain rule applied to ( ) ( )( ), , 'F λ φ λ φ λ , we get 
 

 
' ''

'

' ''
'

dF F F F
d

F F

φ φ
λ λ φ φ

φ φ
φ φ

∂ ∂ ∂= + +
∂ ∂ ∂
∂ ∂= +
∂ ∂

 (2.80) 

 
because of equation (2.76).  Substituting equation (2.80) into equation (2.79) yields 
 

 ' 0
'

F d F
d

φ
φ λ φ

 ∂ ∂− = ∂ ∂ 
. (2.81) 

 
Since, in general, ' 0φ ≠ , we must have 
 

 0
'

F d F
dφ λ φ

∂ ∂− =
∂ ∂

. (2.82) 

 
But this is Euler’s equation, assumed to hold for our particular F .  That is, the F  defined by 
equation (2.77) also satisfies Euler’s equation.  The process can be reversed to get equation 
(2.77) from equation (2.82); therefore, equations (2.77) and (2.82) are equivalent in this case and 
equation (2.77) is a first integral of Euler’s equation (it has now been reduced to a first-order 
differential equation). 
 From equation (2.75), we see that 
 

 
( )

2

22 2

'
' ' cos

F M

M N

φ
φ φ φ

∂ =
∂ +

. (2.83) 

 
Substituting this into equation (2.77) yields 
 

 

( )
( )

( )
( )

2 2
22 2

22 2

2

22 2

'' ' cos
' ' cos

cos
constant

' cos

F MF M N
M N

N

M N

φφ φ φ
φ φ φ

φ

φ φ

∂− = + −
∂ +

= =
+

 (2.84) 

 
The last equation is the condition on ( )φ λ  that must be satisfied for points having coordinates 
( ),φ λ  that are on the geodesic. 
 The derivative, 'φ , can be obtained by dividing the two equations (2.68): 
 

 cos cotd N
d M
φ φ α
λ
= . (2.85) 
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Substituting this derivative which holds for an arbitrary curve into the condition (2.84) which 
holds only for geodesics, we get 
 

 ( )

( )

2

2 2
22

cos cos constant
cot 1cos cot cos

N N

NM N
M

φ φ
αφ α φ

= =
+  + 

 

. (2.86) 

 
The last equality can be simplified to 
 
 cos sin constantN φ α = . (2.87) 
 
This is the famous equation known as Clairaut’s equation.  All points on a geodesic must satisfy 
this equation.  That is, if C  is a geodesic curve on the ellipsoid, where φ  is the geodetic latitude 
of an arbitrary point on C , and α  is the azimuth of the geodesic at that point (i.e., the angle with 
respect to the meridian of the tangent to the geodesic at that point), then φ  and α  are related 
according to equation (2.87).  Note that Clairaut’s equation by itself is not a sufficient condition 
for a curve to be a geodesic; that is, if points on a curve satisfy equation (2.87), then this is no 
guarantee that the curve is a geodesic (e.g., consider an arbitrary parallel circle).  However, 
Clairaut’s equation combined with the condition ' 0φ ≠  is sufficient to ensure that the curve is a 
geodesic.  This can be proved by reversing the arguments of equations (2.77) – (2.87) (see 
Problem 8, Section 2.1.3.4). 
 From equations (2.47) and (2.14), specialized to u b= , we find 
 

 
cos

cos
p N

a
φ
β

=
=

 (2.88) 

 
and thus we have another form of Clairaut’s equation: 
 
 cos sin constantβ α = . (2.89) 
 
Therefore, for points on a geodesic, the product of the cosine of the reduced latitude and the sine 
of the azimuth is always the same value.  We note that the same equation holds for great circles 
on the sphere, where, of course, the reduced latitude becomes the geocentric latitude. 
 Substituting equation (2.88) into equation (2.87) gives 
 
 sin constantp α = . (2.90) 
 
Taking differentials leads to 
 
 sin cos 0dp p dα α α+ = . (2.91) 
 
With equations (2.88) and (2.68), equation (2.91) may be expressed as 
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cos

dpd d
ds

α λ
α

= − . (2.92) 

 
Again, using equation (2.68), this is the same as 
 

 dpd d
M d

α λ
φ

= − . (2.93) 

 
It can be shown, from equations (2.37) and (2.48), that 
 

 ( )cos sindp d N M
d d

φ φ
φ φ
= = − . (2.94) 

 
Putting this into equation (2.93) yields another famous equation, Bessel’s equation: 
 
 sind dα φ λ= . (2.95) 
 
This also holds only for points on the geodesic; it is both a necessary and a sufficient condition 
for a curve to be a geodesic.  Again, the arguments leading to equation (2.95) can be reversed to 
show that the consequence of equation (2.95) is equation (2.87), provided ' 0φ ≠  (or, cos 0α ≠ ), 
thus proving sufficiency. 
 Geodesics on the ellipsoid have a rich geometry that we cannot begin to explore in these 
notes.  The interested reader is referred to Rapp (1992)10 and Thomas (1970)11.  However, it is 
worth mentioning some of the facts, without proof. 
1) Any meridian is a geodesic. 
2) The equator is a geodesic up to a point; that is, the shortest distance between two points on 
the equator is along the equator, but not always.  We know that for two diametrically opposite 
points on the equator, the shortest distance is along the meridian (because of the flattening of the 
ellipsoid).  So, starting from a given point on the equator, the equator serves as the geodesic to 
another point on the equator.  But for end-points on the equator beyond some critical point, the 
geodesic jumps off the equator and runs along the ellipsoid with varying latitude, until for 
diametrically opposite equatorial points, the meridian is the geodesic. 
3) Except for the equator, no other parallel circle is a geodesic (see Problem 2.1.3.4-7.). 
4) In general, a geodesic on the ellipsoid is not a plane curve; that is, it is not generated by the 
intersection of a plane with the ellipsoid.  The geodesic has double curvature, or torsion. 
5) It can be shown that the principal normal of the geodesic curve is also the normal to the 
ellipsoid at each point of the geodesic (for the normal section, the principal normal coincides 

                                                 
10 Rapp, R.H. (1992): Geometric Geodesy, Part II.  Lecture Notes, Department of Geodetic Science and Surveying, 

Ohio State University, Columbus, Ohio. http://hdl.handle.net/1811/24409 
11 Thomas, P.D. (1970): Spheroidal geodesics, reference systems and local geometry.  U.S. Naval Oceanographic 

Office, SP-138, Washington, DC. 
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with the normal to the ellipsoid only at the point where the normal is in the plane of the normal 
section). 
6) Following a continuous geodesic curve on the ellipsoid, we find that it reaches maximum and 
minimum latitudes, max minφ φ= − , like a great circle on a sphere, but that it does not repeat itself 
on circumscribing the ellipsoid (like the great circle does), which is a consequence of its not 
being a plane curve; the meridian ellipse is an exception to this. 
7) Rapp (1991, p.84) gives the following approximate formula for the difference between the 
normal section azimuth and the geodesic azimuth, ABα"  (see Figure 2.13): 
 

 

( )

22
2' 1sin cos cos tan

6 4
1 '
3

AB AB AB A AB A
A A

AB AB

e s s
N N

α α α φ α φ

α α

   
− −   

   

−

" !

!

 (2.96) 

 
where the second approximation neglects the second term within the parentheses. 
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Figure 2.13: Normal sections versus geodesic on the ellipsoid. 
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2.1.3.4  Problems 
 
1. Split the integral in equation (2.57) into four integrals, one over each quadrant, and consult a 
Table of Integrals to prove the result. 
 
 
2. Show that the length of a parallel circle arc between longitudes 1λ  and 2λ  is given by 
 
 ( )2 1 cosL Nλ λ φ= − . (2.97) 

 
 
3. Find an expression for the length of a meridian arc between geodetic latitudes 1φ  and 2φ .  
Can the integral be solved analytically? 
 
 
4. Show that the area of the ellipsoid surface between longitudes 1λ  and 2λ  and geodetic 
latitudes 1φ  and 2φ  is given by 
 

 ( ) ( ) ( )
2

1

2
1 2 1 2 2 1 2 2

cos, , ,
1 sin

b d
e

φ

φ

φΣ φ φ λ λ λ λ φ
φ

= −
−∫ . (2.98) 

 
Then consult a Table of Integrals to show that this reduces to 
 

 ( ) ( )
2

1

2

1 2 1 2 2 1 2 2
sin 1 1 sin, , , ln

2 1 sin 2 1 sin
b e

e e e

φ

φ

φ φΣ φ φ λ λ λ λ
φ φ

 += − + − − 
, (2.99) 

 
(where e  is the first eccentricity, not the exponential).  Finally, prove equation (2.61). 
 
 
5. Consider two points, A  and B , that are on the same parallel circle. 
 a) What should be the differences, 'AB ABα α−  and 'AB ABα α− , given by equations (2.65) 
and (2.66), and why? 
 b) Show that in spherical approximation the parenthetical term in equations  (2.65) and 
(2.66) is approximately zero if the two points, A and B, are on the same parallel, and if the 
distance s is not large (hint: use the law of cosines on spherical triangle ABO, where O is the 
north pole, to show that approximately 
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sin sin cos cos sin cosA A A AB
A A

s s
N N

φ φ φ α+! . 

 
Then solve for cos ABα  and use small-angle approximations to second order for the sine and 
cosine). 
 
 
6. Suppose that a geodesic curve on the ellipsoid attains a maximum geodetic latitude, maxφ .  
Show that the azimuth of the geodesic as it crosses the equator is given by 
 

 1 max
equator 2 2

max

cossin
1 sine

φα
φ

−
 
 =
 − 

. (2.100) 

 
 
7. Using Bessel’s equation show that a parallel circle arc (except the equator) can not be a 
geodesic. 
 
 
8. Prove that if ' 0φ ≠  then equation (2.87) is a sufficient condition for a curve to be a geodesic, 
i.e., equations (2.77) and hence (2.69) are satisfied.  That is, if all points on a curve satisfy 
equation (2.87) , the curve must be a geodesic. 
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2.1.4 Direct / Inverse Problems 
 
There are two essential problems in the computation of coordinates, directions, and distances on 
a particular given ellipsoid (see Figure 2.14): 
 
The Direct Problem: Given the geodetic coordinates of a point on the ellipsoid, the geodesic 
azimuth to a second point, and the geodesic distance between the points, find the geodetic 
coordinates of the second point, as well as the back-azimuth (azimuth of the first point at the 
second point), where all azimuths are geodesic azimuths.  That is, 
 

given: 1 1 1 12, , , sφ λ α ;  find: 2 2 2, ,φ λ α . 
 
The Inverse Problem: Given the geodetic coordinates of two points on the ellipsoid, find the 
geodesic forward- and back-azimuths, as well as the geodesic distance between the points.  That 
is, 

given: 1 1 2 2, , ,φ λ φ λ ;  find: 1 2 12, , sα α . 
 
The solutions to these problems form the basis for relating traditional geodetic observations of 
angles and distances to the establishment of a horizontal control network of point coordinates for 
a region.  That is, they provide for the solution of general ellipsoidal triangles12, analogous to the 
relatively simple solutions of spherical triangles, which constitute the elements of a triangulation 
network on the mapping surface, the ellipsoid.    There are many solutions that hold for short 
lines (generally less than 100 – 200 km) and are based on some kind of approximation; in fact, 
one solution to the problem is developed by approximating the ellipsoid locally by a sphere.  
None of these developments is simpler in essence than the exact (iterative, or series) solution 
which holds for any length of line.  The latter solutions are fully developed in (Rapp, 1992)13.  
However, we will consider only one of the approximate solutions in order to obtain some tools 
for simple applications.  In fact, today with GPS the direct problem as traditionally solved or 
utilized is hardly relevant in geodesy.  The indirect problem is still quite useful as applied to 
long-range surface navigation and guidance (e.g., for oceanic commercial navigation). 
 
 

                                                 
12 Ehlert, D. (1993): Methoden der ellipsoidischen Dreiecksberechnung.  Report no.292, Institut für Angewandte 

Geodäsie, Frankfurt a. Main, Deutsche Geodätische Kommission. 
13 Rapp. R.H. (1992): Geometric Geodesy, Part II.  Lecture Notes, Department of Geodetic Science and Surveying, 

Ohio State University, Columbus, Ohio. http://hdl.handle.net/1811/24409 
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Figure 2.14: Ellipsoidal geometry for direct and inverse geodetic problems. 

 
 
 One set of solutions of these problems is the Legendre-series solution, first developed by 
Legendre and published in the Mémoires of the Paris Academy (1806)14.  We assume that the 
geodesic is parameterized by the arc length, s : 
 
 ( ) ( ) ( ), ,s s sφ φ λ λ α α= = = . (2.101) 

 
α  is the forward azimuth at any point on the geodesic.  Let α  denote the back-azimuth; we have 
α α π= + .  Then, a Taylor series expansion formally yields: 
 

 
2

2
2 1 12 122

1 1

1
2!

d ds s
ds ds
φ φφ φ= + + +# ; (2.102) 

 

 
2

2
2 1 12 122

1 1

1
2!

d ds s
ds ds
λ λλ λ= + + +# ; (2.103) 

 

 
2

2
2 1 12 122

1 1

1
2!

d ds s
ds ds
α αα α π= + + + +# . (2.104) 

 

                                                 
14 Jordan, W. (1962): Handbook of Geodesy, vol.3, part 2. English translation of Handbuch der Vermessungskunde 

(1941), by Martha W. Carta, Corps of Engineers, United States Army, Army Map Service. 
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The derivatives in each case are obtained from the differential elements of a geodesic and 
evaluated at point 1P .  The convergence of the series is not guaranteed for all 12s , but it is 
expected for 12s R$  (mean radius of the Earth), although the convergence may be slow. 
 We recall the equations (2.68): 
 

 
cos

sin cos

ds Md

ds N d

α φ

α φ λ

=

=
 (2.105) 

 
which hold for any curve on the ellipsoid; and Bessel’s equation (2.95): 
 
 sind dα φ λ= , (2.106) 
 
which holds only for geodesics.  Thus, from equation (2.105) 
 

 1

1 1

cosd
ds M

αφ = , (2.107) 

 
and 
 

 1

1 1 1

sin
cos

d
ds N

αλ
φ

= . (2.108) 

 
Now, substituting dλ , given by equation (2.105), into equation (2.106), we find 
 

 1
1

1 1

sin tand
ds N

αα φ= . (2.109) 

 
 For the second derivatives, we need (derivations are left to the reader): 
 

 
2 2

2
3 sin cosdM MN e

d a
φ φ

φ
= ; (2.110) 

 

 2' sin cosdN Me
d

φ φ
φ
= ; (2.111) 

 

 ( )cos sind N M
d

φ φ
φ

= − . (2.112) 
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Using the chain rule of standard calculus, we have 
 

 
2

2 2
cos 1 cossind d d dM d

ds ds M M ds M d ds
φ α α α φα

φ
 = = − − 
 

, (2.113) 

 
which becomes, upon substituting equations (2.107), (2.109), and (2.110): 
 

 
2 2 2 22

1 1 1 1 1
12 2 2

1 1 11

sin 3 cos sin costan e Nd
ds M N a M

α α φ φφ φ= − − . (2.114) 

 
Similarly, for the longitude, 
 

 ( )
2

2 2 2
sin cos sin cos
cos cos cos

d d d d dN
ds ds N N ds N d ds
λ α α α α φφ

φ φ φ φ
 = = − 
 

, (2.115) 

 
which, with appropriate substitutions as above, leads after simplification (left to the reader) to 
 

 
2

1 1
12 2

1 11

2sin cos tan
cos

d
ds N

α αλ φ
φ

= . (2.116) 

 
Finally, for the azimuth 
 

 
2

2
2 2

sin cos sin sintan tan tan secd d d dN d d
ds ds N N ds N d ds N ds
α α α α α φ α φφ φ φ φ

φ
 = = − + 
 

, (2.117) 

 
that with the substitutions for the derivatives as before and after considerable simplification (left 
to the reader) yields 
 

 ( )
2

2 2 21 1
1 12 2

11

sin cos 1 2 tan ' cosd e
ds N

α αα φ φ= + + . (2.118) 

 
Clearly, higher-order derivatives become more complicated, but could be derived by the same 
procedures.  Expressions up to fifth order, also given below, are found in (Jordan, 1941)15 and 
(Rapp, 1991)16. 

                                                 
15 Jordan, W. (1962): Handbook of Geodesy, vol.3, part 2. English translation of Handbuch der Vermessungskunde 

(1941), by Martha W. Carta, Corps of Engineers, United States Army, Army Map Service. 
16 Rapp, R.H. (1991): Geometric Geodesy, Part I.  Lecture Notes, Department of Geodetic Science and Surveying, 

Ohio State University, Columbus, Ohio. http://hdl.handle.net/1811/24333 
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 With the following abbreviations 
 

 2 2 212 12
1 1 1 1

1 1

sin , cos , ' cos , tans sv u e t
N N

α α η φ φ= = = = , (2.119) 

 
the final solution to the direct problem up to fifth order in 12 1s N  is thus given as follows, the 
details of which are left to the reader (see also Problem 3, Section 2.1.41). 
 

 

( ) ( )

( ) ( )

( ) ( )

2 3
2 2 2 2 2 2 2 2 22 1

2

4 2 2 4
2 2 2 2 2 2 2 2 2

4 2 3
2 4 2 4

1 3 1 3 9 1
1 2 2 6 2

1 3 9 4 6 13 9
24 12 2

1 30 45 2 15 15
120 30

v u uu v t u t t t t

v v u ut t t t t t t

v u v ut t t t

φ φ η η η η
η

η η η η η

− = − − − + + − − −
+

+ + + − − + − − +

+ + + − + +

 (2.120) 

 

 

( ) ( )

( ) ( )

( ) ( ) ( )

3 2
2 2 2

2 1 1

3 3
2 2 2 2

5 4 3 2
2 2 2 4 2 4

cos 1 3
3 3

1 3 2 3
3 3

1 3 2 15 15 1 20 30
15 15 15

v vuv uvt t t

v u vut t t t

v vu v ut t t t t t

λ λ φ η

η η

− = + − + + +

− + + + + +

+ + + + + − + +

 (2.121) 

 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

3 2
2 2 2 2 2 2 4

2 1

3 3
2 4 2 2 2 2 4 2 2 2

5 3 2 4
2 4 2 4 2 4

1 2 1 2 5 6 4
2 6 6

1 20 24 2 8 5 28 24 6 8
24 24

1 20 24 58 280 240 61 180 120
120 120 120

vu v vuvt t t t t t

v u vut t t t t t

v v u vut t t t t t t t t

α α π η η η η

η η η η

− + = + + + − + + + + + −

− + + + + + + + + +

+ + + − + + + + +

.

    (2.122) 
 
 The inverse solution can be obtained from these series by iteration.  We write equations 
(2.120) and (2.121) as 
 
 ( )2

2 1 1 u∆φ φ φ η δφ= − = + + , (2.123) 

 

 2 1
1cos

v∆λ λ λ δλ
φ

= − = + , (2.124) 
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where δφ  and δλ  are the residuals with respect to the first-order terms.  Now, solving for u  and 
v  we have 
 

 ( )12 , cos
1

u v∆φ δφ φ ∆λ δλ
η
−= = −
+

; (2.125) 

 
and, with equation (2.119), the equation for the forward-azimuth is 
 

 ( )1 1 2
1 1tan tan 1 cosv

u
∆λ δλα η φ
∆φ δφ

− −  −= = + − 
. (2.126) 

 
For the geodesic distance, we have a couple of choices, e.g., if 1 0α ≠ , then from equations 
(2.119) and (2.125) 
 

 ( )1 1
12

1

cos
sin

Ns φ ∆λ δλ
α

= − . (2.127) 

 
Both equations (2.126) and (2.127) are solved together by iteration with starting values obtained 
by initially setting ( )0 0δφ δφ≡ =  and ( )0 0δλ δλ≡ = : 
 

 ( ) ( ) ( )
( )

0 01 2 1 1
1 1 12 0

1

costan 1 cos ,
sin
Ns φ∆λα η φ ∆λ

∆φ α
−  = + = 
 

. (2.128) 

 
Then 
 

 ( ) ( )
( )

( )
( )

( )
( )( )

1
11 2 1 1

1 1 121 1
1

costan 1 cos , , 1,2,
sin

j
j j j

j j

Ns jφ∆λ δλα η φ ∆λ δλ
∆φ δφ α

−
−−

− −

 −= + = − =  − 
… . (2.129) 

 
Note that the updates ( )1jδφ −  and ( )1jδλ −  are computed using both ( )1

12
js −  and ( )1

1
jα − ; and, 

therefore, the iteration must be done in concert for both 12s  and 1α .  Also, 2α  is computed using 
the solution of the direct problem, (2.122), once 1α , u , and v  have been determined through the 
iteration.  The correct quadrant of the azimuth should be determined by inspecting the signs of u  
and v . 
 The iteration continues until the differences between consecutive values of 12s  and 1α  are 
smaller than some pre-defined tolerance.  Note however, that the accuracy of the result depends 
ultimately on the number of terms retained in δφ  and δλ .  Rapp (1991) reports that the accuracy 
of the fifth-order solutions is about 0.01 arcsec in the angles for distances of 200 km.  Again, it is 
noted that exact solutions exist, which are only marginally more complicated mathematically, as 
derived in Rapp (1992). 
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2.1.4.1  Problems 
 
1. Derive equations (2.110) through (2.112). 
 
2. Derive equations (2.116) and (2.118). 
 
3. Derive equations (2.120) through (2.122) up 
to second order in products of u and v. 
 
4. Consider an ellipsoidal triangle, 123∆ , with 
sides being geodesics of arbitrary length.  The 
following are given: lengths of sides, 12s  and 

13s , the angle, 1β , the latitude and longitude of 
point 1, ( )1 1,φ λ , and the azimuth, 12α  (see the 
Figure at the right and note the minor change in 
notation from the main text).  Provide a detailed 
procedure (i.e., what problems have to be solved 
and provide input and output to each problem 
solution) to determine the other two angles, 2β , 

3β , and the remaining side of the triangle, 23s . 
 
 
 
 

Pole

α12 s12

P1

P2

α23

P3

α21

s13

s23

β3

β2

β1

Pole

α12 s12

P1

P2

α23

P3

α21

s13

s23

β3

β2

β1

 
 
5. Provide an algorithm that ensures proper quadrant determination for the azimuth in the direct 
and inverse problems. 
 
6. For two points on an ellipsoid, with known coordinates, give a procedure to determine the 
constant in Clairaut’s equation for the geodesic connecting them. 
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2.1.5 Transformation Between Geodetic and Cartesian Coordinates 
 
We wish to transform from the geodetic coordinates, ( ), , hφ λ , for points in space and related to 
the ellipsoid, ( ),a f , to Cartesian coordinates, ( ), ,x y z , and vice versa.  It is assumed that the 
Cartesian origin is at the ellipsoid center and that the Cartesian coordinate axes are mutually 
orthogonal along the minor axis and in the equator of the ellipsoid.  Referring to Figure 2.15a, 
we see that 
 

 
cos
sin

x p
y p

λ
λ

=
=

 (2.130) 

 
where 2 2p x y= + .  Since also (compare with equation (2.47)) 
 
 ( )cosp N h φ= +  (2.131) 

 
from Figure 2.15b, it is easily seen that 
 
 ( )cos cosx N h φ λ= + , (2.132) 

 
 ( )cos siny N h φ λ= + . (2.133) 

 
Now, from equations (2.22) and (2.48), we also have: 
 
 ( )( )21 sinz N e h φ= − + . (2.134) 

 
In summary, given geodetic coordinates, ( ), , hφ λ , and the ellipsoid to which they refer, the 
Cartesian coordinates, ( ), ,x y z , are computed according to: 
 

 
( )
( )
( )( )2

cos cos
cos sin

1 sin

x N h
y N h
z N e h

φ λ
φ λ

φ

 +      = +        − + 

. . (2.135) 

 
It is emphasized that the transformation from geodetic coordinates to Cartesian coordinates 
cannot be done using equation (2.135) without knowing the ellipsoid parameters, including the 
presumptions on the origin and orientation of the axes.  These obvious facts are sometimes 
forgotten, but are extremely important when considering different geodetic datums and reference 
systems. 
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Figure 2.15: Geodetic latitude vs. Cartesian coordinates. 

 
 
 The reverse transformation from Cartesian to geodetic coordinates is somewhat more 
complicated.  The usual method is by iteration, but closed formulas also exist.  The longitude is 
easily computed from equations (2.130): 
 

 1tan y
x

λ −= . (2.136) 

 
The problem is in the computation of the geodetic latitude, but only for 0h ≠ .  From Figure 
2.15b, we find 
 

 ( )
2 2

sin
tan

N h

x y

φ
φ

+
=

+
. (2.137) 

 
From equation (2.134), there is 
 
 ( ) 2sin sinN h z Neφ φ+ = + ; (2.138) 

 
and, therefore, equation (2.137) can be re-written as 
 

 
2

1

2 2

sintan 1z e N
zx y

φφ −
  
 = +  +   

, (2.139) 
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for 0z ≠ .  If 0z = , then, of course, 0φ= .  Formula (2.139) is iterated on φ , with starting value 
obtained by initially setting 0h =  in equation (2.134) and substituting the resulting 

( )21 sinz N e φ= −  into equation (2.139): 
 

 ( )
2

0 1
22 2

tan 1
1

z e
ex y

φ −
  
 = +  −+   

. (2.140) 

 
Then, the iterations proceed as follows: 
 

 ( )
( ) ( )1 12

1

2 2

sintan 1 , 1, 2,
j j

j z e N j
zx y

φφ
− −

−
  
 = + =   +   

… , (2.141) 

 
where ( )1jN −  is the prime vertical radius of curvature for the latitude, ( )1jφ − .  The iteration 
continues until the difference between the new and old values of φ  is less than some pre-defined 
tolerance.  This procedure is known as the Hirvonen/Moritz algorithm.  Rapp (1991, p.123-
124)17 gives another iteration scheme developed by Bowring that converges faster.  However, the 
scheme above is also sufficiently fast for most practical applications (usually no more than two 
iterations are required to obtain mm-accuracy), and with today’s computers the rate of 
convergence is not an issue.  Finally, a closed (non-iterative) scheme has been developed by 
several geodesists; the one currently recommended by the International Earth Rotation and 
Reference Systems Service (IERS) is given by Borkowski (1989)18.  In essence, the solution 
requires finding the roots of a quartic equation. 
 Once φ  is known, the ellipsoid height, h , can be computed according to several formulas.  
From equations (2.131), we have 
 

 
2 2

, 90
cos
x y

h N φ
φ
+

= − ≠ °; (2.142) 

 
and, from equation (2.134), there is 
 

 ( )21 , 0
sin

zh N e φ
φ

= − − ≠ °. (2.143) 

 

                                                 
17 Rapp, R.H. (1991): Geometric Geodesy, Part I.  Lecture Notes, Department of Geodetic Science and Surveying, 

Ohio State University, Columbus, Ohio. http://hdl.handle.net/1811/24333 
18 Borkowski, K.M. (1989): Accurate algorithms to transform geocentric to geodetic coordinates. Bulletin 

Géodésique, 63, 50-56. 
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From Figure 2.16 and using simple trigonometric relationships (left to the reader), we find a 
formula that holds for all latitudes: 
 
 ( ) ( )0 0cos cos sin sinh p a z bβ φ β φ= − + − , (2.144) 

 
where 0β  is the reduced latitude for the projection, 0P , of P  onto the ellipsoid along the normal, 
and, therefore, can be determined from equation (2.23). 
 
 

2 2p x y= + P

h

z
0cosa β

0sinb β

P0

φ

2 2p x y= + P

h

z
0cosa β

0sinb β

P0

φ

 
Figure 2.16: Determination of h  from ( ), ,x y z  and φ . 
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2.1.5.1  Problems 
 
1. Derive equation (2.144). 
 
2. Show that the Cartesian coordinates, ( ), ,x y z , can be computed from given ellipsoidal 
coordinates, ( ), ,uβ λ , according to 
 

 

2 2

2 2

cos cos

cos sin
sin

x u E

y u E
z u

β λ

β λ
β

= +

= +
=

 (2.145) 

 
3. Show that the ellipsoidal coordinates, ( ), ,uβ λ , referring to an ellipsoid with linear 
eccentricity, E, can be computed from given Cartesian coordinates, ( ), ,x y z , according to 
 

 ( ) ( )

1

1 2
22 2 2 2 2 2

2 2
1

tan

1 1 4
2 2

tan

y
x

u r E r E E p

z u E
u p

λ

β

−

−

=

 = − + + − 
 

+=

 (2.146) 

 
where 2 2 2 2r x y z= + +  and 2 2 2p x y= + .  [Hint: Show that ( )2 2 2 2cosp u E β= +  and 

2 2 2sinz u β= ; and use these two equations to solve for 2u  and then β .] 
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2.2 Astronomic Coordinates 
 
Traditionally, for example with a theodolite, we make angular measurements (horizontal angles, 
directions, and vertical angles) with respect to the direction of gravity at a point, that is, with 
respect to the tangent to the local plumb line.  The direction of gravity at any point is determined 
naturally by the Earth’s somewhat arbitrary mass distribution and the plumb line is defined by 
this direction.  The direction of gravity changes from point to point, even along the vertical, 
making the plumb line a curved line in space, and we speak of the tangent to the plumb line at a 
point when identifying it with the direction of gravity.  Making such angular measurements as 
described above when the target points are the stars with known coordinates, in fact, leads to the 
determination of a type of azimuth and a type of latitude and longitude.  These latter terrestrial 
coordinates are known, therefore, as astronomic coordinates, or also natural coordinates because 
they are defined by nature (the direction of the gravity vector) and not by some adopted ellipsoid. 
 We start by defining a system for these coordinates.  The z -axis of this system is defined in 
some conventional way by the Earth’s spin axis.  Saving the details for Chapters 4, we note that 
the spin axis is not fixed relative to the Earth’s surface (polar motion) and, therefore, a mean z -
axis, as well as a mean x -axis are defined.  The mean axes are part of the IERS Terrestrial 
Reference System (ITRS), established and maintained by the International Earth Rotation and 
Reference Systems Service (IERS); the ITRS is also known as a Conventional Terrestrial 
Reference System (one that is established by international agreement).  The mean pole was 
known in the past as the Conventional International Origin (CIO); today, it is more appropriately 
referred to as the IERS (International) Reference Pole (IRP).  The plane that contains both the 
mean z -axis and x -axis is the mean Greenwich Meridian plane, or also the IERS (International) 
Reference Meridian plane. 
 We next define the astronomic meridian plane for any specific point, analogous to the 
geodetic meridian plane for points associated with the ellipsoid.  However, there is one essential 
and important difference.  The astronomic meridian plane is the plane that contains the tangent to 
the plumb line at a point and is (only) parallel to the z -axis.  Recall that the geodetic meridian 
plane contains the normal to the ellipsoid, as well as the minor axis of the ellipsoid.  The 
astronomic meridian plane does not, generally, contain the z -axis.  To show that this plane 
always exists, simply consider the vector at any point, P , that is parallel to the z -axis (Figure 
2.17).  This vector and the vector tangent to the plumb line together form a plane, the astronomic 
meridian plane, and it is parallel to the z -axis.  We also recall that the tangent to the plumb line 
does not intersect Earth’s center of mass (nor its spin axis) due to the arbitrary direction of 
gravity. 
 Now, the astronomic latitude, Φ , is the angle in the astronomic meridian plane from the 
equator (plane perpendicular to the z -axis) to the tangent of the plumb line.  And, the 
astronomic longitude, Λ , is the angle in the equator from the x -axis to the astronomic meridian 
plane.  The astronomic coordinates, ( ),Φ Λ , determine the direction of the tangent to the plumb 
line, just like the geodetic coordinates, ( ),φ λ , define the direction of the ellipsoid normal.  The 
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difference between these two directions at a point is known as the deflection of the vertical.  We 
will return to this angle in Chapter 3. 
 
 

P

x

y

g

Λ
Φ

astronomic meridian plane
(parallel to z-axis)

astronomic zenith
(tangent to plumb line)

parallel to z-axis
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x

y

g

Λ
Φ

astronomic meridian plane
(parallel to z-axis)

astronomic zenith
(tangent to plumb line)

parallel to z-axis

 
Figure 2.17: Astronomic meridian plane and astronomic coordinates. 

 
 
 To complete the analogy with previously defined geodetic quantities, we also consider the 
astronomic azimuth.  The astronomic azimuth is the angle in the astronomic horizon (the plane 
perpendicular to the tangent of the plumb line) from the northern half of the astronomic 
meridian, easterly, to the plane containing both the plumb line tangent and the target point (the 
vertical plane); see Figure 2.19.  Finally, the astronomic zenith angle (also known as the zenith 
distance) is the angle in the vertical plane from the tangent to the (outward) plumb line 
(astronomic zenith) to the target point.  We note that heights are not part of the astronomic 
coordinates, but that heights may be included in the definition of natural coordinates, where in 
this case the height is based on the geopotential; we will treat this later briefly in connection with 
vertical datums (Chapter 3). 
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2.2.1 Problems 
 
1. Provide a justification that, theoretically, two distinct points on a surface (like the ellipsoid, 
or geoid) could have the same astronomic latitude and longitude, Φ  and Λ . 
 
 
2. Determine which of the following would affect the astronomic coordinates of a fixed point 
on the Earth’s surface: i) a translation of the coordinate origin of the ( ), ,x y z  system; ii) a 
general rotation of the ( ), ,x y z  system.  Determine which of the following would be affected by 
a rotation about the z -axis: astronomic latitude, Φ ; astronomic longitude, Λ ; astronomic 
azimuth, A .  Justify your answers in all cases. 
 
 
3. Assume that the ellipsoid axes are parallel to the ( ), ,x y z  system.  Geometrically determine 
if the geodetic and astronomic meridian planes are parallel; provide a drawing with sufficient 
discussion to justify your answer.  What are the most general conditions under which these two 
planes would be parallel? 
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2.2.2 Local Terrestrial Coordinates 
 
This set of coordinates forms the basis for traditional three-dimensional geodesy and for close-
range, local surveys.  It is the local system in which we make traditional geodetic measurements 
of distance and angles, or directions, using distance measuring devices, theodolites, and 
combinations thereof (total station).  It is also still used for modern measurement systems, such 
as in photogrammetry, for local referencing of geospatial data, and in assigning directions for 
navigation.  The local coordinate system can be defined with respect to the local ellipsoid normal 
(local geodetic system) or the local gravity vector (local astronomic system).  The developments 
for both are identical, where the only difference in the end is the specification at one point of 
latitude and longitude, i.e., the direction of the vertical.  The local system is Cartesian, consisting 
of three mutually orthogonal axes; however, their principal directions do not always follow 
conventional definitions (in surveying the directions are north, east, and up; in navigation, they 
are north, east, and down, or north, west, and up). 
 For the sake of practical visualization, consider first the local astronomic system (Figure 
2.18).  The third axis, w , is aligned with the tangent to the plumb line at the local origin point, 
P , which is also the observer’s point.  The first axis, u , is orthogonal to w  and in the direction 
of north, defined by the astronomic meridian.  And, the second axis, v , is orthogonal to w  and 
u  and points east.  Note that ( ), ,u v w  are coordinates in a left-handed system.  Let Q  be a target 
point and consider the coordinates of Q  in this local astronomic system. 
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Figure 2.18: Local astronomic system, ( ), ,u v w . 
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Figure 2.19:  Local astronomic coordinates and measured quantities. 

 
 
 With reference to Figure 2.19, the measured quantities are the distance from P  to Q , 
denoted by PQc ; the astronomic azimuth of Q  at P , denoted PQA  (we will discuss later in 
Section 2.3 how to measure azimuths using astronomic observations); and the vertical angle of 
Q  at P , denoted, PQV .  The local Cartesian coordinates of Q  in the system centered at P  are 
given in terms of these measured quantities by 
 

 

cos cos

cos sin

sin

PQ PQ PQ PQ

PQ PQ PQ PQ

PQ PQ PQ

u c V A
v c V A
w c V

=

=

=

 (2.147) 
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Figure 2.20: The relationship between ( ), ,u v w  and ( ), ,x y z& & & . 

 
 
 Consider now a Cartesian coordinate system at P  that is parallel to the global ( ), ,x y z  
system (Figure 2.20); denote its axes, respectively, by x& , y& , and z& .  Note that the v -axis is 
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always in the plane generated by x&  and y&  since the ,u w -plane is perpendicular to the equator 
because of the definition of the meridian plane.  The Cartesian coordinates of the point Q  in this 
system are simply 
 

 
PQ PQ Q P

PQ PQ Q P

PQ PQ Q P

x x x x
y y y y
z z z z

∆
∆
∆

≡ = −

≡ = −

≡ = −

&
&
&

 (2.148) 

 
The relationship between the  and ( ), ,x y z& & &  systems is one of rotation and accounting for the 
different handedness of the two systems.  We can apply the following transformations to change 
from ( ), ,u v w coordinates to ( ), ,x y z& & &  coordinates: 
 

 ( ) ( )3 2

1 0 0
180 90 0 1 0

0 0 1

PQ PQ

PQ P P PQ

PQ PQ

x u
y R R v
z w

∆
∆ Λ Φ
∆

    
    = °− °− −    

        

, (2.149) 

 
where the right-most matrix on the right side of the equation transforms from a left-handed 
system to a right-handed system (only then can the rotation matrices be applied), and the rotation 
matrices are given by equations (1.5) and (1.6).  The resulting transformation is (left to the reader 
to verify): 
 

 
sin cos sin cos cos
sin sin cos cos sin

cos 0 sin

PQ P P P P P PQ

PQ P P P P P PQ

PQ P P PQ

x u
y v
z w

∆ Φ Λ Λ Φ Λ
∆ Φ Λ Λ Φ Λ
∆ Φ Φ

   − − 
    = −    

        

. (2.150) 

 
Therefore, substituting equation (2.147), we find 
 

 
sin cos sin cos cos cos cos
sin sin cos cos sin cos sin

cos 0 sin sin

PQ P P P P P PQ PQ PQ

PQ P P P P P PQ PQ PQ

PQ P P PQ PQ

x c V A
y c V A
z c V

∆ Φ Λ Λ Φ Λ
∆ Φ Λ Λ Φ Λ
∆ Φ Φ

   − − 
    = −    

        

, (2.151) 

 
which gives the transformation from measured quantities, ( ), ,PQ PQ PQc V A , to Cartesian 
coordinate differences in a global system, provided also astronomic latitude and longitude of the 
observer’s point are known. 
 It is remarkable that conventional determinations of astronomic latitude and longitude (see 
Section 2.3), as well as of astronomic azimuth, vertical angle, and distance can be used to 
determine these relative Cartesian coordinates – this is the basis for traditional three-dimensional 
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geodesy, that is, the computation of all three coordinates of points from terrestrial geometric 
measurements.  We note, again, that these determinations are relative, not absolute, where the 
latter can be obtained only by specifying the coordinates, ( ), ,P P Px y z , of the observer’s point in 
the global system.  Nowadays, of course, we have satellite systems that provide the three-
dimensional Cartesian coordinates virtually effortlessly in a global system.  Historically (before 
satellites), however, three-dimensional geodesy could not be realized very accurately because of 
the difficulty of obtaining the vertical angle without significant atmospheric refraction error.  
This is one of the principal reasons that traditional geodetic control for a country was separated 
into horizontal and vertical networks, where the latter is achieved by leveling (and is, therefore, 
not strictly geometric, but based on the geopotential). 
 The reverse transformation from ( ), ,PQ PQ PQx y z∆ ∆ ∆  to ( ), ,PQ PQ PQc V A  is easily obtained 
since the transformation matrix is orthogonal.  From equation (2.150), we have 
 

 

Tsin cos sin cos cos
sin sin cos cos sin

cos 0 sin

PQ P P P P P PQ

PQ P P P P P PQ

PQ P P PQ

u x
v y
w z

Φ Λ Λ Φ Λ ∆
Φ Λ Λ Φ Λ ∆
Φ Φ ∆

   − − 
    = −    

        

; (2.152) 

 
and, with equation (2.147), it is easily verified that 
 

 
sin cos

tan
sin cos sin sin cos

PQ PQ P PQ P
PQ

PQ PQ P P PQ P P PQ P

v x y
A

u x y z
∆ Λ ∆ Λ

∆ Φ Λ ∆ Φ Λ ∆ Φ
− +

= =
− − +

, (2.153) 

 

 ( )1sin cos cos cos sin sinPQ
PQ PQ P P PQ P P PQ P

PQ PQ

w
V x y z

c c
∆ Φ Λ ∆ Φ Λ ∆ Φ= = + + , (2.153) (2.154) 

 
 2 2 2

PQ PQ PQ PQc x y z∆ ∆ ∆= + + . (2.155) 

 
 Analogous equations hold in the case of the local geodetic coordinate system.  In this case 
the ellipsoid normal serves as the third axis, as shown in Figure 2.21, and the other two axes are 
mutually orthogonal and positioned similar to the axes in the local astronomic system.  We 
assume that the ellipsoid is centered at the origin of the ( ), ,x y z  system, and we designate the 
local geodetic coordinates by ( ), ,r s t .  It is easily seen that the only difference between the local 
geodetic and the local astronomic coordinate systems is the direction of corresponding axes, 
specifically the direction of the third axis; and, this is defined by the geodetic latitude and 
longitude.  This means that the analogues to equations (2.151) and (2.153) through (2.155) for 
the local geodetic system are obtained simply by replacing the astronomic coordinates with the 
geodetic latitude and longitude, Pφ  and Pλ : 
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sin cos sin cos cos cos cos
sin sin cos cos sin cos sin

cos 0 sin sin

PQ P P P P P PQ PQ PQ

PQ P P P P P PQ PQ PQ

PQ P P PQ PQ

x c v
y c v
z c v

∆ φ λ λ φ λ α
∆ φ λ λ φ λ α
∆ φ φ

   − − 
    = −    

        

, (2.156) 

 
where PQα  is the normal section azimuth and PQv  is the vertical angle in the normal plane of Q .  
The reverse relationships are given by 
 

 
sin cos

tan
sin cos sin sin cos

PQ P PQ P
PQ

PQ P P PQ P P PQ P

x y
x y z

∆ λ ∆ λ
α

∆ φ λ ∆ φ λ ∆ φ
− +

=
− − +

, (2.157) 

 

 ( )1sin cos cos cos sin sinPQ PQ P P PQ P P PQ P
PQ

v x y z
c

∆ φ λ ∆ φ λ ∆ φ= + + , (2.158) 

 
 2 2 2

PQ PQ PQ PQc x y z∆ ∆ ∆= + + . (2.159) 

 
The latter have application, in particular, when determining normal section azimuth, distance, 
and vertical angle (in the normal plane) from satellite-derived Cartesian coordinate differences 
between points (such as from GPS).  Note that the formulas hold for any point, not necessarily 
on the ellipsoid, and, again, that it is the normal section azimuth, not the geodesic azimuth in 
these formulas. 
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Figure 2.21: Local geodetic coordinate system. 
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2.2.2.1  Problems 
 
1. Derive equation (2.150). 
 
 
2. Show that the transformation from local geodetic to local astronomic coordinates (same 
origin point, P ) is given by 
 

 
( ) ( )

( ) ( )
( )

1 sin
sin 1 cos

cos 1

PQ P P P P P PQ

PQ P P P P P P PQ

PQ P P P P P PQ

u r
v s
w t

Λ λ φ Φ φ
Λ λ φ Λ λ φ
Φ φ Λ λ φ

   − − − − 
    = − − −    

    − −    

, (2.160) 

 
where second and higher powers in the differences, ( )P PΦ φ−  and ( )P PΛ λ− , have been 
neglected.  (Hint: the coordinates in the two systems have the same Cartesian differences.) 
 
 
3. Suppose the geodetic coordinates, ( ),P Pφ λ  and ( ),Q Qφ λ , of two points on the ellipsoid are 
given and the distance between them is under 200 km.  Develop a procedure to test the 
computation of the geodesic azimuths, PQα"  and QPα" , obtained by the solution to the inverse 
geodetic problem (Section 2.1.4).  Discuss the validity of your procedure also from a numerical 
viewpoint. 
 
 
4.a) Derive the following two equalities: 
 

 ( ) tan tan
tan

1 tan tan
PQ PQ PQ PQ PQ PQ

PQ PQ
PQ PQ PQ PQ PQ PQ

A r v s u
A

A r u s v
α

α
α

− −
− = =

+ +
. (2.161) 

 
 b) Now, show that to first-order approximation, i.e., neglecting second and higher powers in 
the differences, ( )P PΦ φ−  and ( )P PΛ λ− : 
 

 ( ) ( ) ( ) ( )2 2 2 2tan sin cosPQ PQ PQ PQ
PQ PQ P P P P P P P P

PQ PQ PQ PQ

s t r t
A

r s r s
α Λ λ φ Φ φ Λ λ φ− − + − − −

+ +
! . (2.162) 

(Hint: use equation (2.160).) 
 
 c) Finally, with the same approximation show that 
 
 ( ) ( ) ( )( )sin sin cos cos tanPQ PQ P P P P P PQ P P P PQ PQA vα Λ λ φ Φ φ α Λ λ φ α− − + − − −! . (2.163) 
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The latter is known as the (extended) Laplace condition, which will be derived from a more 
geometric perspective in Section 2.2.3. 
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2.2.3 Differences Between Geodetic and Astronomic Quantities 
 
As we will see in Section 2.3, the astronomic latitude, longitude, and azimuth are observable 
quantities based on a naturally defined and realized coordinate system, such as the astronomic 
system or the terrestrial reference system alluded to in Section 2.2.  These quantities also depend 
on the direction of gravity at a point (another naturally defined and realizable direction).  
However, the quantities we use for mapping purposes are the geodetic coordinates, based on a 
mathematically defined ellipsoid.  Therefore, we need to develop equations for the difference 
between the geodetic and astronomic coordinates (and azimuths), in order to relate observed 
quantities to mathematically and geographically useful quantities.  These equations will also be 
extremely important in realizing the proper orientation of one system relative to the other. 
 Already in Problem 2.2.2.1-4, the reader was asked to derive the difference between 
astronomic and geodetic azimuth.  We now do this using spherical trigonometry which also 
shows more clearly the differences between astronomic and geodetic latitude and longitude.  In 
fact, however, the latter differences are not derived, per se, and essentially are just given names, 
i.e., the components of the astro-geodetic deflection of the vertical, under the following 
fundamental assumption.  Specifically, we assume that the two systems, the astronomic (or 
terrestrial) and geodetic systems, are parallel, meaning that the minor axis of the ellipsoid is 
parallel to the z -axis of the astronomic system and the corresponding x -axes are parallel.  
Under this assumption we derive the difference between the azimuths.  Alternatively, we could 
derive the relationships under more general conditions of non-parallelism and subsequently set 
the orientation angles between axes to zero.  The result would obviously be the same, but the 
procedure is outside the present scope (we give the relevant equations in Section 3.1). 
 Figure 2.22 depicts the plan view of a sphere of unlimited radius as seen from outside, along 
the tangent to the plumb line or along the local astronomic coordinate axis, w , that is, from the 
astronomic zenith.  The origin of this sphere could be the center of mass of the Earth or the 
center of mass of the solar system, or even the observer’s location.  Insofar as the radius is 
unspecified, it may be taken as sufficiently large so that the origin, for present purposes, is 
immaterial.  We call this the celestial sphere; see also Section 2.3.  All points on this sphere are 
projections of radial directions and since we are only concerned with directions, the value of the 
radius is not important and may, as well, be assigned a value of 1 (unit radius), so that angles 
between radial directions are equivalent to great circle arcs on the sphere in terms of radian 
measure. 
 Clearly, the circle shown in Figure 2.22 is the (astronomic) horizon.  aZ  denotes the 
astronomic zenith, and gZ  is the geodetic zenith, being the projection of the ellipsoidal normal 
through the observer, P  (see Figure 2.21).  As noted earlier, the angular arc between the two 
zeniths is the astro-geodetic deflection of the vertical, Θ  (the deflection of the tangent to the 
plumb line from a mathematically defined vertical, the ellipsoid normal).  It may be decomposed 
into two angles, one in the south-to-north direction, ξ , and one in the west-to-east direction, η  
(Figure 2.23).  The projections of the astronomic meridian and the geodetic meridian intersect on 
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the celestial sphere because the polar axes of the two systems are parallel by assumption (even 
though the astronomic meridian plane does not contain the z -axis, the fact that both meridian 
planes are parallel to the z -axis implies that on the celestial sphere, their projections intersect in 
the projection of the north pole).  On the horizon, however, there is a difference, 1∆ , between 
astronomic and geodetic north. 
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Figure 2.22: Astronomic and geodetic azimuths. 
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Figure 2.23: Deflection of the vertical components. 
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 Now, the angle at the north pole between the meridians is ∆λ Λ λ= − , again, because the 
two systems presumably have parallel x -axes (common origin on the celestial sphere).  From the 
indicated astronomic and geodetic latitudes, we find by applying the law of cosines to the 
triangle gZ OF : 
 
 ( ) ( ) ( )cos 90 cos cos 90 sin sin 90 cos90φ η Φ ξ η Φ ξ°− = °− + + °− + °. (2.164) 

 
Since η  is a small angle (usually of the order of 10 arcsec), we have 
 
 ( )sin sinφ Φ ξ−! , (2.165) 

 
and hence 
 
 ξ Φ φ−! . (2.166) 
 
Applying the law of sines to the same triangle, gZ OF , one finds 
 

 ( )sin 90sin
sin sin 90

φη
∆λ

°−
=

°
; (2.167) 

 
and, with the same approximations, 
 
 ( )cosη Λ λ φ−! . (2.168) 

 
Thus, the north and east components, ξ  and η , of the deflection of the vertical are essentially 
the differences between the astronomic and the geodetic latitudes and longitudes, respectively. 
 The great circle arc, 'a au Q , in Figure 2.22 is the same as the astronomic azimuth, A , to the 
target point, Q , while the great circle arc (approximately, since the two zeniths are close), 'g gu Q , 
is the same as the geodetic (normal section) azimuth, α , of the target point.  Thus, from Figure 
2.22, we obtain: 
 
 ' '

1 2a a g gA u Q u Qα ∆ ∆− = − = + . (2.169) 
 
It remains to find expressions for 1∆  and 2∆ . 
 From the law of sines applied to triangle g au Ou , we find 
 

 1
1

sin sin sin
sin sin 90

∆ φ ∆ ∆λ φ
∆λ

= ⇒ =
°

, (2.170) 
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with the usual small-angle approximation.  Similarly, in triangle g aQ QQ , the law of sines yields 
 

 
( )2

2

sin 90sin cos
sin sin 90

g
g

z
p z

p
∆ ∆ ∆
∆

°−
= ⇒ =

°
. (2.171) 

 
Also, triangle aZ QH  (see also Figure 2.23) yields 
 

 ( ) ( )sin sin sin
sin sin sina a

p p
z z

∆ α α∆ ξ ε
ξ ε

= ⇒ = +
+

. (2.172) 

 
Finally, from the approximately planar triangle gZ FH  we obtain 
 

 ( )tan 180
ηε

α°−
! , (2.173) 

 
which could also be obtained by rigorously applying the laws of cosines and sines on the 
spherical triangle and making the usual small-angle approximations. 
 Substituting equations (2.172) and (2.173) into equation (2.171), we find 
 

 
( )
( )

2 sin cot

sin cos cot

z

z

∆ ξ ε α
ξ α η α

= +

= −
 (2.174) 

 
where the approximation g az z z! !  is legitimate because of the small magnitude of 2∆ .  We 
come to the final result by combining equations (2.170) and (2.174) with equation (2.169): 
 
 ( ) ( )sin sin cos cotA zα Λ λ φ ξ α η α− = − + − , (2.175) 
 
which, of course, in view of equations (2.166) and (2.168) is the same as equation (2.163).  
Equation (2.175) is known as the (extended) Laplace condition.  Again, it is noted that α  is the 
normal section azimuth.  The second term on the right side of equation (2.175) is the extended 
part that vanishes (or nearly so) for target point on (or close to) the horizon, where the zenith 
angle is 90° .  Even though this relationship between astronomic and geodetic azimuths at a point 
is a consequence of the assumed parallelism of the corresponding system axes, its application to 
observed astronomic azimuths, in fact, also ensures this parallelism, i.e., it is a sufficient 
condition.  This can be proved by deriving the equation under a general rotation between the 
systems and specializing to parallel systems.  The geodetic (normal section) azimuth, α , 
determined according to equation (2.175) from observed astronomic quantities is known as the 
Laplace azimuth. 
 The simple Laplace condition (for 90z = ° ), 
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 ( )sinA α Λ λ φ− = − , (2.176) 

 
describes the difference in azimuths that is common to all target points and is due to the non-
parallelism of the astronomic and geodetic meridian planes at the observer’s location (Figure 
2.22).  Interestingly, the simple Laplace condition is also the Bessel equation derived for 
geodesics, equation (2.95), which, however, is unrelated to the present context.  The second term 
in the extended Laplace condition (2.174) (for target points with non-zero vertical angle) 
depends on the azimuth of the target.  It is analogous to the error in angles measured by a 
theodolite whose vertical is out of alignment (leveling error). 
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2.2.3.1  Problems 
 
1. Suppose the geodetic system is rotated with respect to the astronomic system by the small 
angle, zω , about the polar axis.  Repeat all derivations and thus show that the components of the 
deflection of the vertical and the Laplace condition are now given by 
 

 ( )
( ) ( ) ( )( )

cos

sin sin cos cos cot
z

z zA z

ξ Φ φ
η Λ λ ω φ

α Λ λ ω φ Φ φ α Λ λ ω φ α

= −
= − −

− = − − + − − − −

 (2.177) 

 
 
2. Suppose that an observer measures the astronomic azimuth of a target.  Describe in review 
fashion all the systematic corrections that must be applied to obtain the corresponding geodesic 
azimuth of the target that has been projected (mapped) along the normal onto an ellipsoid whose 
axes are parallel to the astronomic system. 
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2.3 Celestial Coordinates 
 
In order to determine astronomic coordinates of points on the Earth, we make angular 
observations of stars relative to our location on the Earth and combine these measurements with 
the known coordinates of the stars.  Therefore, we need to understand how celestial coordinates 
are defined and how they can be related through terrestrial observations to the astronomic 
coordinates.  Later we will also discuss the orientation of the terrestrial coordinate systems with 
respect to inertial space and, again, we will have need of celestial coordinates. 
 For the moment, we deal only with directions, or angles, because all celestial objects that 
concern us (stars, quasars) are extremely distant from the observer on the Earth.  Thus, as in 
Section 2.2, we project the coordinate directions of observable objects, as well as general 
directions, radially onto the celestial sphere.  At the risk of being too repetitive, this is a fictitious 
sphere having infinite or arbitrary (e.g., unit) radius; and, formally the center of this sphere is at 
the center of mass of the solar system.  However, it can have any of a number of centers (e.g., the 
geocenter), where transformation from one to the other may or may not require a correction, 
depending on the accuracy required in our computations.  Certainly, this is of no consequence for 
the most distant objects in the universe, the quasars (quasi-stellar radio source).  The main point 
is that the celestial sphere should not rotate in time, meaning that it defines an inertial system (we 
ignore the effects of general relativity). 
 We introduce three coordinate systems: 1) the horizon system, in which we make our 
astronomic observations; 2) the equatorial, right ascension system, in which we define the 
celestial coordinates of objects; and 3) the equatorial, hour angle system, that connects 1) and 2).  
Each coordinate system is defined by mutually orthogonal axes that are related to naturally 
occurring directions; we need two such directions for each system.  Each system is either right-
handed, or left-handed. 
 
 
2.3.1 Horizon System 
 
The horizon system of coordinates is defined on the celestial sphere by the direction of local 
gravity and by the direction of Earth’s spin axis, intersecting the celestial sphere at the north 
celestial pole (NCP) (Figure 2.24).  (For the moment we assume that the spin axis is fixed to the 
Earth and in space; see Chapters 3 and 4 for a more precise definitions of the polar direction, 
both for terrestrial and for celestial systems.)  The positive third axis of the horizon system is the 
negative (upward) direction of gravity (the zenith is in the positive direction).  The first axis is 
defined as perpendicular to the third axis and in the astronomic meridian plane, positive 
northward.  And, the second axis is perpendicular to the first and third axes and positive 
eastward, so as to form a left-handed system.  The intersection of the celestial sphere with the 
plane that contains both the zenith direction and an object is called the vertical circle. 
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 The (instantaneous) coordinates of stars (or other celestial objects) in this system are the 
zenith angle and the astronomic azimuth.  These are also the observed quantities; however, 
instead of azimuth, one may observe only a horizontal angle with respect to some other 
accessible reference direction.  Both are “astronomic” in the sense of being an angle that is 
turned about the direction defined by the astronomic zenith.  The horizon system is fixed to the 
Earth and the coordinates of celestial objects change in time as the Earth rotates. 
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Figure 2.24: Horizon system. 

 
 
2.3.2 Equatorial, Right Ascension System 
 
The equatorial, right ascension system of coordinates is defined on the celestial sphere by the 
direction of Earth’s spin axis (the north celestial pole) and by the direction of the north ecliptic 
pole (NEP), both of which, again, are naturally defined directions.  Again, we assume the NEP to 
be fixed in space.  Figure 2.25 shows the (mean) ecliptic plane, which is the plane of the average 
Earth orbit around the sun.  The direction perpendicular to this plane is the north ecliptic pole.  A 
point where the ecliptic crosses the celestial equator on the celestial sphere is called an equinox; 
the vernal equinox, ϒ, is the equinox at which the sun crosses the celestial equator from south to 
north as viewed from the Earth.  It is the point on the Earth’s orbit when Spring starts in the 
northern hemisphere.  The angle between the celestial equator and the ecliptic is the obliquity of 
the ecliptic, ε , its value is approximately 23.44ε = ° . 
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 The first axis of the right ascension system is defined by the direction of the vernal equinox 
and the third axis is defined by the north celestial pole (NCP).  By definition these two axes are 
perpendicular since the vector defining the direction of the vernal equinox lies in the equatorial 
plane with respect to which the polar axis is perpendicular.  The second axis is perpendicular to 
the other two axes so as to form a right-handed system.  The intersection of the celestial sphere 
with the plane that contains both the third axis (NCP) and the object is called the hour circle of 
the object (Figure 2.26), the reason for which will become apparent in Section 2.3.3.  The right 
ascension system is assumed to be fixed in space, i.e., it is an inertial system in the sense that it 
does not rotate in space (again, this is made more precise in Chapter 4). 
 The coordinates of stars (or other celestial objects) in the right ascension system are the 
celestial coordinates: declination and right ascension.  Very much analogous to the spherical 
coordinates of latitude and longitude on the Earth, the declination, δ , is the angle in the plane of 
the hour circle from the equatorial plane to the object; and the right ascension, α , is the angle in 
the equatorial plane from the vernal equinox, counterclockwise (as viewed from the NCP), to the 
hour circle of the object (despite the same notation, no confusion should exist between right 
ascension and azimuth).  For geodetic applications, these coordinates for stars and other celestial 
objects are assumed given.  Since the right ascension system is fixed in space, so are the 
coordinates of objects that are fixed in space; stars do have lateral motion in this system and this 
must be known for precise work (see Section 4.2.1). 
 For later reference, we also define the ecliptic system which is a right-handed system with the 
same first axis (vernal equinox) as the right ascension system.  Its third axis, however, is the 
north ecliptic pole.  Coordinates in this system are the ecliptic latitude (angle in the ecliptic 
meridian from the ecliptic to the celestial object), and the ecliptic longitude (angle in the ecliptic 
from the vernal equinox to the ecliptic meridian of the celestial object). 
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Figure 2.25: Mean ecliptic plane (seasons are for the northern hemisphere). 
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Figure 2.26: Equatorial, right ascension system. 

 
 
2.3.3 Equatorial, Hour Angle System 
 
The equatorial, hour angle system of coordinates is introduced as a link between the horizon 
system, in which observations are made, and the right ascension system, in which coordinates of 
observed objects are given.  As with the previous systems, the hour angle system is defined by 
naturally occurring directions: the direction of Earth’s spin axis (NCP) which is the third axis of 
the system, and the local direction of gravity which together with the NCP defines the 
astronomic meridian plane.  The first axis of the system is the intersection of the astronomic 
meridian plane with the celestial equatorial plane; and, the second axis is perpendicular to the 
other two axes and positive westward, so as to form a left-handed system (Figure 2.27).  As in 
the case of the horizon system, the hour angle system is fixed to the Earth. 
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Figure 2.27: Equatorial, hour angle system. 

 
 
 The (instantaneous) coordinates of stars (or other celestial objects) in this system are the 
declination (the same as in the right ascension system) and the hour angle.  The hour angle, t , 
that gives this system its name, is the angle in the equatorial plane from the local astronomic 
meridian to the hour circle of the celestial object.  It is reckoned clockwise as viewed from the 
NCP and increases with time.  In fact, it changes by 360°  with a complete rotation of the Earth 
with respect to inertial space for objects fixed on the celestial sphere (note that the declination 
remains constant as the Earth rotates – assuming the direction of the spin axis remains fixed; it 
does not, as we will see in Chapter 4). 
 
 
2.3.4 Coordinate Transformations 
 
Transformations between coordinates of the horizon and right ascension systems can be 
accomplished with rotation matrices, provided due care is taken first to convert the left-handed 
horizon system to a right-handed system.  We take another approach that is equally valid and 
makes use of spherical trigonometry on the celestial sphere.  Consider the so-called astronomic 
triangle (Figure 2.28) whose vertices are the three important points on the celestial sphere 
common to the two systems: the north celestial pole, the zenith, and the star (or other celestial 
object).  It is left to the reader to verify that the labels of the sides and angles of the astronomic 
triangle, as depicted in Figure 2.28, are correct (the parallactic angle, p , will not be needed).  
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Using spherical trigonometric formulas, such as the law of sines, equation (1.1), and the law of 
cosines, equation (1.2), it is also left to the reader to show that the following relationship holds: 
 

 
sin cos sin 0 cos cos cos
sin sin 0 1 0 cos sin

cos cos 0 sin sin

z A t
z A t

z

Φ Φ δ
δ

Φ Φ δ

−    
    = −    
    
    

. (2.178) 

 
The matrix on the right side is orthogonal, so that the following inverse relationship also holds 
 

 
cos cos sin 0 cos sin cos
cos sin 0 1 0 sin sin

sin cos 0 sin cos

t z A
t z A

z

δ Φ Φ
δ
δ Φ Φ

−    
    = −    
    
    

. (2.179) 
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Figure 2.28: Astronomic triangle on the celestial sphere. 
 
 
 Figure 2.29 completes the transformation between systems by showing the relationship 
between the right ascension and the hour angle.  Because the hour angle also is a measure of 
Earth’s rotation with respect to a reference on the celestial sphere, we identify the hour angle 
with a type of time, specifically sidereal time (we will discuss time in more detail in Chapter 5).  
We define: 
 
  hour angle of the vernal equinox =    (LST)t local sidereal timeϒ =  . (2.180) 
 
It is a local time since it applies to the astronomic meridian of the observer.  Clearly, from Figure 
2.29, we have for an arbitrary celestial object with right ascension, α , and hour angle, t : 
 
 LST tα= + . (2.181)  
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We note that 24 hours of sidereal time is the same as 360 degrees of hour angle.  Also, the hour 
angle of the vernal equinox at the Greenwich meridian, Gtϒ , is known as Greenwich Sidereal 
Time (GST). 
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Figure 2.29: Transformation between right ascension and hour angle systems. 

 
 
2.3.5 Determination of Astronomic Coordinates and Azimuth 
 
The following is a very much abbreviated discussion of the determination of astronomic 
coordinates, ( ),Φ Λ , and astronomic azimuth, A , from terrestrial observations of stars.  For 
more details the interested reader is referred to Mueller (1969)19.  In the case of astronomic 
latitude, Φ , we consider the case when a star crosses the local astronomic meridian of the 
observer.  Then the hour angle of the star is 0t = ° , and according to Figure 2.28, we have simply 
 

 
90 90
90 90

N N N N

S S S S

z z
z z

Φ δ Φ δ
δ Φ Φ δ

°− = °− + ⇒ = −
°− = °− + ⇒ = +

 (2.182) 

 
where Nδ , Sδ  and Nz , Sz  refer to the declinations and zenith angles of stars passing to the north, 
respectively south, of the zenith.  The declinations of the stars are assumed given and the zenith 
angles are measured.  Combining these, the astronomic latitude of the observer is given by 
 

                                                 
19 Mueller, I.I (1969): Spherical and Practical Astronomy as Applied to Geodesy.  Frederick Ungar Publishing Co., 

New York. 
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 ( ) ( )1 1
2 2N S N Sz zΦ δ δ= + − − . (2.183) 

 
The reason for including stars on both sides of the zenith is that atmospheric refraction in the 
observed zenith angle will tend to cancel in the second term in equation (2.183) if the 
corresponding zenith angles are approximately equal.  Also, it can be shown (Problem 2.3.6-2) 
that knowing where the astronomic meridian is (i.e., knowing that 0t = ° ) is not a critical factor 
when measuring the zenith angle of a star at its culmination (the point of maximum elevation 
above the horizon, which the star attains as it crosses the meridian). 
 Determining the astronomic longitude of an observer requires that a reference meridian be 
established (the reference for latitudes is the equator which is established by nature).  
Historically, this is the meridian through the Greenwich Observatory near London, England.  The 
longitude of an observer at any other point is simply the difference between LST and GST (see 
Figure 2.29): 
 
 LST GSTΛ = − . (2.184) 
 
If we wait until a star crosses the local astronomic meridian, when 0t = ° , then from equation 
(2.181) LST α= , where the right ascension of the star must be given.  Alternatively, using the 
law of cosines applied to the astronomic triangle (Figure 2.28), we can calculate the hour angle 
for any sighting of a star by measuring its zenith angle and having already determined the 
astronomic latitude: 
 

 cos sin sincos
cos cos
zt Φ δ
Φ δ
−= . (2.185) 

 
It can be shown (Problem 2.3.6-3) that errors in the zenith measurement and the astronomic 
latitude have minimal effect when the star is observed near the prime vertical.  With t  thus 
calculated, the LST is obtained, again, from equation (2.181) and the known right ascension of 
the observed star. 
 Either way, with the hour angle known or calculated, one needs a reference for longitudes, 
and this is provided by the GST.  It means that the observer must have a clock (chronometer) that 
keeps Greenwich Sidereal Time which is recorded at the moment of observation. 
 The determination of astronomic azimuth is less straightforward and can be accomplished 
using either a calculation of the hour angle from a time measurement or the measurement of the 
zenith angle.  For the first case, the hour angle, t , of a star can be calculated using equation 
(2.181), where LST is determined from equation (2.184) based on a previous determination of 
the observer’s longitude and a recording of GST at the moment of observation.  Now, from 
equation (2.178), we have 
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 sintan
sin cos cos tanS

tA
tΦ Φ δ

=
−

, (2.186) 

 
where SA  is the (instantaneous) astronomic azimuth of the star at the time of observation.  The 
observer’s astronomic latitude and, as always, the declination and right ascension of the star are 
assumed to be given. 
 Alternatively, using a star’s observed zenith angle, we find its astronomic azimuth from the 
law of cosines applied to the astronomic triangle (Figure 2.28): 
 

 sin sin coscos
cos sinS

zA
z

δ Φ
Φ

−= . (2.187) 

 
This does not require a determination of the hour angle (hence no longitude and recording of 
GST), but is influenced by refraction errors in the zenith angle measurement. 
 Of course, z  or t  and, therefore, SA  will change if the same star is observed at a different 
time.  To determine the astronomic azimuth of a terrestrial target, Q , we first set up the 
theodolite (a telescope that rotates with respect to vertical and horizontal graduated circles) so 
that it sights Q .  Then at the moment of observing the star (with the theodolite), the horizontal 
angle, D , between the target and the vertical circle of the star is also measured.  The astronomic 
azimuth of the terrestrial target is given by 
 
 Q SA A D= − . (2.188) 

 
Having established the astronomic azimuth of a suitable, fixed target, one has also established, 
indirectly, the location of the local astronomic meridian – it is the vertical circle at a horizontal 
angle, QA , counterclockwise (as viewed from the zenith) from the target. 
 
 



 
Geometric Reference Systems 2 - 71 Jekeli, January 2012 

 
 

2.3.6  Problems 
 
1. Derive equation (2.178). 
 
 
2. a) Starting with the third component in equation (2.178), and also using the first component, 
show that (assuming 0dδ = ) 
 

 tan cos
cos

dzd A dt
A

Φ Φ= − − . (2.189) 

 
 b) Determine the optimal azimuth for the observation of a star so as to minimize the error in 
calculating the astronomic latitude due to errors in the zenith angle measurement and in the 
determination of the hour angle. 
 
 
3. a) As in Problem 2, use equation (2.178) and other relationships from the astronomic 
triangle to show that 
 

 cot
sin cos cos

dz Adt d
A

Φ
Φ Φ

= − − . (2.190) 

 
 b) Determine the optimal azimuth for calculating a star’s hour angle so as to minimize the 
error in calculating the astronomic longitude due to errors in the zenith angle measurement and 
in the determination of the astronomic latitude. 
 
 
4.a) As in Problem 2, use equation (2.178) and further trigonometric relations derived from 
Figure 2.28, to show that 
 

 cos cos cot sin
sinS S
pdA dt z A d

z
δ Φ= + , (2.191) 

 
where p  is the parallactic angle. 
 b) Determine optimal conditions (declination of the star and azimuth of observation) to 
minimize the error in the determination of astronomic azimuth due to errors in the calculations of 
hour angle and astronomic latitude. 
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5.a) From equation (2.187), show that 
 
 ( ) ( )sin cot cos tan tan cos cotS S S SA dA z A d A z dzΦ Φ Φ= − − − . (2.192) 

 
 b) Show that the effect of a latitude error is minimized if the hour angle is 90t = °  or 

270t = ° ; and that the effect of a zenith angle error is minimized when the parallactic angle is 
90p = ° . 
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Chapter 3 
 

Terrestrial Reference Systems 
 
 
Geodetic control at local, regional, national, and international levels has been revolutionized by 
the advent of satellite systems that provide accurate positioning capability to terrestrial observers 
at all scales, where, of course, the Global Positioning System (GPS) has had the most significant 
impact.  The terrestrial reference systems and frames for geodetic control have evolved 
correspondingly over the last few decades.  Countries and continents around the world are 
revising, re-defining, and updating their fundamental networks to take advantage of the high 
accuracy, the ease of establishing and densifying the control, and critically important, the 
uniformity of the accuracy and the connectivity of the control that can be achieved basically in a 
global setting. 
 We will consider these reference systems, from the traditional to the modern, where it is 
discovered that the essential concepts hardly vary, but the implementation and utility clearly 
have changed with the tools that have become available.  Even though the traditional geodetic 
reference systems have been or are in the process of being replaced by their modern counterparts 
in many economically developed regions, they are still an important component for many other 
parts of the world.  It is important, therefore, to understand them and how they relate to the 
modern systems. 
 We begin with the definition of the geodetic datum.  Unfortunately, the definition is neither 
consistent nor explicit in the literature and is now even more confusing vis-à-vis the more precise 
definitions of reference system and reference frame (Section 1.2).  The National Geodetic Survey 
(NGS, 1986)1, defines the geodetic datum as “a set of constants specifying the coordinate system 
used for geodetic control, i.e., for calculating coordinates of points on the Earth.”  The definition 
given there continues with qualifications regarding the number of such constants under 

                                                 
1 NGS (1986): Geodetic Glossary. National Geodetic Survey, National Oceanic and Atmospheric Administration 

(NOAA), Rockville, MD. 
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traditional and modern implementations (which tends to confuse the essential definition and 
reduces it to specialized cases rather than providing a conceptual foundation).  Other sources are 
less deliberate, and add no clarification.  For example, Torge (1991)2 states that a geodetic datum 
“defines the orientation of a conventional [coordinate] system with respect to the global , ,X Y Z -
system, and hence, with respect to the body of the earth.”  Moritz (1978)3, the title of his paper 
notwithstanding, only states that a geodetic datum “is usually defined in terms of five parameters 
...”; Ewing and Mitchell (1970)4 are also vague about the definition: “a geodetic datum is 
comprised of an ellipsoid of revolution fixed in some manner to the physical earth”; while 
Bomford (1980)5 states that a datum is the ellipsoid and/or the three coordinates of an origin 
point relative to the ellipsoid.  Finally, Rapp (1992)6 attempts to bring some perspective to the 
definition by giving a “simple definition” for a horizontal datum, which is analogous to the 
discussion by Moritz. 
 All of these endeavors to define a geodetic datum are targeted toward the horizontal geodetic 
datum (i.e., for horizontal geodetic control).  We will provide a more systematic definition of the 
geodetic datum and try to relate these to those of reference systems and frames given earlier.  
The NGS definition, in fact, provides a reasonably good basis.  Thus: 
 
A Geodetic Datum is a set of parameters and constants that defines a coordinate system, 
including its origin and (where appropriate) its orientation and scale, in such a way as to make 
these accessible for geodetic applications. 
 
This general definition may be used as a starting point for defining traditional horizontal and 
vertical datums.  It conforms to the rather vaguely stated definitions found in the literature and 
certainly to the concepts of the traditional datums established for geodetic control.  Note, 
however, that the definition includes both the definition of a system of coordinates and its 
realization, that is, the frame of coordinates.  Conceptually, the geodetic datum defines a 
coordinate system, but once the parameters that constitute a particular datum are specified, it 
takes on the definition of a frame.  Because of the still wide usage of the term, we continue to 
talk about the geodetic datum as defined above, but realize that a more proper foundation of 
coordinates for geodetic control is provided by the definitions of reference system and reference 
frame.  In fact, the word “datum” by itself still formally connotes the definition of parameters for 
the origin, orientation, and scale of a system, and thus is more closely associated with its frame.  

                                                 
2 Torge, W. (1991): Geodesy, Second Edition. Walter deGruyter, Berlin. 
3 Moritz, H. (1978): The definition of a geodetic datum. Proceedings of the Second International Symposium on 

Problems Related to the Redefinition of North American Geodetic Networks, 24-28 April 1978, Arlington, VA, 
pp.63-75, National Geodetic Survey, NOAA. 

4 Ewing, C.E., Mitchell, M.M. (1970): Introduction to Geodesy. Elsevier Publishing Co., Inc., New York. 
5 Bomford, G. (1971): Geodesy, 3rd edition. Oxford University Press. 
6 Rapp, R.H. (1992): Geometric Geodesy, Part II. Lecture Notes, Department of Geodetic Science and Surveying, 

Ohio State University, Columbus, OH. http://hdl.handle.net/1811/24409 
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Indeed, the IERS extends the datum to include also temporal rates of change of these 
fundamental parameters (see Section 3.3). 
 It is now a simple matter to define the traditional geodetic datum for horizontal and vertical 
control: 
 
A horizontal geodetic datum is a geodetic datum for horizontal geodetic control in which points 
are mapped onto a specified ellipsoid. 
 
A vertical geodetic datum is a geodetic datum for vertical geodetic control in which points are 
mapped to the geopotential. 
 
The horizontal datum is two-dimensional in the sense that two coordinates, latitude and 
longitude, are necessary and sufficient to identify a point; however, the geometry of the surface 
on which these points are mapped is such that its realization, or accessibility, requires a three-
dimensional conceptualization.  The vertical datum, on the other hand, is one-dimensional and 
requires the value of but a single parameter, the origin point, to be realizable.  We will not 
discuss vertical datums at length in these notes (however, see Section 3.5). 
 
 
 
3.1 Horizontal Geodetic Datum 
 
The definition of any terrestrial coordinate system requires the specification of its origin and its 
orientation with respect to the Earth.  If geodetic coordinates are used one must specify in 
addition the ellipsoid to which they refer.  For three-dimensional systems, we will see later that 
scale is also important; however, for horizontal systems describing only the angles, latitude and 
longitude, the coordinate system scale is not as critical since it is basically associated with 
heights.  It is noted that scale parameters associated with horizontal distance measurements are 
part of the instrument error models, not part of the coordinate system scale.  Therefore, the 
definition of the traditional horizontal geodetic datum is based on eight parameters: three to 
define its origin, three to define its orientation, and two to define the ellipsoid.  More than that, 
however, the definition of the datum requires that these coordinate system attributes be 
accessible; that is, for its practical utilization, the coordinate system must be realized as a frame. 
 The origin could be defined by placing the ellipsoid center at the center of mass of the Earth.  
This very natural definition had one important defect before the existence of observable artificial 
satellites — this origin was not accessible with sufficient accuracy.  In addition, the ellipsoid 
thus positioned relative to the Earth rarely “fit” the region in which geodetic control was to be 
established.  By a good fit we mean that the ellipsoid surface should closely approximate a 
regional reference surface for heights - the geoid, or approximately mean sea level.  This was 
important in the past since observations on the surface of the Earth need to be reduced to the 
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ellipsoid, and the height required to do this was only known (measurable) with respect to the 
geoid.  Therefore, a good fit of the ellipsoid to the geoid implied that the difference between 
these two surfaces regionally was not as important, or might be neglected, in the reduction of 
observations.  Nevertheless, it should be recognized that the neglect of the geoid, even with a 
good fit, can produce systematic errors of the order of a meter, or more, that certainly with 
today’s accuracy requirements are very significant. 
 The alternative definition of the “origin” places the ellipsoid with respect to the Earth such 
that a specific point on the Earth’s surface has given (i.e., specified or defined) geodetic 
coordinates.  This datum origin point, also called the initial datum point, is then obviously 
accessible – it is a monumented marker on the Earth’s surface (see Figure 3.1). 
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Figure 3.1: Datum origin point. 

 
 
 The only logical definition of the orientation of the datum is to make the ellipsoid axes 
parallel to the fundamental astronomic (conventional terrestrial reference) system (Section 2.2); 
indeed, this is how the orientation is always defined.  The three parameters associated with the 
orientation could be the angles, ( ), ,x y zω ω ω , between the ellipsoidal and the ( ), ,x y z -axes of the 
astronomic system; their values would be zero in order to enforce the parallelism: 
 
 0, 0, 0x y zω ω ω= = = . (3.1) 

 
The definition of orientation is thus simple enough, but the practical realization of this condition 
is less straightforward.  In Section 2.2.3 we developed the relationships between astronomic and 
geodetic quantities under the assumption that the two systems are parallel and that, basically, 
they are concentric (i.e., the placement of the origin was considered to have no effect).  In 
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particular, we found that the astronomic and geodetic azimuths are related by Laplace’s 
condition, (2.175) with (2.166) and (2.168): 
 
 ( ) ( ) ( )( )sin sin cos cos cotA zα Λ λ φ Φ φ α Λ λ φ α− = − + − − − . (3.2) 

 
In addition, we found that the components of the astro-geodetic deflection of the vertical could 
be expressed simply as (essentially) the differences in astronomic and geodetic latitude and 
longitude: 
 

 ( )cos
ξ Φ φ
η Λ λ φ

= −
= −

 (3.3) 

 
Equations (3.2) and (3.3) are necessary and sufficient for the two systems to be parallel. 
 If they were not parallel, each equation would contain additional terms involving the angles 
( ), ,x y zω ω ω   It is outside the scope of this exposition to derive the following formulas; however, 
they may be found, in some fashion, in (Heiskanen and Moritz, 1967, p.213)7 and (Pick et al., 
1973, p.436)8; see also the analogous polar motion equations for the astronomic coordinates and 
azimuth (Section 4.3.1).  Neglecting second-order terms in the small rotation angles, 
( ), ,x y zω ω ω , the geodetic coordinates and azimuth become 
 
 rot sin cosx yφ φ ω λ ω λ= − + , (3.4) 
 
 ( )rot cos sin tanx y zλ λ ω λ ω λ φ ω= + + − , (3.5) 
 
 ( )rot cos sin secx yα α ω λ ω λ φ= + + , (3.6) 
 
where ( ),φ λ  and α  refer to the geodetic coordinates and azimuth for the non-rotated ellipsoid, 

and ( )rot rot,φ λ  and rotα  are corresponding quantities when the ellipsoid is rotated about its 
center.  The astro-geodetic deflections, ξ  and η  (equations (3.3)) at a given point with respect to 
a rotated ellipsoid then become: 
 
 rot sin cosx yξ Φ φ ω λ ω λ= − − + , (3.7) 

 
 ( ) ( )rot cos cos sin sin cosx y zη Λ λ φ ω λ ω λ φ ω φ= − + + − ; (3.8) 

 

                                                 
7 Heiskanen, W.A., Moritz, H. (1967): Physical Geodesy, Freeman and Co., San Francisco. 
8 Pick, M., Picha, J., Vyskocil, V. (1973): Theory of the Earth’s Gravity Field, Elsevier Scientific Publ. Co., 

Amsterdam. 
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and the azimuth, rotα , with respect to the rotated meridian becomes 

 

( ) ( ) ( )( )
( ) ( )( )( )

( )

rot rot rot rotsin sin cos cos cot

sin cos sin cos sin sin cos cos cot

cos sin cos sin

x y x y z

x y z

A z

z

α Λ λ φ Φ φ α Λ λ φ α

ω λ ω λ α ω λ ω λ φ ω φ α

ω λ ω λ φ ω φ

= − − − − − −

− − + − + −

+ + +

 (3.9) 

 
 To first order, the non-parallelism effect is independent of a potential origin off-set, 
( ), ,x y z∆ ∆ ∆ .  While the deflection of the vertical does not change at a point (in first-order 

approximation) due to a small rotation of the ellipsoid (but the way it is computed does change 
as seen in equations (3.4) and (3.5)), it does change with a displacement of the ellipsoid, since 
the ellipsoid normal through the point changes direction.  Since, after displacement, the ellipsoid 
is still parallel to the astronomic system, equations (3.3) and (3.2) hold for the new deflection 
components and the geodetic azimuth.  Neglecting effects due to the ellipsoidal eccentricity (i.e., 
using the mean Earth radius, R, equation (2.64)), we find 
 

 
dis dis

sin cos sin cosx y z
R R R

ξ Φ φ
∆ ∆ ∆Φ φ φ λ λ φ

= −

 = − + + − 
 

 (3.10) 

 

 
( )

( )
dis dis cos

cos sin cosx y
R R

η Λ λ φ
∆ ∆Λ λ φ λ λ

= −

 = − + − 
 

 (3.11) 

 

 

( ) ( ) ( )( )dis dis dis dissin sin cos cos cot

tan sin cos

sin cos sin cos sin sin cos cos cot

A z

x y
R R

x y z x y z
R R R R R

α Λ λ φ Φ φ α Λ λ φ α

∆ ∆α φ λ λ

∆ ∆ ∆ ∆ ∆φ λ λ φ α λ λ α

= − − − − − −

 = + − + 
 

     − + − − −          

(3.12) 

 
where dis dis,φ λ  are geodetic coordinates that refer to an ellipsoid with its center displaced by 

( ), ,x y z∆ ∆ ∆  from the geocenter.  

 When computing the geodetic azimuth of a target, Q , from the origin point, it should be 
computed according to equation (3.2) as follows to ensure the parallelism of the astronomic and 
geodetic systems: 
 
 ( ) ( ) ( )( )0, 0, 0 0 0 0 0, 0 0 0 0, 0,sin sin cos cos cotQ Q Q Q QA zα Λ λ φ Φ φ α Λ λ φ α= − − − − − − , (3.13) 
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where the coordinates, ( )0 0,φ λ , have already been chosen, and the quantities, ( )0 0 0,, , QAΦ Λ , 
have been observed (i.e., they are not arbitrary, but are defined by nature); see also Section 2.2.3.  
The zenith angle, 0,Qz , is also obtained by observation.  It is sometimes stated that the Laplace 
azimuth, 0,Qα , at the origin is a parameter of the horizontal geodetic datum.  However, we see 
with equation (3.13), that, in fact, this is not a parameter in the sense that it is given an arbitrarily 
specified value.  Only by computing the geodetic (Laplace) azimuth according to equation (3.2) 
can one be assured that the datum is realized as being parallel to the astronomic system.  In 
theory, only one Laplace azimuth in a geodetic network is necessary to ensure the parallelism; 
but, in practice, several are interspersed throughout the region to reduce the effect of observation 
error (Moritz, 1978)9.  That is, a single error in azimuth propagates in a systematic way through 
the network, causing significant rotational distortions, unless controlled by other azimuth 
observations and correspondingly computed Laplace azimuths elsewhere in the network. 
 The coordinates, ( )0 0 0, ,hφ λ , of the origin point can be chosen arbitrarily, but usually they 
are determined under an imposed additional condition that the separation between the ellipsoid 
and the geoid in the particular region should be minimized.  In the former case, one could choose 
 
 0 0 0 0 0 0, , h Hφ Φ λ Λ= = = , (3.14) 
 
where 0H  is the height of the origin point above the geoid (the orthometric height); this is a 
measurable quantity, again defined by nature.  With the choice, given by equations (3.14), we see 
that the deflection of the vertical, equations (3.3), at the origin point is zero (the normal to the 
ellipsoid is tangent to the plumb line at this point), and the ellipsoid/geoid separation (the geoid 
height, or geoid undulation, 0N ) at this point is also zero.  Alternatively, we could also specify 
the deflection of the vertical and geoid undulation at the origin point: ( )0 0 0, , Nξ η .  Then the 
geodetic latitude, longitude and ellipsoidal height of the origin point are given by (see also 
Figure 3.2) 
 

 0
0 0 0 0 0 0 0 0

0

, ,
cos

h H Nηφ Φ ξ λ Λ
φ

= − = − = + , (3.15) 

 
which also helps ensure the parallelism of the geodetic and astronomic systems, because the first 
two equations are based on equations (3.3). 
 
 

                                                 
9 Moritz, H. (1978): The definition of a geodetic datum. Proceedings of the Second International Symposium on 

Problems Related to the Redefinition of North American Geodetic Networks, 24-28 April 1978, Arlington, VA, 
pp.63-75, National Geodetic Survey, NOAA. 
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Figure 3.2: Geoid undulation, 0N , at the origin point, in general. 

 
 
 To summarize, the horizontal geodetic datum as a reference system is defined as a system of 
coordinates referring to an ellipsoid, with specified parameters (e.g., ,a f ), whose origin is fixed 
to the Earth in some prescribed way (e.g, by “attaching” the ellipsoid to a monument on the 
Earth’s surface), and whose orientation is defined with respect to the astronomic system, always 
by equation (3.1).  The datum as a reference frame is realized by the three origin point 
coordinates (as illustrated above), and the three orientation parameters indirectly through the 
utilization of equations (3.2) and (3.3) at all points in the network where astronomic observations 
are related to geodetic quantities.  Here the azimuth plays the most critical role in datum 
orientation. 
 
 
3.1.1 Examples of Horizontal Geodetic Datums 
 
Table 3.1, taken from (Rapp, 1992)10, lists many of the horizontal geodetic datums of the world 
(not all are still in service).  NIMA (1997)11 also lists over 100 datums (however, without datum 
origin point parameters).  Note that the datum origin coordinates (Table 3.1) were chosen either 
according to equations (3.14) or (3.15), or by minimizing the deflections or the geoid undulations 
(geoid heights) over the region of horizontal control; or, they were simply adopted from a 
previous network adjustment.  Again, it is beyond the present scope to explore the details of 
these minimization procedures and adjustments. 
 
 

                                                 
10 Rapp, R.H. (1992): Geometric Geodesy, Part II. Lecture Notes, Department of Geodetic Science and Surveying, 

Ohio State University, Columbus, OH. http://hdl.handle.net/1811/24409 
11 NIMA (1997): Department of Defense World Geodetic System 1984, Its Definition and Relationships with Local 

Geodetic Systems. Technical report TR8350.2, third edition, National Imagery and Mapping Agency, 
Washington, D.C. 
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Table 3.1: Selected Horizontal Geodetic Datums12. 

                                                 
12 NASA (1978): Directory of Station Locations, 5th ed., Computer Sciences Corp., Silver Spring, MD. 
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3.1.2 Problems 
 
1. Describe a step-by-step procedure to compute the geodetic latitudes and longitudes of points 
in a network of measured horizontal angles and straight-line distances.  Use diagrams and 
flowcharts to show how the coordinates could be computed from the coordinates of other points 
and the measurements (hint: direct problem!).  Assume that the astronomic coordinates are 
observed at every point, but that the astronomic azimuth is observed only at the origin point.  We 
already discussed all corrections needed to transform observed azimuths to geodesic azimuths; 
assume similar procedures exist to transform straight-line distances and angles to geodesic 
distances and angles between points on the ellipsoid.  (For helpful discussions of this problem, 
see Moritz, 197813). 
 
 
2. a) The software for a GPS receiver gives positions in terms of geodetic latitude, longitude, 
and height above the ellipsoid GRS80 (the ellipsoid for WGS84).  For 40φ = ° , 83λ = − °, and 

200 mh = , compute the equivalent ( ), ,x y z  coordinates of the point in the corresponding 
Cartesian coordinate system. 
 
 b) Compute the geodetic coordinates ( ), , hφ λ  of that point in the NAD27 system, assuming 
that it, like GRS80, is geocentric (which it is not!). 
 
 c) Now compute the coordinates ( ), , hφ λ  of that point in the NAD27 system, knowing that 
the center of the NAD27 ellipsoid is offset from that of the WGS84 ellipsoid by 

WGS84 NAD27 4 mx x− = − , WGS84 NAD27 166 my y− = , WGS84 NAD27 183 mz z− = .  Compare your result 
with 2.b). 
 
 
3. Suppose the origin of a horizontal datum is defined by a monumented point on the Earth’s 
surface. 
 a) The deflection of the vertical at the origin point is defined to be zero.  If the geodetic 
coordinates of the point are 40φ = °  and 83λ = − °, what are the corresponding astronomic 
latitude and longitude at this point?  What assumptions about the orientation of the datum does 
this involve? 
 c) Suppose the ellipsoid of the datum is shifted in the z -direction by 4 m, which datum 
parameters will change, and by how much (give an estimate for each one based on geometrical 
considerations; i.e., draw a figure showing the consequence of a change in the datum)? 
 

                                                 
13 Moritz, H. (1978): The definition of a geodetic datum. Proceedings of the Second International Symposium on 

Problems Related to the Redefinition of North American Geodetic Networks, 24-28 April 1978, Arlington, VA, 
pp.63-75, National Geodetic Survey, NOAA. 
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3.2 Geodetic Control in the U.S. (and North America) 
 
Each datum in the world has a history that reflects the economic development of the region.  In 
the U.S., national geodetic control is the responsibility of the National Geodetic Survey (NGS, 
part of NOAA, the National Oceanic and Atmospheric Administration, under the Department of 
Commerce); in Canada, this responsibility falls to the Geodetic Survey Division of the 
Department of Natural Resources (Natural Resources Canada).  The North American Datum 
interestingly chronicles the westward expansion and globalization from its initial definition for 
the eastern U.S. to the present-day definition.  The New England Datum of 1879 used the Clarke 
1866 ellipsoid with origin point at Station Principio in Maryland.  This datum was adopted for 
the entire country as the U.S. Standard Datum of 1901 soon after the trans-continental 
triangulation was completed, 1871-1897 (32 years after the completion of the trans-continental 
railroad in 1869!).  In 1909 the datum origin was chosen to be at Meades Ranch, Kansas, upon 
an adjustment of the coordinates to fit the observed deflections of the vertical at hundreds of 
points throughout the country.  When Canada and Mexico adopted this datum for their 
triangulations in 1913, it became the North American Datum. 
 In 1927, a major re-adjustment of the horizontal networks across the continent was 
undertaken by holding the coordinates at Meades Ranch fixed.  However, these coordinates have 
no special significance in the sense of equations (3.14) or (3.15), being simply the determined 
coordinates in the previous triangulations and adjustments.  The datum was named the North 
American Datum of 1927 (NAD27).  The orientation of the datum was controlled by numerous 
Laplace stations throughout the network.  It was estimated later with new satellite observations 
that the orientation was accurate to about 1 arcsec (Rapp, 1992, p.A-6)14. 
 Even though the new, more representative International Ellipsoid (Table 2.1) was available, 
based on Hayford’s 1909 determinations, the Clarke Ellipsoid of 1866 was retained for the 
datum since it was used for most of the computations over the preceding years.  In the reduction 
of coordinates of points in NAD27 to the ellipsoid, the geoid undulation was neglected, and thus 
all lengths technically refer to the geoid and not the ellipsoid, or conversely, the ellipsoid 
distances have a systematic error due to this neglect.  This error manifested itself regionally as 
distortions of relative positions separated by several hundreds and thousands of kilometers within 
the network.  Similarly, most angles were not corrected for the deflection of the vertical and were 
reduced to the ellipsoid as if they were turned about the ellipsoid normal.  These approximate 
procedures and other deficiencies in the adjustment caused distortions of parts of NAD27 (i.e., 
locally) up to 1 part in 15,000 (1 m over 15 km)!  The adjustment was done in parts, primarily 
treating the western and eastern parts of the country separately.  Errors were distributed by the 
residuals between observed astronomic and geodetic latitude, longitude, and azimuth along 
survey triangulation arcs, much like leveling residuals are distributed along leveling loops.  
Geoid undulations were kept small in this way, since, in essence, this amounts to a minimization 
                                                 
14 Rapp, R.H. (1992): Geometric Geodesy, Part II. Lecture Notes, Department of Geodetic Science and Surveying, 

Ohio State University, Columbus, OH. http://hdl.handle.net/1811/24409 
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of the deflections, which is equivalent to minimizing the slope of the geoid relative to the 
ellipsoid, and thus minimizing the variations of the geoid undulation over the network. 
 Because of its realization, fundamentally at a terrestrial monument, the NAD27 ellipsoid is 
not geocentric.  This was the situation for all datums in the world prior to the use of satellites for 
geodetic positioning.  However, once satellites entered the picture, it was possible to realize the 
( )0,0,0  origin of a datum at Earth’s center, recognizing that satellites orbit around the center of 
mass of the Earth.  Of course, this realization of the origin is indirect and is subject to errors in 
determining the satellite orbit and other observational errors.  Extensive gravity observations in 
North America (particularly the U.S., propelled by the search for oil) yielded good models for 
the geoid undulation and the deflection of the vertical.  Also, early satellite altimetry and satellite 
perturbation analyses yielded much better values for Earth’s size and its dynamic flattening. 
 Hence, in the 1970’s and 1980’s a major re-adjustment, as well as a re-definition, of the 
North American Datum was undertaken.  The ellipsoid was changed to that of the Geodetic 
Reference System 1980 (GRS80) and was assumed to be geocentric (system definition).  That is, 
the Meades Ranch station was abandoned as the origin point in favor of the geocenter (center of 
mass of the Earth).  This geocentric realization was achieved by satellite Doppler observations 
which yield three-dimensional coordinates of points with respect to the centroid of the satellite 
orbits (i.e., the center of mass, or geocenter).  Although astronomic observations of azimuth still 
served to realize the orientation of the new datum, specifically the z-axis rotation angle ( zω ), the 
satellite observations could now also provide orientation, especially the other angles, xω  and yω .  
In addition, very long-baseline interferometry (VLBI) began to deliver very accurate orientation 
on a continental scale.  Since geoid undulations could now be estimated with reasonable 
accuracy, they were used in all reductions of distances and angles to the ellipsoid.  This was, in 
fact, an important element of the re-adjustment, since now the ellipsoid/geoid separation was not 
minimized in any way.  The geoid undulation over the conterminous U.S. varies between about 

7 m−  (southern Montana and Wyoming) and 37 m−  (over the Great Lakes).  The result of this 
vast re-adjustment and re-definition was the North American Datum of 1983 (NAD83).  For 
further details of the re-adjustment, the reader is directed to Schwarz (1989)15 and Schwarz and 
Wade (1990)16. 
 New realizations of NAD83 (now viewed as a 3-D reference system) were achieved with 
satellite positioning techniques, originally the Doppler-derived positions, but mostly with the 
Global Positioning System (GPS) that provided increased accuracy of the origin and orientation.  
The NAD83(1986) realization is based on a transformation of the Doppler station coordinates by 
a 4.5 m  translation in the z -direction, a 0.814 arcsec  rotation about the z -axis, and a scale 
change of 0.6 ppm− .  Improvements in the realization continued with High-Accuracy Regional 
Networks (HARN’s) derived from GPS, where the realizations NAD83(HARN) (1989 - 1997) 

                                                 
15 Schwarz, C.R. (ed.) (1989): North American Datum 1983.  NOAA Professional Paper NOS 2, national Geodetic 

Information Center, National Oceanic and Atmospheric Administration, Rockville, Maryland. 
16 Schwarz, C.R., Wade, E.B. (1990): The North American Datum of 1983: Project methodology and execution.  

Bulletin Géodésique, 64, 28-62. 
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changed the scale by 0.0871 ppm− , but retained the known origin and orientation offsets of 
approximately 2 m  and 0.03 arcsec , respectively, from the geocenter and the mean Greenwich 
meridian, as realized by more modern observations (see also Table 3.3).  Nationally, new 
realizations of NAD83 made use of the Continuously Operating Reference Stations (CORS), 
based on GPS, throughout the U.S., yielding NAD83(CORS93), NAD83(CORS94), and 
NAD83(CORS96) with each new adjustment.  In all these realizations, the origin and orientation 
of the NAD83(1986) frame were, again, basically retained.  The most recent realization that re-
adjusted the HARN’s as close as possible to NAD83(CORS96) is designated 
NAD83(NSRS2007), where NSRS stands for the National Spatial Reference System and today 
represents the fundamental geodetic control in the United States in all dimensions (horizontal 
and vertical) and aspects (such as providing accurate control of shorelines). 
 The National Geodetic Survey (NGS) has planned17,18 a modernization of the NSRS over the 
next decade that is based on yet another “paradigm shift” in terms of defining and realizing the 
coordinate systems.  The many conventional, “passive,” fixed benchmarks that surveyors have 
employed for centuries to access the coordinate frame will no longer be maintained by NGS and 
will not form the primary control.  Instead, the NAD83, already viewed as a three-dimensional 
system, will be replaced by a system that is defined and actively maintained using Global 
Navigation Satellite Systems (GNSS).  These include firstly GPS, but also the Russian 
GLONASS (GLObal’naya NAvigatsionnaya Sputnikovaya Sistema), the European Galileo 
System, the Chinese Beidou (Compass) System, and others as they come on line.  The system 
definitions of origin, orientation, and scale now will be the same as for the International 
Terrestrial Reference System.  The realization will be actively maintained using an extensive 
foundational CORS network that is accurately tied to the International Terrestrial Reference 
Frame (Section 3.3).  Thus, the 2-meter origin offset will finally disappear and the system will be 
truly geocentric.  NGS will make available mathematical tools (software accessible on the 
internet, similar to the current Online Positioning User Service, OPUS19) that allow users to 
obtain coordinates for any point for which they can provide GNSS (e.g., GPS) data.  In this way, 
the user community will be responsible for any local monumentation of control; and, all such 
control will be tied unambiguously and with precision defined by the user to the national CORS 
network.  The motivation behind this planned mode of operation is the realization that 
monuments on the Earth’s surface can no longer be viewed as permanently associated with 
constant coordinates.  Plate tectonics, subsidence and other deformation of the crust due to 
natural and anthropogenic causes make this concept obsolete at the centimeter level of precision.  
In fact, NGS has already been migrating to this new mode by providing coordinates of CORS 

                                                 
17 NGS (2008). The National Geodetic Survey Ten-Year Plan, Mission, Vision and Strategy, 2008-2018. 

http://www.ngs.noaa.gov/INFO/NGS10yearplan.pdf 
18 Proceedings of the 2010 Federal Geospatial Summit on Improving the National Spatial Reference System. 

http://www.ngs.noaa.gov/2010Summit/2010FederalGeospatialSummitProceedings.pdf 
19 www.ngs.noaa.gov/OPUS/ 
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sites at an epoch (2002.0) with velocities due to known motions within the frame of 
NAD83(CORS96) (see Section 3.4.1). 
 With the replacement of NAD83, NGS also plans to replace the vertical datum NAVD88 
(Section 3.5) by a geopotential model, where again the control is achieved actively without the 
need, at least on a national level, to maintain passive markers. 
 
 
 
3.3 International Terrestrial Reference System 
 
The international efforts to define a terrestrial system can be traced back to the turn of the last 
century (1900’s) when the International Latitude Service (ILS) (established in 1899 by the 
International Association of Geodesy (IAG)) organized observations of astronomic latitude in 
order to detect and monitor the motion of the pole (Section 4.3.1).  The ILS was reorganized into 
the International Polar Motion Service (IPMS) in 1962 by resolution of the International 
Astronomical Union (IAU); and the IPMS officially continued the work of the ILS.  Also, the 
Rapid Latitude Service (RLS) of the Bureau International de l’Heure (BIH) in Paris, France, was 
established in 1955 again by the IAU, and predicted coordinates of the instantaneous pole and 
served primarily to help in the time keeping work of the BIH.  In addition, the U.S. Navy and the 
Defense Mapping Agency (U.S.) published polar motion results based on the latest observing 
technologies (such as lunar laser ranging (LLR) and very long baseline interferometry (VLBI)). 
 In 1960, it was decided at the General Assembly of the International Union of Geodesy and 
Geophysics (I.U.G.G.) to adopt as terrestrial pole the average of the true celestial pole during the 
period 1900-1905 (a six-year period over which the Chandler period of 1.2 years would repeat 
five times; see Section 4.3.1).  This average was named the Conventional International Origin 
(CIO) starting in 1968 (not to be confused with the Celestial Intermediate Origin, Chapter 4).  
Even though more than 50 observatories ultimately contributed to the determination of the pole 
through latitude observations, the CIO was defined and monitored by the original 5 latitude 
observatories under the ILS (located approximately on the 39th parallel; including Gaithersburg, 
Maryland; Ukiah, California, Carloforte, Italy; Kitab, former U.S.S.R.; and Mizusawa, Japan). 
 The reference meridian was defined as the meridian through the Greenwich observatory, near 
London, England.  However, from the 1950’s until the 1980’s, the BIH monitored the variation 
in longitudes (due to polar motion and variations in Earth’s spin rate, or length-of-day) of many 
observatories (about 50) and a mean “Greenwich” meridian was defined, based on an average of 
zero-meridians, as implied by the variation-corrected longitudes of these observatories. 
 These early conventions and procedures to define and realize a terrestrial reference system 
addressed astronomic directions only; no attempt was made to define a realizable origin, 
although implicitly it could be thought of as being geocentric.  From 1967 until 1988, the BIH 
was responsible for determining and monitoring the CIO and reference meridian.  In 1979 the 
BIH Conventional Terrestrial System (CTS) replaced the 1968 BIH system with a better 
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reference to the CIO.  However, the CIO as originally defined was not entirely satisfactory 
because it could be accessed only through 5 latitude observatories.  As of 1984, the BIH defined 
the BIH CTS (or BTS) based on satellite laser ranging, VLBI, and other space techniques.  With 
the inclusion of satellite observations, an (indirectly) accessible origin of the system could also 
be defined (geocentric).  With new and better satellite and VLBI observations becoming 
available from year to year, the BIH published new realizations of its system: BTS84, BTS85, 
BTS86, and BTS87. 
 In 1988 the functions of monitoring the pole and the reference meridian were turned over to 
the newly established International Earth Rotation Service (IERS), thus replacing the BIH and 
the IPMS as service organizations.  The time service, originally also under the BIH, now resides 
with the Bureau International des Poids et Mésures (BIPM).  The new reference pole realized by 
the IERS, called the International Reference Pole (IRP), is adjusted to fit the BIH reference pole 
of 1967 – 1968 and presently is consistent with the CIO to within 0.03 arcsec±  (1 m ).  
Additional information regarding the BIH may be found in (Mueller, 1969)20, Seidelmann 
(1992)21, and Moritz and Mueller (1987)22. 
 The IERS, renamed in 2003 to International Earth Rotation and Reference Systems Service 
(retaining the same acronym), is responsible for defining and realizing both the International 
Terrestrial Reference System (ITRS) and the International Celestial Reference System (ICRS).  
In each case, an origin, an orientation, and a scale are defined among other conventions for the 
system.  The system is then realized as a frame by the specification of these datum parameters 
and the coordinates of points worldwide.  Since various observing systems (analysis centers and 
techniques) contribute to the overall realization of the reference system and since new 
realizations are obtained recurrently with improved observation techniques and instrumentation, 
the transformations among various realizations are of paramount importance.  Especially, if one 
desires to combine data referring to realizations of different reference systems, or to different 
realizations of the same system, it is important to understand the coordinate relationships so that 
the data are combined ultimately in one consistent coordinate system.  We first continue this 
section with a description of the ITRS and its realization and treat transformations in the next 
section. 
 The IERS International Terrestrial Reference System is defined by an orthogonal triad of 
right-handed, equally scaled axes with the following additional conventions: 
 
a) The origin is geocentric, that is, at the center of mass of the Earth (including the mass of the 
oceans and atmosphere).  Nowadays, because of our capability to detect the small (cm-level) 

                                                 
20 Mueller, I.I. (1969): Spherical and Practical Astronomy as Applied to Geodesy. Frederick Ungar Publishing Co., 

New York. 
21 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill 

Valley, CA. 
22 Moritz, H., Mueller, I.I. (1987): Earth Rotation, Theory and Observation. Ungar Pub. Co., New York. 
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variations due to terrestrial mass re-distributions, the origin is defined as an average location of 
the center of mass and referred to some epoch. 
 
b) The scale is defined by the speed of light in vacuum and the time interval corresponding to 
one second (see Chapter 5) within the theory of general relativity and in the local Earth frame. 
 
c) The orientation is defined by the directions of the CIO and the reference meridian as given 
for 1984 by the BIH.  Since it is now well established that Earth’s crust (on which our observing 
stations are located) is divided into plates that exhibit tectonic motion (of the order of 
centimeters per year), it is further stipulated that the time evolution of the orientation of the 
reference system has no residual global rotation with respect to the crust (“no-net-rotation” 
condition).  That is, even though the points on the crust, through which the system is realized, 
move with respect to each other, the net rotation of the system with respect to its initial definition 
should be zero. 
 
The realization of the ITRS is the International Terrestrial Reference Frame (ITRF) and requires 
that three origin parameters, three orientation parameters, and a scale parameter must be 
identified with actual values.  These seven parameters are not observable without conventions 
(see below) and their specification is formulated by the IERS in terms of constraints imposed on 
the solution of coordinates from observations.  Moreover, the constraints are cast in the form of a 
seven-parameter transformation (see Section 3.4) from an a priori defined frame to the realized 
frame, three translation parameters that realize the origin; three angle parameters that realize the 
orientation, and a scale change parameter that realizes the scale.  As a simple example (which is 
not practiced anymore), suppose a previous frame contains a point with defined coordinates 
(analogous to the Meades Ranch origin point, but known to refer to the geocenter).  The next 
realization, based on new observations, could be related to the previous frame by constraining 
the translation to be zero.  Because these datum (transformation) parameters are determined for 
points on the Earth’s crust (“crust-based frame”), and because the Earth as a whole is a dynamic 
entity, the parameters are associated with an epoch and, today, are supplemented with rates of 
change, making the total number of parameters equal to 14. 
 Unlike the origin of the historical (traditional) geodetic datum that could be accessed at a 
physical point on the Earth, the geocenter is accessible only indirectly by dynamical modeling of 
satellite orbits and observations of distances relative to the satellites in these orbits.  In either 
case, however, whether a marker on the Earth’s surface or its geocenter, we note that the origin is 
defined by a convention, just like all other parts of the coordinate system.  As such it is not, a 
priori, an observable quantity like a distance or an angle.  This is the classic datum defect 
problem, well known in all types of surveying, where observations of distances and angles must 
ultimately be related to a point or direction that is fixed or defined by convention. 
 With satellite techniques, on the other hand, there is the advantage of knowing that the center 
of mass is the centroid for all orbits.  In that sense, the center of mass of the Earth serves as a 
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natural origin point that, in theory, is accessible.  That is, if the orbit is known, observations (e.g., 
distances) from points on the Earth’s surface to points on the orbit are in a geocentric system, by 
definition.  Determining the orbit by dynamical methods (using and/or solving for the 
gravitational field of the Earth, as well as other forces acting on the satellite) is beyond the 
present scope23.  Suffice it to say that not all origin realizations are the same as obtained by 
different analysis centers that, moreover, process different satellite data (satellite laser ranging, 
lunar laser ranging, GPS, Doppler data).  Generally, the most precise methods are based on 
satellite laser ranging (SLR). 
 For the first ITRFs in the early 1990s, it was customary to relate all frames realized by 
particular analysis centers and/or satellite techniques to one of the satellite laser ranging (SLR) 
solutions from the Center for Space Research (CSR) in Austin, Texas, which was considered to 
be the best solution that accesses the center of mass and thus realizes the origin.  The origins of 
solutions (i.e., realized coordinate systems) from other techniques, such as Doppler and GPS, 
were related by IERS to the ITRF origin through a translation determined by using stations that 
are common to both the CSR and the other solutions.  Later, a weighted average of selected SLR 
and GPS solutions was used to realize the origin.  For ITRF2000, the origin was realized by a 
weighted average of “the most consistent SLR solutions”24 submitted to the IERS.  With 
ITRF2005 and ITRF2008, the IERS used a time series over 13 years and 26 years, respectively, 
of re-processed SLR data at selected, globally distributed sites to realize the origin. 
 The scale similarly was realized for the early ITRFs by the SLR solutions from the CSR 
analysis center, with the scale of other solutions transformed accordingly.  For all subsequent 
realizations of scale, SLR was combined with Very Long Baseline Interferometry (VLBI), which 
accurately measures coordinate differences of stations separated by large distances (several 1000 
km) using observed directions to quasars (Chapter 4).  (It is noted that VLBI provides no 
information on the origin of coordinates.) 
 Satellite and space observational techniques contain no information on the absolute 
longitudinal orientation of a system.  This orientation has no obvious natural reference and is 
completely arbitrary (the Greenwich meridian).  One might argue that the equatorial orientation 
(or, equivalently, the polar direction) like the center of mass is a natural reference that is 
accessible indirectly from astronomic observations, VLBI, and satellite tracking (since the orbit 
is also defined by the figure axis of the Earth, see Section 4.3.2).  However, the polar direction is 
complicated, a result of both polar motion with respect to the Earth’s crust, and precession and 
nutation with respect to the celestial sphere (see Chapter 4).  Besides this, the stations on the 
Earth’s crust, which ultimately realize the ITRS, are in constant motion due to plate tectonics.  
Thus, the adopted convention for realizing the orientation of the ITRS is to ensure that each 
successive realization after 1984 is aligned with the orientation defined by the BIH in 1984 (with 
some early adjustments for different solutions of the Earth Orientation Parameters (Chapter 4).  

                                                 
23 Seeber, G. (1993): Satellite Geodesy. Walter DeGruyter, Berlin. 
24 Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010.  IERS Technical Note No.36, Verlag des Bundesamts 

für Kartographie und Geodäsie, Frankfurt am Main. 
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 The methods of combining different solutions and introducing the constraints needed to 
address the datum defect (i.e., specifying origin, scale, and orientation) has become increasingly 
complicated as more data are assimilated and analysis centers employ various weighting schemes 
to account for the various observational accuracies.  These details are beyond the present scope 
and the interested reader is referred to the IERS Conventions of 200325 and 201026 and 
references therein (specifically also publications by Altamimi et al., 2002a27, 2002b28, and 
references therein). 
 The model for the coordinates of any of the observing stations participating in the realization 
of ITRS is given by 
 
 ( ) ( ) ( )0 0 0 i

i

t t t t∆= + − +∑x x v x , (3.16) 

 
where 0x  and 0v  are the coordinates and their velocity of the observing station, defined for a 
particular epoch, 0t .  These are solved on the basis of observed coordinates, ( )tx , at time, t , 
using some type of observing system (like satellite laser ranging).  The quantities, i∆x , are 
corrections applied by analysis centers to account for various, short-wavelength, local 
geodynamic effects, such as solid Earth tides, ocean loading, and atmospheric loading, with the 
objective of accounting for the non-constant velocities.  Details for corresponding recommended 
models are provided by the IERS Conventions 2010 (Chapter 7).  The coordinate vector, 0x , and 
the linear velocity, 0v , for each participating station is provided by IERS as a result of the 
assimilation of all data, and these represent the consequent realization of ITRS at epoch, 0t .  In 
the past, the linear velocity was modeled largely by the tectonic plate motion model, NNR-
NUVEL1A (McCarthy, 1996)29; thus, 
 
 0 NUVEL1A 0δ= +v v v , (3.17) 
 
where NUVEL1Av  is the velocity given as a set of rotation rates for the major tectonic plates, and 

0δv  is a residual velocity for the station.  The newest ITRFs (since ITRF2000) appear to indicate 
significant departures of the station velocities, 0v , from the NNR-NUVEL1A model, which, 
however, does not impact the integrity of the ITRF. 
 

                                                 
25 McCarthy, D.D., Petit, G. (2003): IERS Conventions 2003.  IERS Technical Note 32, U.S. Naval Observatory, 

Bureau International des Poids et Mesures. 
26 Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010.  IERS Technical Note No.36, Verlag des Bundesamts 

für Kartographie und Geodäsie, Frankfurt am Main. 
27 Altamimi, Z., Boucher, C., Sillard, P. (2002a):  New trends for the realization of the International Terrestrial 

Reference System.  Adv. Space Res.,  30(2), 175-184. 
28 Altamimi, Z., Sillard, P., Boucher, C. (2002b): ITRF2000: A new release of the International Terrestrial 

Reference Frame for earth science applications. J. Geophys. Res., 107(B10), 2214, doi:10.1029/2001JB000561. 
29 McCarthy, D.D. (ed.) (1996): IERS Conventions (1996).  IERS Tech. Note 21, Observatoire de Paris, Paris. 
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3.3.1  World Geodetic System of the U.S. Department of Defense 
 
The World Geodetic System 1984 (WGS84) is the equivalent of the ITRS for the U.S. 
Department of Defense (and includes also a global gravitational model).  It is the evolution of 
previous reference systems, WGS60, WGS66, and WGS7230.  The corresponding reference 
frame for WGS84 as originally realized in 1987 on the basis mostly of satellite Doppler 
observations agreed approximately with NAD83.  The next realization, designated 
WGS84(G730), made use of observations from 12 GPS stations around the world and was 
aligned with the ITRF92 to an accuracy of about 20 cm in all coordinates.  Here, G730 denotes 
the 730th week of the GPS satellite ephemerides.  The next realization, WGS84(G873), improved 
on this and was designed to be consistent with ITRF94, which was achieved with about 10 cm 
accuracy.  The latest realization, WGS84(G1150), is based on GPS observations at 17 U.S. Air 
Force and NIMA (National Imagery and Mapping Agency)31 stations, and it is consistent with 
ITRF2000 at the 2 cm level of accuracy32. 
 
 
 
3.4 Transformations 
 
With many different realizations of terrestrial reference systems, as well as local or regional 
datums, it is important for many geodetic applications to know the relationship between the 
coordinates of points in these frames.  Especially for the realization of ITRF, extensive use is 
made of transformations to define the evolution of the realizations and the relationships of ITRF 
to the realizations of reference systems of contributing analysis centers or space techniques.  The 
transformations of traditional local horizontal datums (referring to an ellipsoid) with respect to 
each other and with respect to a global terrestrial reference frame is a topic beyond the present 
scope.  However, for standard Cartesian systems, like the ITRS and WGS84, and even the new 
realizations of the NAD83 and other modern realizations of regional datums (like the European 
Coordinate Reference Systems33), a simple 7-parameter similarity transformation (Helmert 
transformation) serves as basic model for the transformations. 
 According to the definition of the IERS, this transformation model is given by 
 
 ( ) T

to from1 D R= + +x T x , (3.18) 
 

                                                 
30 DMA (1987): Supplement to Department of Defense World Geodetic System 1984 Technical Report, Part I. 

DMA TR 8350.2-A, Defense Mapping Agency, Washington, D.C. 
31 Renamed in 2003 to National Geospatial-Intelligence Agency (NGA) 
32 Proceedings of the ION GPS-02.  http://earth-info.nga.mil/GandG/sathtml/IONReport8-20-02.pdf  
33 http://www.euref.eu/ 
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where tox  is the coordinate vector of a point in the frame to which it is transformed, and fromx  is 
the coordinate vector of that same point in the frame from which it is transformed.  (Perhaps it is 
not the best notation, but it is the clearest in defining the direction of the transformation, and the 
reader is cautioned not to confuse “to” with the epoch, 0t .)   The translation, or displacement, 
between frames is given by the vector, T , and the scale difference is given by D .  
Unfortunately, the IERS definition concerning the rotations between frames is counter-intuitive, 
where the rotation matrix, here denoted TR , represents the rotation from the new frame (the to-
frame) to the old frame (the from-frame); see Figure 3.3.  Since the rotation angles are small, we 
have from equation (1.9): 
 

 ( ) ( ) ( )T T T T
1 2 3

1 3 2
1 2 3 3 1 1

2 1 1

R R
R R R R R R R R R

R R

− 
 = = − 
 − 

, (3.19) 

 
where 1R , 2R , and 3R  are the small rotation angles, in the notation and definition of the IERS. 
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Figure 3.3: Transformation parameters for the IERS and the NGS models. 

 
 
 Since D  is also a small quantity, we can neglect second-order terms and write 
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to from from from

1 0 3 2
2 3 0 1
3 2 1 0

x x T x R R x
y y T D y R R y
z z T z R R z

−          
          = + + + −          
          −          

. (3.20) 

 
Each of the seven parameters of this model, 1T , 2T , 3T , 1R , 2R , 3R , and D , may have a time 
variation that is simply modeled as being linear: 
 
 ( ) ( )0 0 0i i it t tβ β β= + −! , (3.21) 

 
where iβ  refers to any of the parameters.  The 14 parameters, 0iβ  and 0iβ! , 1, ,7i = … , then 
constitute the complete transformation.  Combining equations (3.20) and (3.21), we have 
 

 
( )
( )
( )

( )
( )
( )

( )
( )
( )

( )
( )
( )
( )

( ) ( )
( ) ( )
( ) ( )

( )
( )
( )to from from from

1 0 3 2
2 3 0 1
3 2 1 0

x t x t T t x t R t R t x t
y t y t T t D t y t R t R t y t
z t z t T t z t R t R t z t

−          
          = + + + −          
          −          

, 

    (3.22) 
 
noting that the transformation, as given by the parameters, ( )i tβ , is valid at a particular epoch, t. 
 Table 3.2 lists the transformation parameters among the various IERS (and BIH) terrestrial 
Reference Frames since 1984.  [These numbers were obtained from various IERS publications 
and internet sites and have been known to contain some inconsistencies (see also the ITRF 
internet site34)].  Rates of the parameters were given only since 1993.  Note that ITRF96 and 
ITRF97 were defined to be identical to ITRF94 with respect to epoch 1997.  In order to obtain 
transformation parameters for other than the listed epoch, equation (3.21) should be employed.  
For example, using the last row of Table 3.2, the translation in x between ITRF2005 and 
ITRF2008 at the epoch, 2000t =  is given by 
 

 
( ) ( ) ( )

( )
0 01 1 1

0.05 cm 0.03 cm/yr 5 yr
0.20 cm

T t T t T t t= + ⋅ −

= − ⋅ −
=

!

 

 
The IERS35 provides transformation parameters from ITRF2008 to all previous frames for the 
epoch, 2000t = . 

                                                 
34 http://itrf.ensg.ign.fr/ 
35 Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010.  IERS Technical Note No.36, Verlag des Bundesamts 

für Kartographie und Geodäsie, Frankfurt am Main. 
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 Table 3.3 lists transformation parameters from WGS84 to ITRF90 as published by IERS36, as 
well as from recent ITRFs to NAD83(CORS96) as published by the National Geodetic Survey37.  
Note that the rotation parameters in Table 3.3 represent the more intuitive rotations from the 
from-frame to the to-frame.  Also, note that the transformation parameters are estimates with 
associated standard deviations (not listed here).  Therefore, the determination of the vector of 
coordinates through such a transformation, in principle, should include a rigorous treatment of 
the propagation of errors. 
 

                                                 
36 McCarthy, D.D. (ed.) (1992): IERS Conventions (1992).  IERS Tech. Note 13, Observatoire de Paris, Paris. 
37 These are no longer available on the web; individual transformations may be found in the literature; e.g., Soler, T., 

Snay, R.A. (2004): Transforming Positions and Velocities between the International Terrestrial Reference Frame 
of 2000 and North American Datum of 1983. Journal of Surveying Engineering, 130(2), 49-55.  DOI: 
10.1061/(ASCE)0733-9453(2004)130:2(49). 
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Table 3.2: Transformation parameters for recent terrestrial reference frames. 

From To 1 | 1T T!  2 | 2T T!  3 | 3T T!  1 | 1R R!  2 | 2R R!  3 | 3R R!  |D D!  0t  

  cm 
cm/yr 

cm 
cm/yr 

cm 
cm/yr 

0.001"  
0.001"/ yr
 

0.001"  
0.001"/ yr
 

0.001"  
0.001"/ yr
 

810−  
810 /yr−  

 

BTS84 BTS85 5.4 2.1 4.2 –0.9 –2.5 –3.1 -0.5 1984 

BTS85 BTS86 3.1 –6.0 –5.0 –1.8 –1.8 –5.81 –1.7 1984 

BTS86 BTS87 –3.8 0.3 –1.3 –0.4 2.5 7.5 –0.2 1984 

BTS87 ITRF0 0.4 –0.1 0.2 0.0 0.0 –0.2 –0.1 1984 

ITRF0 ITRF88 0.7 –0.3 –0.7 –0.3 –0.2 –0.1 0.1 1988 

ITRF88 ITRF89 0.5 3.6 2.4 –0.1 0.0 0.0 –0.31 1988 

ITRF89 ITRF90 –0.5 –2.4 3.8 0.0 0.0 0.0 –0.3 1988 

ITRF90 ITRF91 0.2 0.4 1.6 0.0 0.0 0.0 –0.03 1988 

ITRF91 ITRF92 –1.1 –1.4 0.6 0.0 0.0 0.0 –0.14 1988 

ITRF92 ITRF93 –0.2 
–0.29 

–0.7 
0.04 

–0.7 
0.08 

–0.39 
–0.11 

0.80 
–0.19 

–0.96 
0.05 

0.12 
0.0 

1988 

ITRF93 ITRF94 –0.6 
0.29 

0.5 
–0.04 

1.5 
–0.08 

0.39 
0.11 

–0.80 
0.19 

0.96 
–0.05 

–0.04 
0.0 

1988 

ITRF94 ITRF96 0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

1997 

ITRF96 ITRF97 0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

1997 

ITRF97 ITRF2000 –0.67 
0.00 

–0.61 
0.06 

1.85 
0.14 

0.0 
0.0 

0.0 
0.0 

0.0 
-0.02 

–0.155 
-0.001 

1997 

ITRF2000 ITRF2005 -0.01 
0.02 

0.08 
-0.01 

0.58 
0.18 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

-0.040 
-0.008 

2000 

ITRF2005 ITRF2008 0.05 
-0.03 

0.09 
0.0 

0.47 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

-0.094 
0.0 

2005 

 

 
( )
( )
( )

( )
( ) ( )

( ) ( )
( ) ( )to from from from

1 0 3 2
2 3 0 1
3 2 1 0

x x T t x R t R t x
y y T t D t y R t R t y
z z T t z R t R t z

−          
          = + + + −          

          −          

. (3.23) 
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Table 3.3: Transformation parameters for other terrestrial reference frames.  Note that 1x Rε = − , 
2y Rε = − , 3z Rε = − . 

From To 1 | 1T T!

 
2 | 2T T!  3 | 3T T!  1 | 1ε ε!  2 | 2ε ε!  3 | 3ε ε!  |D D!  0t  

  cm 
cm/yr 

cm 
cm/yr 

cm 
cm/yr 

0.001"  
0.001"/ yr
 

0.001"  
0.001"/ yr
 

0.001"  
0.001"/ yr
 

810−  
810 /yr−  

 

WGS72 ITRF90 -6.0 51.7 472.3 18.3 -0.3 –547.0 23.1 1984 

WGS841 ITRF90 -6.0 51.7 22.3 18.3 -0.3 7.0 1.1 1984 

          

ITRF96 NAD83 
(CORS96) 

99.1 
0.0 

–190.7 
0.0 

-51.3 
0.0 

25.8 
0.053 

9.7 
-0.742 

11.7 
-0.032 

0.0 
0.0 

1997 

ITRF97 NAD83 
(CORS96) 

98.9 
0.07 

–190.7 
-0.01 

-50.3 
0.19 

25.9 
0.067 

9.4 
-0.757 

11.6 
-0.031 

-0.09 
-0.02 

1997 

ITRF2000 NAD83 
(CORS96) 

99.6 
0.07 

–190.1 
-0.07 

-52.2 
0.05 

25.9 
0.067 

9.4 
-0.757 

11.6 
-0.051 

0.06 
-0.02 

1997 

1 original realization; sign error for zε  has been corrected. 
 

 
( )
( )
( )

( )
( ) ( )

( ) ( )
( ) ( )to from from from

1 0
2 0
3 0

z y

z x

y x

x x T t x t t x
y y T t D t y t t y
z z T t z t t z

ε ε
ε ε

ε ε

 −        
         = + + + −         

          −          

. (3.24) 

 
 
3.4.1 Transformations to and Realizations of NAD83 
 
IAG resolutions (Resolutions Nos.1 and 4)38 recommend that regional high-accuracy reference 
frames be tied to an ITRF, where such frames associated with large tectonic plates may be 
allowed to rotate with these plates as long as they coincide with an ITRF at some epoch.  This 
procedure was adopted for NAD83, which for the conterminous U.S. and Canada lies (mostly) 
on the North American tectonic plate.  This plate has global rotational motion estimated 
according to the NNR-NUVEL1A model by the following rates39: 
 

 

6

6

6

0.000258 rad/10 yr 0.053 mas/yr 1.6 mm/yr

0.003599 rad/10 yr 0.742 mas/yr 22.9 mm/yr

0.000153 rad/10 yr 0.032 mas/yr 0.975 mm/yr

x

y

z

Ω
Ω

Ω

= = =

= − = − = −

= − = − = −

 (3.25) 

 
                                                 
38 IAG (1992): Geodesist’s Handbook. Bulletin Géodésique, 66(2), 132-133. 
39 McCarthy, D.D. (ed.) (1996):IERS Conventions (1996).  IERS Tech. Note 21, Observatoire de Paris, Paris. 
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where the last equality for each rate uses the approximation that the Earth is a sphere with radius, 
6371 kmR = .  These rates are in the same sense as the IERS convention for rotations. 

 The transformation between a regional frame and ITRF can be determined (using the 
standard Helmert transformation model) if a sufficient number of points exists in both frames.  
Such is the case for NAD83 where 12 VLBI stations have 3-D coordinates in both frames40.  The 
NAD83 3-D coordinates came from the original ITRF89-NAD83 transformation.  Now in order 
to determine the transformation parameters, the two frames should refer to the same epoch.  For 
example, if ITRF96 is the frame to which NAD83 should be tied, then this epoch is 1997.0 (the 
epoch of ITRF96).  It is assumed that the NAD83 coordinates do not change in time due to plate 
motion (and that there is no other type of motion).  That is, the frame is attached to one plate and 
within that frame the coordinates of these points do not change in time (at least to the accuracy of 
the original adjustment), even as the plate moves.  Hence, one may assume that the NAD83 3-D 
coordinates also refer to the epoch 1997.0.  The solution for the Helmert transformation 
parameters from ITRF96 to NAD83 resulted in (see also Table 3.3): 
 

 

( )
( )
( )
( )
( )
( )

( )

1 1997.0 0.9910 m

2 1997.0 1.9072 m

3 1997.0 0.5129 m

1 1997.0 25.79 mas

2 1997.0 9.65 mas

2 1997.0 11.66 mas

1997.0 6.62 ppb

T

T

T

R

R

R

D

=

= −

= −

= −

= −

= −

=

 (3.26) 

 
where the angles refer to the convention used by IERS.  The scale factor ultimately was set to 
zero ( ( )1997.0 0D = ) so that the two frames, by definition, have the same scale.  Snay (2003)41 
notes that this is equivalent to determining a transformation in which the transformed latitudes 
and longitudes of the points in one frame would best approximate the latitudes and longitudes in 
the other in a least-squares sense.  That is, the scale is essentially the height, and the height is, 
therefore, not being transformed.  We thus have 
 

 
83 96(1997) 96(1997)

1(1997) 0 3(1997) 2(1997)
2(1997) 3(1997) 0 1(1997)
3(1997) 2(1997) 1(1997) 0NAD ITRF ITRF

x x T R R x
y y T R R y
z z T R R z

−        
        = + + −        
        −        

 (3.27) 

                                                 
40 Craymer, M., Ferland, R., Snay, R.A. (2000): Realization and unification of NAD83 in Canada and the U.S. via 

the ITRF.  In: Rummel, R., H. Drewes, W. Bosch, H. Hornik (eds.), Towards an Integrated Global Geodetic 
Observing System (IGGOS). IAG Symposia, vol.120, pp.118-21, Springer-Verlag, Berlin. 

41 Snay, R.A. (2003): Introducing two spatial reference frames for regions of the Pacific Ocean. Surv. Land Inf. Sci., 
63(1), 5–12. 
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 Now, the transformation parameters, thus determined, refer to a particular epoch (1997.0 in 
this case).  At other epochs, the NAD83 coordinates will not change (for these 12 stations), just 
as assumed before; but, the coordinates of such points in the ITRF do change because the North 
American plate is moving (rotating) in a global frame.  Therefore, the transformation between 
NAD83 and ITRF96 should account for this motion at other epochs.  For points on the North 
American plate we may incorporate the plate motion into the ITRF transformation from one 
epoch to the next as 
 

 
( )
( )
( )

( )
( )
( )

( ) ( )
( ) ( )
( ) ( )

( )
( )
( )

96 96 96

1997 0 1997 1997 1997
1997 1997 0 1997 1997
1997 1997 1997 0 1997

z y

z x

y xITRF ITRF ITRF

x t x t t x
y t y t t y
z t z t t z

Ω Ω
Ω Ω
Ω Ω

 − − −     
      = + − − −      

      − − −      

, 

  (3.28) 
 
where, e.g., both ( )x t  and ( )1997.0x  refer to the IRTF96, but at different epochs.  Substituting 
this into the ITRF96-NAD83 transformation, we obtain: 
 

 
( )
( )
( )

( ) ( )
( ) ( )
( ) ( )83 96(1997.0)96

1 0 3 2
2 3 0 1
3 2 1 0NAD ITRFITRF

x x t T R t R t x
y y t T R t R t y
z z t T R t R t z

−        
        = + + −        

        −        

, (3.29) 

 
where 
 

 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 1997.0 1997.0

2 2 1997.0 1997.0

3 3 1997.0 1997.0

x

y

z

R t R t

R t R t

R t R t

Ω
Ω

Ω

= − −

= − −

= − −

 (3.30) 

 
which agrees with Craymer et al. (2000), as well as Table 3.3.  To see that it agrees with the 
latter, we note that the transformation, equation (3.24) uses angles defined in the reverse sense 
(NGS convention).  Hence, e.g., 
 
 ( ) ( ) ( ) ( )1 1 1997.0 1997.0x xt R t R tε Ω= − = − + − . (3.31) 

 
Using the transformation, equation (3.29), NGS thus realized NAD83 at all CORS stations and 
designated this realization NAD83(CORS96).  By definition all temporal variations in the 
displacement and scale parameters in this transformation were set to zero. 
 For transformations to NAD83 from the next realization of ITRS, the NGS adopted slightly 
different transformation parameters than determined by the IERS.  The transformation 
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parameters from ITRF96 to ITRF97 are published as zero (including zero time-derivatives of 
these parameters); see Table 3.2.  Yet, the International GNSS Service (IGS) determined the 
transformation ITRF96 to ITRF97 based solely on GPS stations and found non-zero 
transformation parameters.  Since the control networks of NAD83 are now largely based on 
GPS, NGS decided to use the IGS-derived ITRF96-to-ITRF97 transformation, yielding the 
transformation parameters between ITRF97 and NAD83 as given in Table 3.3 and obtained 
from: 
 

 
( )
( )

97 83( 96) 97 96

96 83( 96)
IGSITRF NAD CORS ITRF ITRF

ITRF NAD CORS

→ = →

+ →
 (3.32) 

 
For ITRF2000, there were only insignificant differences between the transformation parameters 
determined by IERS and by IGS, and thus we have 
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 (3.33) 

 
as verified by the numerical values in Tables 3.2 and 3.3. 
 Since the IGS-derived ITRF96-to-ITRF97 transformation parameters are time-dependent, the 
more general transformation to NAD83 now yields time-dependent coordinates in NAD83.  
However, for the most part these reflect only very small motions within the NAD83 frame.  In 
order to determine velocities of points within NAD83 based on velocities of corresponding ITRF 
coordinates, one can write a more general (i.e., time-dependent) transformation analogous to 
equation (3.29): 
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  (3.34) 
 
Taking the time-derivative and neglecting second-order terms, we find 
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The epoch assumed for these rates is 0t , corresponding to the epoch of the transformation 
parameters.  It is expected that most of the ITRF velocity associated with a point (the first term 
in equation (3.35)) is cancelled by the plate motion, given by the last term, so that within NAD83 
there is essentially no motion, only residual motion due to local effects.  For example, those 
points near a plate boundary (such as near the west coast of the U.S.) have significant motion 
within NAD83 that is determined by the total motion of ITRF minus the overall plate motion 
model. 
 Recently, NGS updated all NAD83 coordinates of its CORS stations to the epoch 2002.0, 
and used formula (3.35) to determine the corresponding NAD83 velocities.  The following 
procedure can be used to determine 2002.0 coordinates, x , in NAD83 for any point observed by 
static differential GPS observations, ( )GPS t∆x , at some epoch, t, relative to CORS station 
coordinates, 0x : 
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 (3.36) 

 
The first step, a), calculates the CORS station coordinates in ITRF2000 at the epoch, t, using its 
NGS-published coordinates and velocities within that frame.  The second step, b), implies 
processing of these coordinates and the differential GPS data to determine the corresponding 
coordinate differences between x  and 0x  in ITRF2000 at the epoch, t.  Subsequently, in step c) 
these coordinate differences are transformed to NAD83(CORS(1996)) using the parameters in 
Table 3.3.  However, because they are coordinate differences, the translation vector is zero in this 
transformation.  Next, in step d) the NGS-published CORS station coordinates in 
NAD83(CORS(1996)) are determined at the epoch, t, using their velocities in that frame.  Then, 
step e) calculates the NAD83(CORS(1996)) coordinates of the observed point at the epoch, t.  
Finally, the last step, f), transforms these to the epoch 2002.0 using the velocity, 83NADx! , of the 
observed point.  This velocity within NAD83(CORS(1996)) must be predicted in some way 
(e.g., setting it equal to the velocity of the nearest CORS station, or using also known local crust 
motions for the point). 
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 The procedure detailed by equations (3.36) is the essence of a web-based utility offered by 
NGS called OPUS42,43 (On-line User Positioning Service), although instead of a single CORS 
station, the three nearest CORS stations are used to determine the NAD83(CORS(1996)) 2002.0 
coordinates of an observed point.  For an example of how the NAD83 and ITRF00 coordinates 
of CORS points are related, see Problem 3 in Section 3.4.2. 
 

                                                 
42 Soler, T., Snay, R.A. (2004): Transforming Positions and Velocities between the International Terrestrial 

Reference Frame of 2000 and North American Datum of 1983. Journal of Surveying Engineering, 130(2), 49-
55.  DOI: 10.1061/(ASCE)0733-9453(2004)130:2(49). 

43 http://www.ngs.noaa.gov/OPUS/ 
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3.4.2 Problems 
 
1. a) Rigorously derive the approximation, formula (3.20), from the exact equation (3.18)
(3.15) and clearly state all approximations.  Determine the error in coordinates of the point in 
Problem 3.1.2-2 when using equation (3.20) instead of equation (3.18) for the parameters 
associated with the ITRF2000 – NAD83(CORS86) transformation. 
 
 b) Given the coordinates of a point in Columbus: 40φ = ° , 83λ = − °, 200 mh = , in the 
NAD83(CORS86) frame, compute its coordinates in the ITRF89, as well as in the ITRF94, 
based on the transformation parameters in Tables 3.2 and 3.3. 
 
 
2. a) Which of the following remain invariant in a 7-parameter similarity transformation, 
equation (3.18)? 
  i) chord distance;    ii) distance from origin;    iii) longitude 
 
 b) Answer 2.a) for each of the quantities listed in case R I=  (identity matrix) (be careful!). 
 
 
3. Using the web site: http://www.ngs.noaa.gov/CORS/GoogleMap/CORS.shtml, find the 
coordinate data sheet of CORS station Westford (WES2).  Compute the NAD83 coordinates and 
velocity for 2002.0 from the ITRF00(1997.0) values and compare them to the values published 
by NGS.  Do the same for the CORS station Point Loma 5 (PLO5), Southern California, near the 
Mexican border.  (Hint: use equation (3.35) to transform from 1997.0 to 2002.0.w) 
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3.5 Vertical Datums 
 
Nowadays, heights of points could be reckoned using GPS with respect to an ellipsoid; in fact, 
we have already introduced this height as the ellipsoidal height, h (Section 2.1.2).  However, this 
height does not correspond with our intuitive sense of height as a measure of vertical distance 
with respect to a level surface.  Two points with the same ellipsoidal height may be at different 
levels in the sense that water would flow from one point to the other.  Ellipsoidal heights are 
purely geometric quantities that have no connection to the gravity potential; and, it is the gravity 
potential that determines which way water flows.  An unperturbed lake surface comes closest to 
a physical manifestation of a level surface.  Mean sea level (often quoted as a reference for 
heights) is also reasonably close, but not equal to a level surface, due to various non-gravitational 
forces that cause the hydrostatic equilibrium of the mean surface to deviate from being 
gravitationally level.  We may define a level surface simply as a surface on which the gravity 
potential is constant.  Discounting friction, no work is done in moving an object along a level 
surface; water does not flow on a level surface; and all points on a level surface should be at the 
same height – at least, this is what we intuitively would like to understand by heights.  The geoid 
is defined to be that level surface that closely approximates mean sea level (mean sea level 
deviates from the geoid by up to 2 m due to the persistent variations in pressure, salinity, 
temperature, wind setup, etc., of the oceans).  There is still today considerable controversy about 
the exact realizability (accessibility) of the geoid as a definite surface, and the definition given 
here is correspondingly (and intentionally) vague. 
 A vertical datum, like a horizontal datum, requires an origin, but being one-dimensional, 
there is no orientation; and, the scale is inherent in the measuring apparatus (leveling rods).  The 
origin is a point on the Earth’s surface (but see below for an alternative definition) where the 
height is a defined value (e.g., zero height at a coastal tide-gauge station).  This origin is 
obviously accessible and satisfies the requirement for the definition of a datum.  From this origin 
point, heights (that is, height differences) can be measured to any other point using standard 
leveling procedures (which we do not discuss further).  Traditionally, a point at mean sea level 
served as origin point, but it is not important what the absolute gravity potential is at this point, 
since one is interested only in height differences (potential differences) with respect to the origin.  
This is completely analogous to the traditional horizontal datum, where the origin point (e.g., 
located on the surface of the Earth) may have arbitrary coordinates, and all other points within 
the datum are tied to the origin in a relative way.  Each vertical datum, being thus defined with 
respect to an arbitrary origin, is not tied to a global, internationally agreed upon, vertical datum.  
The latter, in fact, does not yet exist officially, although much debate, discussion, literature, and 
candidate models have centered on just such a datum. 
 Figure 3.4 shows the geometry of two local vertical datums each of whose origin is a station 
at mean sea level.  In order to transform from one vertical datum to another requires knowing the 
gravity potential difference between these origin points.  This difference is not zero because 
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mean sea level is not exactly a level surface; differences in height between the origins typically 
are several decimeters. 
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Figure 3.4.  Two vertical datums with respect to mean sea level. 

 
 
 The heights that are measured and belong to a particular vertical datum ultimately are defined 
by differences in gravity potential with respect to the origin point.  There are a number of options 
to scale the geopotential difference so that it represents a height difference (that is, with distance 
units).  The most natural height (but not necessarily the most realizable height from a theoretical 
viewpoint) is the orthometric height, H, defined as the distance along the (curved) plumb line 
from the level surface (a local geoid), that passes through the datum origin, to the point in 
question.  With sufficient accuracy, we may neglect the curvature of the plumb line and 
approximate the orthometric height as a distance along the ellipsoidal normal.  Analogous to 
Figure 3.2, we then have 
 
 H h N= − , (3.37) 
 
where N is the distance from the ellipsoid to the level surface that passes through the origin 
point.  This is the (local) geoid undulation.  It is equal to the global geoid undulation minus the 
offset of the origin point or local vertical datum from the global geoid. 
 For North America, the National Geodetic Vertical Datum of 1929 (NGVD29) served the 
U.S. for vertical control until the late 1980’s; and Canada’s Geodetic Vertical Datum of 1928 
(CGVD28) is still the official datum for vertical control.  The origin of NGVD29 was actually 
based on several defined heights of zero at 21 coastal (mean sea level) tide-gauge stations in the 
U.S. and 5 in Canada.  Similarly, a suitable set of coastal tide gauge stations served to define the 
origin of CGVD28.  Defining zero height at different points of mean sea level caused distortions 
in the network since, as noted above, mean sea level is not a level surface.  Additional distortions 
were introduced because leveled heights were not corrected rigorously for the non-parallelism of 
the level surfaces. 
 In 1988 a new vertical datum was introduced, the North American Vertical Datum of 1988 
(NAVD88).  Its origin is a single station with a defined height (not zero) at Pointe-au-Père 
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(Father’s Point), on the St. Lawrence river in Rimouski, Québec, which is also the origin point 
for the International Great Lakes Datum of 1985 (IGLD85).  Despite this location for the origin, 
NAVD88 was never officially adopted by Canada.  Defining the origin at a single point 
eliminated the theoretical problem of constraining a level surface to a non-level surface (mean 
sea level).  Also, the leveled heights were more rigorously corrected for the non-parallelism of 
the level surfaces.  
 However, recent analyses determined44, with improved gravity models and GPS (providing N 
and h, respectively, in equation (3.37)), that the entire network has a tilt error of more than 1 
meter from the east coast (where the origin lies) to the west coast.  This is due in part to the 
propagation of systematic leveling errors, but also to remaining model errors in the 
implementation of the theory of orthometric height determination. 
 To rectify these problems (among others), NGS plans to replace NAVD88 by a geopotential 
model.  The Geodetic Survey Division (GSD) of Natural Resources Canada likewise is planning 
to replace CGVD28 with a geopotential model.  Both NGS and GSD are working together 
toward a unified North American Vertical Datum using this new paradigm, which constitutes a 
re-definition of the system for vertical control.  In essence, there will be no physical benchmark 
to define the origin of the datum.  Instead, a chosen value, 0W , of the gravity potential will serve 
the function of defining the geoid.  With an accurate geopotential model, it is then just a matter 
of determining the ellipsoidal height of a point (using GPS) and determining the geoid 
undulation, N, for this point from the gravity model.  Making use of equation (3.37) then yields 
the orthometric height, H.  Clearly, the geopotential model must be very accurate so that the 
computational error in N is commensurate with that of h.  The goal is cm-level accuracy for H 
over the entire continent. 
 

                                                 
44 Proceedings of the 2010 Federal Geospatial Summit on Improving the National Spatial Reference System. 

http://www.ngs.noaa.gov/2010Summit/2010FederalGeospatialSummitProceedings.pdf 
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Chapter 4 
 

Celestial Reference System 
 
 
Ultimately the orientation of the terrestrial reference system is tied to an astronomic system, as it 
has always been throughout history.  The astronomic reference system, or more correctly, the 
celestial reference system is supposed to be an inertial reference system in which our laws of 
physics hold without requiring corrections for rotations.  For geodetic purposes it serves as the 
primal reference for positioning since it has no dynamics.  Conversely, it is the system with 
respect to which we study the dynamics of the Earth as a rotating body.  And, finally, it serves, 
of course, also as a reference system for astrometry. 
 We will study primarily the transformation from the celestial reference frame to the 
terrestrial reference frame and this requires some understanding of the dynamics of Earth 
rotation and its orbital motion, as well as the effects of observing celestial objects on a moving 
and rotating body such as the Earth.  The definition of the celestial reference system was until 
very recently (1998), in fact, tied to the dynamics of the Earth, whereas, today it is defined as 
being almost completely independent of the Earth.  The change in definition is as fundamental as 
that which transferred the origin of the regional terrestrial reference system (i.e., the horizontal 
geodetic datum) from a monument on Earth’s surface to the geocenter.  It is, as always, a 
question of accessibility or realizability.  Traditionally, the orientation of the astronomic or 
celestial reference system was defined by two naturally occurring direction in space, the north 
celestial pole, basically defined by Earth’s spin axis (or close to it), and the intersection of the 
celestial equator with the ecliptic, i.e., the vernal equinox (see Section 2.2).  Once the dynamics 
of these directions were understood, it was possible to define mean directions that are fixed in 
space and the requirement of an inertial reference system was fulfilled (to the extent that we 
understand the dynamics).  The stars provided the accessibility to the system in the form of 
coordinates (and their variation) as given in a fundamental catalog, which is then the celestial 
reference frame.  Because the defining directions (the orientation) depend on the dynamics of the 
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Earth (within the dynamics of the mutually attracting bodies in our solar system), even the mean 
directions vary slowly in time.  Therefore, the realization of the system included an epoch of 
reference; i.e., a specific time when the realization held true.  For any other time, realization of 
the frame required transformations based on the motion of the observable axes, which in turn 
required a dynamical theory based on a fundamental set of constants and parameters.  All this 
was part of the definition of the celestial reference system. 
 On the other hand, it is known that certain celestial objects, called quasars (quasi-stellar 
objects), exhibit no perceived motion on the celestial sphere due to their great distance from the 
Earth.  These are also naturally occurring directions, but they have no dynamics, and as such 
would clearly be much preferred for defining the orientation of the celestial system.  The 
problem was their accessibility and hence the realizability of the frame.  However, a solid history 
of accurate, very-long-baseline interferometry (VLBI) measurements of these quasars has 
prompted the re-definition of the celestial reference system as one whose orientation is defined 
by a set of quasars.  In this way, the definition has fundamentally changed the celestial reference 
system from a dynamic system to a kinematic (or, geometrical) system.  The axes of the celestial 
reference system are still (close to) the north celestial pole and vernal equinox, but are not 
defined dynamically in connection with Earth’s motion, rather they are tied to the defining set of 
quasars whose coordinates are given with respect to these axes.  Moreover, there is no need to 
define an epoch of reference, because (presumably) these directions will never change in inertial 
space (at least in the foreseeable future of mankind). 
 The IERS International Celestial Reference System (ICRS), thus, is defined to be an inertial 
system (i.e., non-rotating) whose first and third mutually orthogonal coordinate axes (equinox 
and pole) were realized initially (1995) by the coordinates of 608 compact extra-galactic sources 
(quasars), as chosen by the Working Group on Reference Frames of the International 
Astronomical Union (IAU); see Feissel and Mignard (1998)1.  Of these, 212 sources defined the 
orientation, and the remainder comprised candidates for additional ties to the reference frame.  
The origin of the ICRS is defined to be the center of mass of the solar system (barycentric 
system) and is realized by observations in the framework of the theory of general relativity. 
 By recommendations from the International Astronomical Union (and duly adopted) the pole 
and equinox of the ICRS are supposed to be close to the mean dynamical pole and equinox of 
J2000.0 (Julian date, 2000, see below).  Furthermore, the adopted pole and equinox for ICRS, for 
the sake of continuity, should be consistent with the directions realized for FK5, which is the 
fundamental catalogue (fifth version) of stellar coordinates that refers to the epoch J2000.0 and 
served as realization of a previously defined celestial reference system.  Specifically, the origin 
of right ascension for FK5 was originally defined on the basis of the mean right ascension of 23 
radio sources from various catalogues, with the right ascension of one particular source fixed to 
its FK4 value, transformed to J2000.0.  Similarly, the FK5 pole was based on its J2000.0 
direction defined using the 1976 precession and 1980 nutation series (see below).  The FK5 
                                                 
1 Feissel, M., Mignard, F. (1998): The adoption of ICRS on 1 January 1998: Meaning and consequences.  Astron. 

Astrophys., 331, L33-L36. 
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directions are estimated to be accurate to ± 50 milliarcsec for the pole and ± 80 milliarcsec for 
the equinox; and, it is now known, from improved observations and dynamical models 
(McCarthy, 19962, McCarthy and Petit, 20033, Petit and Luzum, 20104), that the ICRS pole and 
equinox are close to the mean dynamical equinox and pole of J2000.0, well within these 
tolerances.  Thus, the definition of the ICRS origin of right ascension and pole are only 
qualitative with respect to FK5 – fundamentally they are defined to be geometric axes fixed by a 
set of quasars.  The precise transformation to a dynamical system, such as defined by modern 
theories, is briefly discussed in Section 4.1.3. 
 The realization of the ICRS, the International Celestial Reference Frame (ICRF) is 
accomplished with VLBI measurements of the quasars; and, as observations improve the 
orientation of the ICRF will be adjusted so that it has no net rotation with respect to previous 
realizations (analogous to the ITRF).  The original realization was designated ICRF1; and, it was 
extended in 1999 and again in 2002 with additional objects observed with VLBI, thus totaling 
667 and 717, respectively.  The next significant realization, designated ICRF2, was constructed 
in 2009, where now 295 quasars define the system (being more stable and better distributed in 
the sky than for ICRF1), and which also includes an additional 3119 extragalactic sources.  
Aside from VLBI, the principal realization of the ICRS is through the Hipparcos catalogue, 
based on recent observations of some 120,000 well-defined stars using the Hipparcos (High 
Precision Parallax Collecting Satellite), optical, orbiting telescope.  This catalogue is tied to the 
ICRF with an accuracy of about 0.6 mas (milliarcsec) in each axis.  Additional catalogues for up 
to 100 million stars are described by Petit and Luzum (ibid.). 
 
 
 
4.1 Dynamics of the Pole and Equinox 
 
Despite the simple, geometric (kinematic) definition and realization of the ICRS, we do live and 
operate on a dynamical body, the Earth, whose naturally endowed directions (associated with its 
spin and orbital motion) in space vary due to the dynamics of motion according to gravitational 
and geodynamical theories.  Inasmuch as we observe celestial objects to aid in our realization of 
terrestrial reference systems, we need to be able to transform between the ICRF and the ITRF, 
and therefore, we need to understand these dynamics to the extent, at least, that allows us to 
make these transformations.  The description of the transformation, comprising Earth orientation 
parameters, has also changed in recent years.  Here, both the traditional description and the 
modern transformation are treated, where the traditional one is perhaps a bit more accessible in 

                                                 
2 McCarthy, D.D. (ed.) (1996): IERS Conventions (1996).  IERS Tech. Note 21, Observatoire de Paris, Paris. 
3 McCarthy, D.D., Petit, G. (2003): IERS Conventions 2003.  IERS Technical Note 32, U.S. Naval Observatory, 

Bureau International des Poids et Mesures. 
4 Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010.  IERS Technical Note No.36, Verlag des Bundesamts 

für Kartographie und Geodäsie, Frankfurt am Main. 



 
Geometric Reference Systems 4 - 4 Jekeli, January 2012 

 
 

terms of physical intuition, whereas, the latter tends to hide these concepts.  Furthermore, the 
opportunity was taken in the new approach to implement certain nuances necessary for an 
unambiguous definition of Earth rotation.  Thus, we start with the traditional approach and 
evolve this into the modern transformation formulas. 
 Toward this end, we need, first of all, to define a system of time (since the theoretical 
description of dynamics inherently requires it).  We call the relevant time scale the Dynamic 
Time, referring to the time variable in the equations of motion describing the dynamical behavior 
of the mass bodies of our solar system.  Rigorously (with respect to the theory of general 
relativity), the dynamic time scale can refer to a coordinate system (coordinate time) that is, for 
example, barycentric (origin at the center of mass of the solar system) or geocentric, and is thus 
designated barycentric coordinate time (TCB) or geocentric coordinate time (TCG); or, it refers 
to a proper time, associated with the frame of the observer (terrestrial dynamic time (TDT), or 
barycentric dynamic time (TBD)); see Section 5.3 on further discussions of the different 
dynamical time scales.  The dynamic time scale, based on proper time, is the most uniform that 
can be defined theoretically, meaning that the time scale in our local experience, as contained in 
our best theories that describe the universe, is constant. 
 Dynamic time is measured in units of Julian days, which are close to our usual days based on 
Earth rotation, but they are uniform; whereas, solar days (based on Earth rotation) are not, for the 
simple reason that Earth rotation is not uniform.  The origin of dynamic time, designated by the 
Julian date, J0.0, is defined to be Greenwich noon, 1 January 4713 B.C.  Julian days, by 
definition, start and end when it is noon (dynamical time) in Greenwich, England.  Furthermore, 
by definition, there are exactly 365.25 Julian days in a Julian year, or exactly 36525 Julian days 
in a Julian century.  With the origin as given above, the Julian date, J1900.0, corresponds to the 
Julian day number, JD2,415,021.0, being Greenwich noon, 1 January 1900; and the Julian date, 
J2000.0, corresponds to the Julian day number, JD2,451,545.0, being Greenwich noon, 1 January 
2000 (see Figure 4.1).  We note that Greenwich noon represents mid-day in our usual 
designation of days starting and ending at midnight, and so JD2,451,545.0 is also 1.5 January 
2000.  Continuing with this scheme, 0.5 January 2000 is really Greenwich noon, 31 December 
1999 (or 31.5 December 1999). 
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Figure 4.1: One Julian century. 

 
 
 An epoch is an instant in time (as opposed to a time interval which is the difference between 
two epochs).  We need to define three epochs, as follows: 
 

0t : the fundamental or basic epoch for which the values of certain constants and parameters are 
defined that are associated with the dynamical theories of the transformation (previously, 
the reference system). 

 
t : the epoch of date, being the current or some other time at which the dynamics should be 

realized (e.g., the time of observation). 
 

Ft : an epoch that is fixed and arbitrary, representing another epoch with respect to which the 
theory could be developed. 

 
The distinction between 0t  and Ft  is a matter of convenience, where 0t  always refers to the 
epoch for which the constants are defined. 
 
 
4.1.1 Precession 
 
The gravitational interaction of the Earth with the other bodies of the solar system, including 
primarily the moon and the sun, but also the planets, cause Earth’s orbital motion to deviate from 
the simple Keplerian model of motion of two point masses in space.  Also, because the Earth is 
not a perfect homogeneous sphere, its rotation is affected likewise by the gravitational action of 
the bodies in the solar system.  If there were no other planets (only the Earth/moon system) then 
the orbit of the Earth/moon system around the sun would be essentially a plane fixed in space.  
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This plane defines the ecliptic (see also Section 2.3.2).  But the gravitational actions of the 
planets cause this ecliptic plane to behave in a dynamic way, called planetary precession. 
 If the obliquity of the ecliptic (Section 2.3.2) were zero (or the Earth were not flattened at its 
poles), then there would be no gravitational torques due to the sun, moon, and planets acting on 
the Earth.  But since 0ε ≠  and 0f ≠ , the sun, moon, and planets do cause a precession of the 
equator (and, hence, the pole) that is known as luni-solar precession and nutation, depending on 
the period of the motion.  That is, the equatorial bulge of the Earth and its tilt with respect to the 
ecliptic allow the Earth to be torqued by the gravitational forces of the sun, moon, and planets, 
since they all lie approximately on the ecliptic.  Planetary precession together with luni-solar 
precession is known as general precession. 
 The complex dynamics of the precession and nutation is a superposition of many periodic 
motions originating from the myriad of periods associated with the orbital dynamics of the 
corresponding bodies.  Smooth, long-period motion is termed luni-solar precession, and short-
periodic (up to 18.6 years) is termed nutation.  The periods of nutation depend primarily on the 
orbital motion of the moon relative to the orbital period of the Earth.  The most recent models for 
nutation also contain short-periodic effects due to the relative motions of the planets. 
 We distinguish between precession and nutation even though to some extent they have the 
same sources.  In fact, the modern approach mentioned earlier combines the two into one model 
(as seen later in Section 4.1.3).  Since precession is associated with very long-term motions of 
the Earth’s reference axes in space, we divide the total motion into mean motion, or average 
motion, that is due to precession and the effect of short-period motion, due to nutation, that at a 
particular epoch describes the residual motion, so to speak, with respect to the mean.  First, we 
discuss precession over an interval of time.  The theory for determining the motions of the 
reference directions was developed by Simon Newcomb at the turn of the 20th century.  Its basis 
lies in celestial mechanics and involves the n-body problem for planetary motion, for which no 
analytical solution has been found (or exists).  Instead, iterative, numerical procedures have been 
developed and formulated.  We can not give the details of this (see, e.g., Woolard, 19535), but 
can only sketch some of the results. 
 In the first place, planetary precession may be described by two angles, Aπ  and AΠ , where 
the subscript, A, refers to the “accumulated” angle from some fixed epoch, say 0t , to some other 
epoch, say t.  Figure 4.2 shows the geometry of the motion of the ecliptic due to planetary 
precession from 0t  to t, as described by the angles, Aπ  and AΠ .  The pictured ecliptics and 
equator are fictitious in the sense that they are affected only by precession and not nutation, and 
as such are called “mean ecliptic” and “mean equator”.  The angle, Aπ , is the angle between the 
mean ecliptics at 0t  and t; while AΠ  is the ecliptic longitude of the axis of rotation of the ecliptic 
due to planetary precession.  The vernal equinox at 0t  is denoted by 0ϒ . 
 
 
                                                 
5 Woolard, E.W. (1953): Theory of the rotation of the Earth around its center of mass. Nautical Almanac Office, 

U.S. Naval Observatory, Washington, D.C. 
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Figure 4.2: Planetary precession. 

 
 
 The angles, Aπ  and AΠ , can be expressed as time series where the coefficients are based on 
the celestial dynamics of the planets.  Usually, the series are given in the form: 
 

 
( ) ( ) ( )
( ) ( ) ( )

2 3
0 1 0 2 0

2 3
0 1 0 2 0

sin sin

sin cos

A A

A A

s t t s t t s t t

c t t c t t c t t

π Π

π Π

= − + − + − +

= − + − + − +

!

!
 (4.1) 

 
The epoch about which the series is expanded could also be Ft , but then the coefficients would 
obviously have different values.  Seidelmann (1992, p.104)6 gives the following series; see also 
Woolard, 1953, p.447): 
 

 

( )
( )

( )
( )

2

2 3

2

2 3

sin 4.1976 0.75250 0.000431

0.19447 0.000697 0.000179  [arcsec]

cos 46.8150 0.00117 0.005439

0.05059 0.003712 0.000344  [arcsec]

A A

A A

T T

T

T T

T

π Π τ

τ τ

π Π τ

τ τ

= − +

+ + −

= − − +

+ − +

 (4.2) 

 
where the units associated with each numerical coefficient are arcsec and the time variables, T 
and τ , are (unit-less) fractions of a Julian century, given by 
 

 0 ,
36525 [day] 36525 [day]

F Ft t t tT τ− −= = , (4.3) 

 
                                                 
6 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill 

Valley, CA. 
7 Woolard, E.W. (1953): Theory of the rotation of the Earth around its center of mass. Nautical Almanac Office, 

U.S. Naval Observatory, Washington, D.C. 
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where the epochs, 0t , Ft , and t, are Julian dates given in units of Julian days.  It is noted that this 
two-epoch approach to formulating precession has been largely abandoned in modern theories 
with no difference in accuracy. 
 The luni-solar precession depends on the geophysical parameters of the Earth.  No analytic 
formula based on theory was used for this due to the complicated nature of the Earth’s shape and 
internal constitution.  Instead, Newcomb gave an empirical parameter, (now) called Newcomb’s 
precessional constant, NP , based on observed rates of precession.  In fact, this “constant” rate is 
not strictly constant, as it depends slightly on time according to 
 
 ( )0 1 0NP P P t t= + − , (4.4) 

 
where 1 0.00369 arcsec/centuryP = −  (per century) is due to changes in eccentricity of Earth’s 
orbit (Lieske et al., 1977, p.10)8.  Newcomb’s precessional constant depends on Earth’s moments 
of inertia and enters in the dynamical equations of motion for the equator due to the gravitational 
torques of the sun and moon.  It is not accurately determined on the basis of geophysical theory, 
rather it is derived from observed general precession rates.  It describes the motion of the mean 
equator along the ecliptic according to the rate: 
 
 0cosN gP Pψ ε= − , (4.5) 

 
where 0ε  is the obliquity of the ecliptic at 0t , and gP  is a general relativistic term called the 
geodesic precession.  The accumulated angle in luni-solar precession of the equator along the 
ecliptic is given by Aψ . 
 Figure 4.3 shows the accumulated angles of planetary and luni-solar precession, as well as 
general precession (in longitude).  The precession angles, as given in this figure, describe the 
motion of the mean vernal equinox as either along the mean ecliptic (the angle, Aψ , due to 
motion of the mean equator, that is, luni-solar precession), or along the mean equator (the angle, 

Aχ , due to motion of the mean ecliptic, that is, planetary precession).  The accumulated general 
precession in longitude is the angle, as indicated, between the mean vernal equinox at epoch, 0t , 
and the mean vernal equinox at epoch, t.  Even though (for relatively short intervals of several 
years) these accumulated angles are small, we see that the accumulated general precession is not 
simply an angle in longitude, but motion due to a compounded set of rotations. 
 
 

                                                 
8 Lieske, J.H., Lederle, T., Fricke, W., Morando B. (1977): Expressions for the Precession quantities based upon the 

IAU (1976) system of astronomical constants.  Astron. Astrophys., 58, 1-16. 
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Figure 4.3: General precession = planetary precession + luni-solar precession. 

 
 
 It is easier to formulate the relationships between the various types of precession by 
considering the limits of the accumulated angles as the time interval goes to zero, that is, by 
considering the rates.  Following conventional notation, we denote rates by the corresponding 
un-subscripted angles: 
 

 
0 0 0

, ,A A A

t t t t t t

d d dpp
dt dt dt
χ ψχ ψ

= = =

= = = . (4.6) 

 
From Figure 4.3, we thus have the following relationship between the precession rates (viewing 
the geometry of the accumulated motions in the differential sense): 
 
 0cosp ψ χ ε= − , (4.7) 
 
where the second term is merely the projection of the planetary precession onto the ecliptic.  
Now, applying the law of sines to the spherical triangle MPϒ  in Figure 4.3, we find 
 

 
( )sin sin 180 sin sin

sin sin sin
A A A

A A A

χ ε π Π
χ ε π Π
°− ≈

⇒ ≈
 (4.8) 

 
Substituting the first of equation (4.1) and taking the time derivative according to equation (4.6), 
we have for the rate in planetary precession 
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0sin

sχ
ε

= , (4.9) 

 
where second-order terms (e.g., due to variation in the obliquity) are neglected.  Putting 
equations (4.9) and (4.5) into equation (4.7), the rate of general precession (in longitude) is given 
by 
 
 0 0cos cotN gp P P sε ε= − − . (4.10) 

 
More rigorous differential equations are given by Lieske et al. (1977, p.10, ibid.). 
 Equation (4.10) shows that Newcomb’s precessional constant, NP , is related to the general 
precession rate; and, this is how it is determined, from the observed rate of general precession at 
epoch, 0t .  This observed rate was one of the adopted constants that constituted the definition of 
the celestial reference system when it was defined dynamically.  The other constants included 1P  
(the time dependence of Newcomb’s constant), gP  (the geodesic precession term), 0ε  (the 
obliquity at epoch, 0t ), and any other constants needed to compute the coefficients, , , ,k ks s c c , on 
the basis of planetary dynamics.  Once these constants are adopted, all other precessional 
parameters can be derived. 
 The rate of general precession in longitude can also be decomposed into rates (and 
accumulated angles) in right ascension, m, and declination, n.  From Figure 4.4, we have the 
accumulated general precession in declination, An , and in right ascension, Am : 
 

 
0

0

sin

cos

A A

A A A

n

m

ψ ε

ψ ε χ

=

= −
 (4.11) 

 
and, in terms of rates: 
 

 
0

0

sin

cos

n

m

ψ ε

ψ ε χ

=

= −
 (4.12) 

 
Finally, the rate of general precession in longitude is then also given by: 
 
 0 0cos sinp m nε ε= + . (4.13) 
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Figure 4.4: General precession in right ascension and declination. 

 
 
 The rate, n, (and accumulated angle, An ) is one of three precessional elements that are used 
to transform from the mean pole and equinox at 0t  (or some other fundamental epoch) to the 
mean pole and equinox at another epoch, t.  The accumulated general precession in declination is 
also designated, Aθ .  Instead of the accumulated angle in right ascension, Am , as defined above, 
two other precessional elements are used that facilitate the transformation.  Referring to Figure 
4.5, showing also the result of general precession, but now just in terms of motions of the pole 
and equinox, we define two angles, Az  and Aζ , in right ascension.  The mean pole, 0Z , at epoch, 

0t , moves as a result of general precession to its position, Z, at epoch, t; and the connecting great 
circle arc clearly is the accumulated general precession in declination.  The general precession 
rate in right ascension can be decomposed formally into rates along the mean equator at epoch, 

0t , and along the mean equator at a differential increment of time later: 
 
 m zζ= + . (4.14) 
 
 We see that the great circle arc, "0Z ZQ , intersects the mean equator of 0t  at right angles 
because it is an hour circle with respect to the pole, 0Z ; and it intersects the mean equator of t at 
right angles because it is also an hour circle with respect to the pole, Z.  Consider a point on the 
celestial sphere.  Let its coordinates in the mean celestial reference frame of 0t  be denoted by 
( )0 0,α δ  and in the mean frame at epoch, t, by ( ),m mα δ .  In terms of unit vectors, let 
 

 
0 0

0 0 0

0

cos cos cos cos
sin cos , sin cos

sin sin

m m

m m m

m

α δ α δ
α δ α δ

δ δ

   
   = =   
   
   

r r . (4.15) 
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Then, with the angles as indicated in Figure 4.5, we have the following transformation between 
the two frames: 
 

 
( ) ( ) ( )3 2 3 0

0

m A A AR z R R

P

θ ζ= − + −

=

r r

r
 (4.16) 

 
where P is called the precession transformation matrix.  Again, note that this is a transformation 
between mean frames, where the nutations have not yet been taken into account. 
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Figure 4.5: Precessional elements. 

 
 
 Numerical values for the precessional constants, as adopted by the International 
Astronomical Union in 1976, are given by 
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 (4.17) 

 
and refer to the fundamental epoch, 0 2000.0t J= .  Based on these, the following series 
expressions are given by Seidelmann (1992, p.104)9 for the various precessional quantities and 
elements: 
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2

2 3
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9 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill 

Valley, CA. 
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where, as before, T and τ  are given by equations (4.3).  The series, given by equations (4.18) 
through (4.26) are expansions with respect to an arbitrary (but fixed) epoch, Ft , but based on the 
precessional constants valid for 0t .  If we set 0Ft t= , then, of course, 0T = , and 

( ) ( )0 36525 dayst tτ = − . 
 If, for the sake of convenience, we do set 0Ft t= , then we see that the coefficient of τ  in 
these series represents the rate of the corresponding precessional element at 0t t=  (i.e., 0τ = ).  
For example, 
 

 0

5038.7784 arcsec/Julian century

50 arcsec/year

A
d
d τ

ψ
τ =

=

≈
 (4.27) 

 
which is the rate of luni-solar precession, causing the Earth’s spin axis to precess with respect to 
the celestial sphere and around the ecliptic pole with a period of about 25,800 years.  The luni-
solar effect is by far the most dominant source of precession.  We see that the rate of change in 
the obliquity of the ecliptic is given by 
 

 0

46.8150 arcsec/Julian century

0.47 arcsec/year

A
d
d τ

ε
τ =

= −

≈
 (4.28) 

 
and the rate of the westerly motion of the equinox, due to planetary precession, is given by 
 

 0

10.5526 arcsec/Julian century

0.11 arcsec/year

A
d
d τ

χ
τ =

=

≈
 (4.21) 

 
Note that these rates would change with differently adopted precessional constants. 
 In 2000, the IAU recommended a revision of the precession model, combined with a 
significant revision of the nutation model (see below) based on a least-squares adjustment to 
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current VLBI data, based on the work of Mathews et al. (2002)10.  Principally, this new model 
corrects the longitude and obliquity precession rates.  A new dynamical theory for precession 
was developed11 and adopted in 2006 that accounts for terms up to fifth order in the polynomial 
expressions and formulates the dynamical luni-solar precession consistent with the precession 
rates obtained by the 2000 IAU model. 
 
 
4.1.2 Nutation 
 
Up to now we have considered only what the dynamics of the pole and equinox are in the mean 
over longer periods.  The nutations describe the dynamics over the shorter periods.  Also, for 
precession we determined the motion of the mean pole and mean equinox over an interval, from 

0t  to t.  The transformation due to precession was from one mean frame to another mean frame.  
But for nutation, we determine the difference between the mean position and the true position for 
a particular (usually the current) epoch, t (also known as the epoch of date).  The transformation 
due to nutation is one from a mean frame to a true frame at the same epoch.  Since we will deal 
with true axes, rather than mean axes, it is important to define exactly the polar axis with respect 
to which the nutations are computed (as discussed later, we have a choice of spin axis, angular 
momentum axis, and “figure” axis).  Without giving a specific definition at this point (see, 
however, Section 4.3.2), we state that the most suitable axis, called the Celestial Ephemeris Pole 
(CEP) corresponding to the angular momentum axis for free motion, being also close to the spin 
axis, represents the Earth’s axis for which nutations are computed.  More, recently (with the 
2003 IERS Conventions, see Section 4.1.3) the axis for nutations has been refined slightly and is 
called the Celestial Intermediate Pole (CIP); see also the IERS Conventions 201012.  We will use 
this new designation, but also discuss the original CEP in some detail in section 4.3.2. 
 Recall that nutations are due primarily to the luni-solar attractions and hence can be modeled 
on the basis of a geophysical model of the Earth and its motions in space relative to the sun and 
moon.  The nutations that we thus define are also called astronomic nutations.  The 
transformation for the effect of nutation is accomplished with two angles, ∆ε  and ∆ψ , that 
respectively describe (1) the change (from mean to true) in the tilt of the equator with respect to 
the mean ecliptic, and (2) the change (again, from mean to true) of the equinox along the mean 
ecliptic (see Figure 4.6).  We do not need to transform from the mean ecliptic to the true ecliptic, 
since we are only interested in the dynamics of the true equator (and by implication the true 
pole).  The true vernal equinox, Tϒ , is always defined to be on the mean ecliptic. 
 
                                                 
10 Mathews, P.M., Herring, T.A., and Buffett, B.A. (2002): Modeling of nutation-precession: New nutation series for 

nonrigid Earth, and insights into the Earth’s interior.  J. Geophys. Res., 107(B4), 10.1029/2001JB000390. 
11 Capitaine, N., Wallace, P.T., Chaprone, J. (2003): Expressions for IAU 2000 precession quantities. Astronomy 

and Astrophysics, 412(2), 567-586. 
12 Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010.  IERS Technical Note No.36, Verlag des Bundesamts 

für Kartographie und Geodäsie, Frankfurt am Main. 
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Figure 4.6: Nutational elements. 

 
 
 With respect to Figure 4.6, it is seen that ∆ψ  is the nutation in longitude.  It is due mainly to 
the ellipticities of the Earth’s and moon’s orbits, causing non-uniformity in the luni-solar 
precessional effects.  The nutation in obliquity, ∆ε , is due mainly to the moon’s orbital plane 
being out of the ecliptic (by about 5.145 degrees).  Models for the nutation angles are given in 
the form 
 

 
1 1

cos , sin
n n

i i i i
i i

C A S A∆ε ∆ψ
= =

= =∑ ∑ , (4.29) 

 
where the angle 
 
 'i i i i i iA a b c F d D eΩ= + + + +# #  (4.30) 
 
represents a linear combination of fundamental arguments, being combinations of angles, or 
ecliptic coordinates, of the sun, moon (and their orbital planes) on the celestial sphere.  The 
multipliers, , ,i ia e… , correspond to different linear combinations of the fundamental arguments 
and describe the corresponding periodicities with different amplitudes, iC  and iS .  The reader is 
referred to (Seidelmann, 1992, p.112-114)13 for the details of these nutation series.  Table 4.1 
below gives only some of these terms; there are 97 more with lower magnitudes for the 1980 
nutation series.  τ  is given by equation (4.3) with 0Ft t= : 
 

 0

36525 [day]
t tτ −= , (4.31) 

 

                                                 
13 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill 

Valley, CA. 
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where 0t  and t are the Julian day numbers for 2000.0J  and the epoch of date, respectively.   
Table 4.2 provides series expressions for the fundamental arguments in terms of the 1980 IAU 
nutation model. 
 The 1980 IAU theory of nutation is based on a non-rigid Earth model and the resulting series 
replaces the previous nutation series by Woolard of 1953.  Subsequent theory developed by 
Mathews et al. (2002)14 includes the effects of the actual non-rigidity of the Earth (see below).  
The predominant terms in the nutation series have periods of 18.6 years, 0.5 years, and 0.5 
months as seen in Table 4.1.  Figure 4.7 depicts the motion of the pole due to the combined luni-
solar precession and the largest of the nutation terms.  This diagram also shows the so-called 
nutational ellipse which describes the extent of the true motion with respect to the mean motion.  
The “semi-axis” of the ellipse, that is orthogonal to the mean motion, is the principal term in the 
nutation in obliquity and is also known as the constant of nutation.  The values for it and for the 
other “axis”, given by sin∆ψ ε  (Figure 4.6), can be inferred from Table 4.1.  The total motion 
of the pole (mean plus true) on the celestial sphere, of course, is due to the superposition of the 
general precession and all the nutations. 
 
 
Table 4.1:  Some terms of the series for nutation in longitude and obliquity, referred to the mean 
ecliptic of date (1980 IAU theory of nutation). 

period 
[days] 

iS  [ 410  arcsec− ] iC  [ 410  arcsec− ] 

 6798.4  –171996 –174.2τ  *  92025 +8.9τ  
 3399.2  2062 +0.2τ   –895 +0.5τ  
 182.6  –13187 –1.6τ   5736 –3.1τ  
 365.3  1426 –3.4τ   54 –0.1τ  
 121.7  –517 +1.2τ   224 –0.6τ  
 13.7  –2274 –0.2τ   977 –0.5τ  
 27.6  712 +0.1τ   –7 
 13.6  –386 –0.4τ   200 
 9.1  –301  129 –0.1τ  

*τ  is given by equation (4.31). 
 
 

                                                 
14 Mathews, P.M., Herring, T.A., Buffett, B.A. (2002): Modeling of nutation-precession: New nutation series for 

nonrigid Earth, and insights into the Earth’s interior.  J. Geophys. Res., 107(B4), 10.1029/2001JB000390. 
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Table 4.2: Fundamental arguments for the nutation angles (1980 IAU Nutation series, from 
Seidelmann (ibid.) 

( )r 2 3134 57 '46.733" 1325 198 52 '02.633" 31.310" 0.064"τ τ τ= ° + + ° + +#  
( )r 2 3' 357 31'39.804" 99 359 03'01.224" 0.577" 0.012"τ τ τ= ° + + ° − −#  
( )r 2 393 16 '18.877" 1342 82 01'03.137" 13.257" 0.011"F τ τ τ= ° + + ° − +  
( )r 2 3297 51'01.307" 1236 307 06 '41.328" 6.891" 0.019"D τ τ τ= ° + + ° − +  
( )r 2 3135 02 '40.280" 5 134 08 '10.539" 7.455" 0.008"Ω τ τ τ= ° − + ° + +  

=#  the mean longitude of the Moon minus the mean longitude of the Moon’s perigee; 
' =#  the mean longitude of the Sun minus the mean longitude of the Sun’s perigee; 

F =  the mean longitude of the Moon minus the mean longitude of the Moon’s node; 
D =  the mean longitude of the Moon minus the mean longitude of the Sun; 
Ω =  the longitude of the mean ascending node of the lunar orbit on the ecliptic measured from 
the mean equinox of date. 
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Figure 4.7: Luni-solar precession and nutation. 
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 The transformation at the current epoch (epoch of date) from the mean frame to the true 
frame accounts for the nutation of the CIP.  Referring to Figure 4.6, we see that this 
transformation is accomplished with the following rotations: 
 

 
( ) ( ) ( )1 3 1 m

m

R R R

N

ε ∆ε ∆ψ ε= − − −

=

r r

r
 (4.32) 

 
where ε  is the mean obliquity at epoch, t, and 
 

 
cos cos
sin cos

sin

α δ
α δ
δ

 
 =  
 
 

r  (4.33) 

 
is the vector of coordinates in the true frame at the current epoch.  The combined transformation 
due to precession and nutation from the mean epoch, 0t , to the current epoch, t, is given by the 
combination of equations (4.16) and (4.32): 
 
 0NP=r r . (4.34) 
 
Approximate expressions for the nutation matrix, N, can be formulated since ∆ε  and ∆ψ  are 
small angles (Seidelmann, 1992, p.120)15; in particular, they may be limited to just the principal 
(largest amplitude) terms, but with reduced accuracy.  The new convention for the 
transformation, analogous to equation (4.34), was adopted in 2003 by the IERS and is discussed 
in Section 4.1.3. 
 Over the last decade, the IAU has recommended new models for precession (see Section 
4.1.1) and nutation.  Upon a recommendation in 2000, the IAU 1976 precession and IAU 1980 
nutation models were replaced officially in 2003 by a new precession-nutation model of 
Mathews et al. (2002), designated IAU 2000A.  In addition to correcting the longitude and 
obliquity precession rates, this model accounts for the mantle anelasticity, the effects of ocean 
tides, electromagnetic couplings between the mantle, the fluid outer core, and the solid inner 
core, as well as various non-linear terms not previously considered.  The new series contains 678 
luni-solar terms and 687 planetary terms.  For additional details and availability see Petit and 
Luzum (2010)16.  An abbreviated version for those not needed ultimate precision is designated 
IAU 2000B.  The revision of the precession components of this 2000 IAU model (see Section 

                                                 
15 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill 

Valley, CA. 
16 Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010.  IERS Technical Note No.36, Verlag des Bundesamts 

für Kartographie und Geodäsie, Frankfurt am Main. 
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4.1.1) forms the newly recommended (2006) and adopted (2009) combined IAU 2006/2000A 
precession-nutation model.  It is accurate to about 0.3 milliarcsec (mas). 
 Finally, it is noted that previous and current nutation models are supplemented for those 
seeking the highest accuracy and temporal resolution by small corrections (called “celestial pole 
offsets”) obtained from continuing VLBI observations.  For example, the most recent models do 
not contain the diurnal motion called free-core nutation caused by the interaction of the mantle 
and the rotating fluid outer core17.  IERS publishes differential elements in longitude, δψ , and 
obliquity, δε  (previously also denoted d∆ψ  and d∆ε ) that can be added to the elements 
implied by the 1980 nutation series (see also equations (4.53) and (4.54) under the new 
conventions): 
 

 
( )

( )

model

model

∆ψ ∆ψ δψ

∆ε ∆ε δε

= +

= +
 (4.35) 

 
 
4.1.3 New Conventions 
 
The method of describing the motion of the CIP on the celestial sphere according to precession 
and nutation, as given by the matrices in equations (4.16) and (4.32), has been critically analyzed 
by astronomers, in particular by N. Capitaine (Capitaine et al., 198618, Capitaine, 199019) at the 
Paris Observatory.  Several deficiencies in the conventions were indicated especially in light of 
new and more accurate observations and because of the new kinematical way of defining the 
Celestial Reference System (CRS).  Specifically, the separation of motions due to precession and 
nutation was considered somewhat artificial since no clear distinction can be made between 
them.  Also, with the kinematical definition of the Celestial Reference System, there is no longer 
any reason to use the mean vernal equinox on the mean ecliptic as an origin of right ascensions.  
In fact, doing so imparts additional rotations to right ascension due to the rotation of the ecliptic 
that then must be corrected when considering the rotation of the Earth with respect to inertial 
space (Greenwich Sidereal Time, or the hour angle at Greenwich of the vernal equinox, see 
Section 2.3.4; see also Section 5.2.1).  Similar “imperfections” were noted when considering the 
relationship between the CIP and the terrestrial reference system, which will be addressed in 
Section 4.3.1.1. 
 In 2000 the International Astronomical Union (IAU) adopted a set of resolutions that 
precisely adhered to a new, more accurate, and simplified way of dealing with the transformation 
                                                 
17 Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010.  IERS Technical Note No.36, Verlag des Bundesamts 

für Kartographie und Geodäsie, Frankfurt am Main. 
18 Capitaine, N., Guinot, B., Souchay, J. (1986): A non-rotating origin on the instantaneous equator - definition, 

properties, and use.  Celestial Mechanics, 39, 283-307. 
19 Capitaine, N. (1990): The celestial pole coordinates.  Celes. Mech. Dyn. Astr., 48, 127-143. 
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between the celestial and terrestrial reference systems.  The IERS, in 2003, similarly adopted the 
new methods based on these resolutions20.  These were reinforced with IAU resolutions in 2006 
and adopted as part of the IERS Conventions 2010.  In addition to revising the definitions of the 
Celestial Ephemeris Pole (CEP), now called the Celestial Intermediate Pole (CIP), the new 
conventions revised the origins for right ascensions and terrestrial longitude in the intermediate 
frames associated with the transformations between the Celestial and Terrestrial Reference 
Systems.  The new definitions were designed so as to ensure continuity with the previously 
defined quantities and to eliminate extraneous residual rotations from their realization.  These 
profoundly different methods and definitions simplify the transformations and solidify the 
paradigm of kinematics (rather than dynamics) upon which the celestial reference system is 
based.  On the other hand the new transformation formulas tend to hide some of the dynamics 
that lead up to their development. 
 In essence, the position of the (instantaneous) pole, P, on the celestial sphere at the epoch of 
date, t, relative to the position at some fundamental epoch, 0t , can be described by two 
coordinates (very much like polar motion coordinates, see Section 4.3.1) in the celestial system 
defined by the reference pole, 0P , and by the reference origin of right ascension, 0Σ , as shown in 
Figure 4.8.  In this figure, the pole, P, is displaced from the pole, 0P , and has celestial 
coordinates, d (co-declination) and E (right ascension).  The true (instantaneous) equator (the 
plane perpendicular to the axis through P) at time, t, intersects the reference equator (associated 
with 0P ) at two nodes that are 180°  apart.  The hour circle of the node, N, is orthogonal to the 
great circle arc %0P P ; therefore, the right ascension of the ascending node of the equator is 90°  
plus the right ascension of the instantaneous pole, P.  The origin for right ascension at the epoch 
of date, t, is defined kinematically under the condition that there is no rotation rate in the 
instantaneous coordinate system about the pole due to precession and nutation.  This is the 
concept of the so-called non-rotating origin (NRO) that is now also used to define the 
instantaneous origin for longitudes (see Section 4.3.1.1).  This origin for right ascensions on the 
instantaneous equator is now called the Celestial Intermediate Origin (CIO), denoted σ  in 
Figure 4.8 (it has also been called the Celestial Ephemeris Origin, CEO). 
 Rather than successive transformations involving precessional elements and nutation angles, 
the transformation is more direct in terms of the coordinates, ( ),d E , and the additional 
parameter, s, that defines the instantaneous origin of right ascensions: 
 
 T

0Q=r r , (4.36) 
 
where 
 
 ( ) ( ) ( ) ( )T

3 3 2 3Q R s R E R d R E= − − , (4.37) 

                                                 
20 McCarthy, D.D., Petit, G. (2003): IERS Conventions 2003.  IERS Technical Note 32, U.S. Naval Observatory, 

Bureau International des Poids et Mesures. 
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which is easily derived by considering the successive rotations as the origin point transforms 
from  the CRS origin, 0Σ , to the instantaneous origin, σ  (Figure 4.8).  Equation (4.36) 
essentially replaces equation (4.34), but also incorporates the new conventions for defining the 
origin in right ascension.  Later (in Section 5.2.1) we will see the relationship to the previously 
defined transformation.  We adhere to the notation used in the IERS Conventions 2003 which 
defines the transformation, Q, as being from the system of the instantaneous pole and origin to 
the CRS. 
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Figure 4.8: Coordinates of instantaneous pole in the celestial reference system. 

 
 
 It remains to determine the parameter, s.  The total rotation rate of the pole, P, in inertial 
space is due to changes in the coordinates, ( ),d E , and in the parameter, s.  Defining three non-
colinear unit vectors, 0n , m , n , essentially associated with these quantities, as shown in Figure 
4.8, we may express the total rotation rate as follows: 
 
 ( )0E d E s= + − +Θ n m n&& & & , (4.38) 
 
where the dots denote time-derivatives.  Now, s is chosen so that the total rotation rate, Θ , has 
no component along n .  That is, s defines the origin point, σ , on the instantaneous equator that 
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has no rotation rate about the corresponding polar axis (non-rotating origin).  This condition is 
formulated as 0⋅ =Θ n , meaning that there is no component of the total rotation rate along the 
instantaneous polar axis.  Therefore, 
 
 ( )00 E d E s= ⋅ + ⋅ − +n n n m && & & ; (4.39) 

 
and, since 0⋅ =n m , 0 cos d⋅ =n n , we have 
 
 ( )cos 1s d E= − && . (4.40) 
 
 For convenience, we define coordinates X, Y, and Z: 
 

 
sin cos
sin sin

cos

X d E
Y d E
Z d

   
   =   
   
   

. (4.41) 

 
Then, it is easily shown that 
 
 ( )2cos 1XY YX E d− = − −& & & ; (4.42) 

 
and, substituting this together with cosZ d=  into equation (4.40) and integrating yields 
 

 
0

0 1

t

t

XY YXs s dt
Z
−= −
+∫
& &

, (4.43) 

 
where ( )0 0s s t=  is chosen so as to ensure continuity with the previous definition of the origin 
point at the epoch 1 January 2003. 
 The transformation matrix, Q, equation (4.37), is given more explicitly by: 
 

 
( ) ( )
( ) ( ) ( )

2

2
3

1 cos 1 cos sin cos 1 cos sin cos
sin cos 1 cos 1 sin 1 cos sin sin

sin cos sin sin cos

E d E E d d E
Q E E d E d d E R s

d E d E d

 − − − −
 = − − − − 
 − − 

. (4.44) 

 
With the coordinates, ( ), ,X Y Z , defined by equation (4.41), and 21 cos sind a d− = , where 

( )1 1 cosa d= + , it is easy to derive that 
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( )
( )

2

2
3

2 2

1
1

1

aX aXY X
Q aXY aY Y R s

X Y a X Y

 − − 
= − − 
  − − − + 

, (4.45) 

 
Expressions for X and Y can be obtained directly from precession and nutation equations with 
respect to the celestial system (see references mentioned in Section 4 of (Capitaine, 1990)).  For 
the latest IAU 2006/2000A precession-nutation models, Petit and Luzum (2010)21 give the 
following: 
 

 ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2

3 4 5

,0 ,0

,1 ,1

2 2
,2 ,2

ARGUMENT ARGUMENT

ARGUMENT ARGUMENT

ARGUMENT ARGUMENT

0.016617 2004.191898 0.4297829
0.19861834 0.000007578 0.0000059285

sin cos

sin cos

sin cos  [arcs

s cj j
j

s cj j
j

s cj j
j

X

a a

a a

a a

τ τ
τ τ τ

τ τ

τ τ

= − + −

− + +

+ +

+ +

+ + +

∑
∑
∑ ! ec]

 (4.46) 

 

 ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2

3 4 5

,0 ,0

,1 ,1

2 2
,2 ,2

ARGUMENT ARGUMENT

ARGUMENT ARGUMENT

ARGUMENT ARGUMENT

0.006951 0.025896 22.4072747
0.00190059 0.001112526 0.0000001358

sin cos

sin cos

sin cos  [arcsec

s cj j
j

s cj j
j

s cj j
j

Y

b b

b b

b b

τ τ
τ τ τ

τ τ

τ τ

= − − −

+ + +

+ +

+ +

+ + +

∑
∑
∑ ! ]

 (4.47) 

 
where ( ) ( )0 36525 [day]t tτ = −  with t and 0t  the Julian day numbers for the epoch of date and 
J2000.0, respectively; and, the coefficients ( ),s k j

a , ( ),c k j
a  ( ),s k j

b , ( ),c k j
b  are available22 in 

tabulated form for each of the corresponding fundamental arguments, ARGUMENT , of the nutation 
model.  These arguments are similar to those given in equation (4.30), but now include ecliptic 
longitudes of the planets.  A full description is given by Petit and Luzum (ibid., Section 5.7). 

                                                 
21 Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010.  IERS Technical Note No.36, Verlag des Bundesamts 

für Kartographie und Geodäsie, Frankfurt am Main. 
22 ftp://tai.bipm.org/iers/conv2010/chapter5/ 
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 Also, for the parameter, s, the following includes all terms larger than 0.5 arcsecµ , as well as 
the constant, 0s : 
 

 

2 3

2

1 94 3808.65 122.68 72574.11
2

sin sin cos sin  [ arcsec]k k k k k k k k
k k k k

s XY

C D E F

τ τ τ

α τ β τ γ τ θ µ

= − + + − −

+ + + +∑ ∑ ∑ ∑
 (4.48) 

 
where the coefficients, kC , kD , kE , kF , and the arguments, kα , kβ , kγ , kθ , are elaborated by 
Petit and Luzum (ibid., Chapter 5, p.59). 
 We note that the newly adopted IAU 2006/2000A model for precession-nutation (on which 
expressions (4.46), (4.47), and (4.48) are based) replace the IAU 2000 model (and, of course, the 
old IAU 1976 precession and IAU 1980 nutation models).  The new models are described in 
detail in (ibid.) and yield accuracy of about 0.3 mas  in the position of the pole.  Furthermore, 
these transformation equations referring to the kinematic pole of the ICRS incorporate the 
“frame bias” described below. 
 To see how the coordinates, ( ),d E , are related to the traditional precession and nutation 
angles, it is necessary to consider how the Celestial Reference System was defined prior to the 
new, current kinematic definition.  The dynamic definition was based on the mean equator and 
mean equinox at a certain fundamental epoch, 0t .  Recall that the precession and nutation of the 
equator relative to the mean ecliptic at 0t  is due to the accumulated luni-solar precessions in 
longitude, Aψ , and in the obliquity of the ecliptic, Aω  (which differs from Aε  by the rotation of 
the mean ecliptic; see Figure 4.4), as well as the nutations, 1∆ψ  and 1∆ε , in longitude and in the 
obliquity at 0t  (again, differing from corresponding quantities at t).  Let ( ),d E  be coordinates, 
similar to ( ),d E , of the instantaneous pole in the dynamic mean system.  Then, defining 
( ), ,X Y Z  similar to ( ), ,X Y Z , it is easy to derive the following identity from the laws of sines 
and cosines applied to the spherical triangle, 0 1Nϒϒ , in Figure 4.9: 
 

 
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1 1

1 1 0 1 0

1 1 0 1 0

sin cos sin sin
sin sin sin cos cos cos sin

cos sin cos sin cos cos

A A

A A A

A A A

X d E
Y d E
Z d

ω ∆ε ψ ∆ψ
ω ∆ε ψ ∆ψ ε ω ∆ε ε
ω ∆ε ψ ∆ψ ε ω ∆ε ε

   + + 
    = = + + − +    

     + + + +    

. (4.49) 

 
Further expansions of X  and Y  as series derivable from series expansions for the quantities, 

Aψ , Aω , 1∆ψ , and 1∆ε  may be found in Capitaine (1990)23. 
 The dynamic mean pole, 0P , is offset from the kinematic pole of the ICRS, as shown in 
Figure 4.10, by small angles, 0ξ  in X and 0η  in Y.  Also, a small rotation, 0dα , separates the 
mean equinox from the origin of the ICRS.  These offsets, called frame bias, are defined for the 

                                                 
23 Capitaine, N. (1990): The celestial pole coordinates.  Celes. Mech. Dyn. Astr., 48, 127-143. 
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mean dynamic system in the ICRS, so that the transformation between ( ), ,X Y Z  and ( ), ,X Y Z  
is given by 
 

 

( ) ( ) ( )1 0 2 0 3 0

0 0

0 0

0 0

1
1

1

X X
Y R R R d Y
Z Z

d X
d Y

Z

η ξ α

α ξ
α η
ξ η

   
   = −   

     
−  

  = − −  
  
  

 (4.50) 

 
where the approximation, equation (1.9) was used.  Or, setting 1Z ≈ , and neglecting second-
order terms, 
 

 
0 0

0 0

X X d Y

Y Y d X

ξ α

η α

= + −

= + +
 (4.51) 

 
McCarthy and Petit (2003, Ch.5, p.9,12)24 give the following values for these offsets based on 
the IAU 2000 nutation model (they have not changed for the IAU 2006/2000A model); 
 

 
0

0

0

16.6170 0.01 mas
6.8192 0.01 mas

14.60 0.05 masd

ξ
η
α

= − ±
= − ±
= − ±

 (4.52) 

 
The rotation, 0dα , refers to the offset of the mean dynamic equinox of an ecliptic interpreted as 
being inertial (i.e., not rotating).  In the past, the rotating ecliptic was used to define the dynamic 
equinox.  The difference (due to a Coriolis term) between the two equinoxes is about 93.7 
milliarcsec (Standish, 1981)25, so care in definition must be exercised when applying the 
transformation, equations (4.51), with values given by equations (4.52).  Note that Figure 4.10 
only serves to define the offsets according to equation (4.51), but does not show the actual 
numerical relationships (equations (4.52)) between the ICRS and the CEP(J2000.0) since the 
offsets are negative.  Again, these offsets are already included in the expressions (4.46) and 
(4.47) for X and Y. 

                                                 
24 McCarthy, D.D., Petit, G. (2003): IERS Conventions 2003.  IERS Technical Note 32, U.S. Naval Observatory, 

Bureau International des Poids et Mesures. 
25 Standish, E.M. (1981): Two differing definitions of the dynamical equinox and the mean obliquity.  Astron. 

Astrophys., 101, L17-L18. 
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 The celestial pole offsets in longitude and obliquity, ( ),δψ δε , that correct the IAU 
2006/2000A precession-nutation model on the basis of VLBI observations are not included, 
however, and must be added.  The corrections are published by IERS in terms of corrections to X 
and Y.  The coordinates of the CEP thus are (Petit and Luzum, 2010, Ch.5, p.57) 
 
 ( ) ( )IAU 2006/2000A , IAU 2006/2000AX X X Y Y Yδ δ= + = + , (4.53) 

 
where 
 

 
( )

( )
sin cos

cos sin
A A A A

A A A A

X

Y

δ δψ ε ψ ε χ δε
δ δε ψ ε χ δψ ε

= + −

= − −
 (4.54) 
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Figure 4.9: Coordinates of the true pole at t in the dynamic system of 0t . 
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Figure 4.10: Definition of offset parameters of dynamic mean system in the ICRS. 
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4.1.4 Problems 
 
1. a) Make a rough estimate of the present declination and right ascension of the vernal 
equinox in 120 B.C., the date when precession was discovered. 
 b) Determine the mean coordinates at J1950.0 of the vernal equinox of the celestial frame 
defined at J2000.0.  Then determine the mean coordinates at J2000.0 of the vernal equinox of the 
celestial frame defined at J1950.0.  In both cases use the precession expressions derived for the 
constants defined at the fundamental epoch J2000.0.  Compare the precessional elements in each 
case and compare the resulting coordinates.  Use 10-digit precision in your computations. 
 
2. a) The coordinates of a star at J2000.0 are: 16 hr 56 min 12.892 secα = , 82 12 '39.03"δ = ° .  
Determine the accumulated precession of the star in right ascension during the year 2001. 
 b) Determine the general precession, Ap , accumulated over 1 Julian minute at J1998.0. 
 
3. Show that the precession rates, m and n, at epoch, Ft , are given by 
 

 
( )

( )

2

2

4612.4362 2.79312 0.000278  [arcsec]

2004.3109 0.85330 0.000217  [arcsec]

m T T

n T T

= + −

= + − −

 (4.55) 

 
 
4. Give a procedure (flow chart with clearly identified input, processing, and output) that 
transforms coordinates of a celestial object given in the celestial reference system of 1900 (1900 
constants of precession) to its present true coordinates.  Be explicit in describing the epochs for 
each component of the transformation and give the necessary equations. 
 
5. Derive the following: equation (4.43) starting with equation (4.40); equation (4.45) starting 
with equation (4.37); and equation (4.49). 
 
6. Show that 
 

 ( )2 21 1
2 8

a X Y= + + +! , (4.56) 

 
where a is defined after equation (4.44). 
 
7. Derive equations (4.54). 
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4.2 Observational Systematic Effects 
 
The following sections deal with effects that need to be corrected in order to determine true 
coordinates of celestial objects from observed, or apparent coordinates.  These effects are due 
more to the kinematics of the observer and the objects being observed than the dynamics of 
Earth’s motion. 
 
 
4.2.1 Proper Motion 
 
Proper motion refers to the actual motion of celestial objects with respect to inertial space.  As 
such their coordinates will be different at the time of observation than what they are in some 
fundamental reference frame that refers to an epoch, 0t .  We consider only the motion of stars 
and not of planets, since the former are used, primarily (at least historically), to determine 
coordinates of points on the Earth (Section 2.3.5).  Proper motion, also known as space motion 
and stellar motion, can be decomposed into motion on the celestial sphere (tangential motion) 
and radial motion.  Radial stellar motion would be irrelevant if the Earth had no orbital motion 
(see the effect of parallax in Section 4.2.3). 
 Accounting for proper motion is relatively simple and requires only that rates be given in 
right ascension, in declination, and in the radial direction (with respect to a particular celestial 
reference frame).  If ( )0tr  is the vector of coordinates of a star in a catalogue (celestial reference 
frame) for fundamental epoch, 0t , then the coordinate vector at the current epoch, t, is given by 
 
 ( ) ( ) ( ) ( )0 0 0r t r t t t t= + − r& , (4.57) 

 
where this linearization is sufficiently accurate because the proper motion, r& , is very small (by 
astronomic standards).  With 
 

 
cos cos
cos sin

sin

r
r

r

δ α
δ α
δ

 
 =  
 
 

r , (4.58) 

 
where α  and δ  are right ascension and declination, as usual, and r = r , we have 
 

 
cos cos cos sin sin cos
cos sin cos cos sin sin

sin cos

r r r
r r r

r r

δ α α δ α δ δ α
δ α α δ α δ δ α

δ δ δ

 − −
 = + − 
 + 

r

&&&
&& &&

&&
. (4.59) 
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The units of proper motion in right ascension and declination, α&  and δ& , typically are 
rad/century and for the radial velocity, r& , the units are AU/century, where 1 AU is one 
astronomical unit, the mean radius of Earth’s orbit: 
 
 111 AU 1.49598077739 10  m; 1 km/s 21.095 AU/century= × = . (4.60) 
 
The radial distance is given as (see Figure 4.11) 
 

 1 AU
sin

r
π

= , (4.61) 

 
where π  is called the parallax angle (see Section 4.2.3).  This is the angle subtended at the 
object by the semi-major axis of Earth’s orbit.  If this angle is unknown or insignificant (e.g., 
because the star is at too great a distance), then the coordinates of the star can be corrected 
according to 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0

0 0 0

t t t t t

t t t t t

α α α

δ δ δ

= + −

= + −

&

&
 (4.62) 

 
For further implementation of proper motion corrections, see Section 4.3.3. 
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Figure 4.11: Geometry of star with respect to solar system.  See also Figure 4.13 for the 
geometry on the celestial sphere. 
 
 
4.2.2 Aberration 
 
Aberration is a displacement of the apparent object from its true position on the celestial sphere 
due to the velocity of the observer and the finite speed of light.  The classic analog is the 
apparent slanted direction of vertically falling rain as viewed from a moving vehicle; the faster 
the vehicle, the more slanted is the apparent direction of the falling rain.  Likewise, the direction 
of incoming light from a star is distorted if the observer is moving at a non-zero angle with 
respect to the true direction (see Figure 4.12).  In general, the apparent coordinates of a celestial 
object deviate from the true coordinates as a function of the observer’s velocity with respect to 
the direction of the celestial object. 
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Figure 4.12: The effect of aberration. 

 
 
 Diurnal aberration is due to the observer’s velocity associated with Earth’s rotation; and, 
annual aberration is due to the observer’s velocity associated with Earth’s orbital motion (there 
is also secular aberration due to the velocity of the solar system, but this is not observable–it is a 
constant).  These aberrations are grouped as stellar aberrations, as opposed to planetary 
aberrations, where the motions of both the observer and the celestial body are considered.  We 
do not consider planetary aberration.  Furthermore, aberration differs from the light-time effect 
that accounts for the distance the light must travel from the time it is emitted to the time it is 
actually observed (thus, again, the apparent coordinates of the object are not the same as the true 
coordinates).  This effect must be considered for planets, and it is familiar to those who process 
GPS data, but for stars this makes little sense since many stars are tens, hundreds, and thousands 
of light-years distant. 
 We treat stellar aberration using Newtonian physics, and only mention the special relativistic 
effect.  Accordingly, the direction of the source will appear to be displaced in the direction of the 
velocity of the observer (Figure 4.12).  That is, suppose in a stationary frame the light is coming 
from the direction given by the unit vector, p .  Then, in the frame moving with velocity, v , the 
light appears to originate from the direction defined by the unit vector, 'p , which is proportional 
to the vector sum of the two velocities, v  and cp : 
 

 ' c
c

+=
+
v pp
v p

, (4.63) 

 
where c is the speed of light (in vacuum).  Taking the cross-product on both sides with p  and 
extracting the magnitudes, we obtain, with ' sin∆θ× =p p , sinv θ× =p v , and 0× =p p , the 
following: 
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2 2

sinsin

sin
2 cos

sin

v
c

v
v c vc

v
c

θ∆θ

θ
θ

θ

=
+

=
+ +

= +

v p

!

 (4.64) 

 
where v is the magnitude of the observer’s velocity, and higher powers of v c  are neglected.  
Accounting for the effects of special relativity, Seidelmann (1992, p.129)26 gives the second-
order formula: 
 

 
21sin sin sin 2

4
v v
c c

∆θ θ θ = − + 
 

! . (4.65) 

 
 Realizing that the aberration angle is relatively small, we use the approximate formula: 
 

 sinv
c

∆θ θ= . (4.66) 

 
With respect to Figure 4.13, let S denote the true position of the star on the celestial sphere with 
true coordinates, ( ),S Sδ α , and let 'S  denote the apparent position of the star due to aberration 
with corresponding aberration errors, ∆δ  and ∆α , in declination and right ascension.  Note that 

'S  is on the great circle arc, %SF , where F denotes the point on the celestial sphere in the 
direction of the observer’s velocity (that is, the aberration angle is in the plane defined by the 
velocity vectors of the observer and the incoming light).  By definition: 
 

 
'

'

S S

S S

δ δ ∆δ

α α ∆α

= −

= −
 (4.67) 

 
 

                                                 
26 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill 

Valley, CA. 
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Figure 4.13: Geometry on the celestial sphere for aberration and parallax.  For aberration, 

= =u v velocity of the observer; for parallax, B= =u e direction of barycenter. 
 
 
 We have from the small triangle, ' "SS S : 
 

 coscos S∆α δψ
∆θ

= , (4.68) 

 
and 
 

 sin ∆δψ
∆θ

= − . (4.69) 

 
From triangle S NCP F− − , by the law of sines, we have 
 
 ( )sin cos cos sinF F Sθ ψ δ α α= − , (4.70) 

 
where the coordinates of F are ( ),F Fδ α .  Substituting equation (4.68) into equation (4.66) and 
using equation (4.70) yields 
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 ( )

( )

cos sin cos

cos sin

cos sin cos cos sin

S

F F S

F F S F S

v
c
v
c
v
c

∆α δ θ ψ

δ α α

δ α α α α

=

= −

= −

 (4.71) 

 
 Now, the velocity, v , of the observer, in the direction F on the celestial sphere, can be 
expressed as 
 

 
cos cos
cos sin

sin

F F

F F

F

x v
y v
z v

δ α
δ α

δ

   
   = =   
   
   

v
&
&
&

, (4.72) 

 
where v = v .  Hence, using equation (4.72) in equation (4.71), the effect of aberration on right 
ascension is given by 
 

 cos sin secS S S
y x
c c

∆α α α δ = − 
 

& &
. (4.73) 

 
For the declination, we find, again from the triangle, S NCP F− − , now by the law of cosines, 
that: 
 
 sin sin cos cos sin sinF S Sδ δ θ δ θ ψ= − . (4.74) 
 
Also, with the unit vector defining the position of the star on the celestial sphere, 
 

 
cos cos
cos sin

sin

S S

S S

S

δ α
δ α

δ

 
 =  
 
 

p , (4.75) 

 
we have the scalar product, using equation (4.72): 
 

 
cos
cos cos cos sin sinS S S S S

v
x y z

θ
δ α δ α δ

⋅ =
= + +

p v
& & &

 (4.76) 

 
We solve equation (4.76) for cosθ  and substitute this into equation (4.74), which is then solved 
for sin sinθ ψ  to get 
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 sin sin sin cos sin sin cosS S S S S
x y z
v v v

θ ψ δ α δ α δ= + −
& & &

. (4.77) 

 
From equations (4.69) and (4.66), we finally have 
 

 sin cos sin sin cosS S S S S
x y z
c c c

∆δ δ α δ α δ= − − +
& & &

. (4.78) 

 
 For diurnal aberration, the observer (assumed stationary on the Earth’s surface) has only 
eastward velocity with respect to the celestial sphere due to Earth’s rotation rate, eω ; it is given 
by (see Figure 4.14): 
 
 ( )cosev N hω φ= + , (4.79) 
 
where N is the ellipsoid radius of curvature in the prime vertical and ( ),hφ  are the geodetic 
latitude and ellipsoid height of the observer (see Section 2.1.3.1).  In this case (see Figure 4.15): 
 

 

( )

( )

cos 270

sin 270

0

S S

S S

x v t

y v t

z

α

α

= + − °

= + − °

=

&

&

&

 (4.80) 

 
where St  is the hour angle of the star.  Substituting equations (4.80) into equations (4.73) and 
(4.78), we find the diurnal aberration effects, respectively, in right ascension and declination to 
be: 
 

 

cos sec

sin sec

S S

S S

v t
c

v t
c

∆α δ

∆δ δ

=

=

 (4.81) 

 
In order to appreciate the magnitude of the effect of diurnal aberration, consider, using equation 
(4.79), that 
 

 cos 0.3200 cos  [arcsec]eav N h N h
c c a a

ω φ φ+ += = , (4.82) 
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which is also called the “constant of diurnal aberration”.  Diurnal aberration, thus, is always less 
than about 0.32 arcsec . 
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Figure 4.14: Velocity of terrestrial observer for diurnal aberration. 
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Figure 4.15: Celestial geometry for diurnal aberration. 

 
 
 Annual aberration, on the other hand, is two orders of magnitude larger!  In this case, the 
velocity of the observer is due to Earth’s orbital motion and the velocity vector is in the ecliptic 
plane.  The ”constant of annual aberration” is given by 
 

 4
8

2  AU/yr 10 20 arcsec
3 10  m/s

v
c

π −= ≈ =
×

. (4.83) 

 
From this, one can determine (left to the reader) how accurately Earth’s velocity must be known 
in order to compute the annual aberration to a given accuracy.  Accurate velocity components are 
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given in the Astronomical Almanac (Section B, p.44)27 in units of 910  AU/day−  in the 
barycentric system.  Note that the second-order effect, given in equation (4.65), amounts to no 
more than: 
 

 
2

8 41 0.25 10 5 10  arcsec
4

v
c

− −  ≈ × = × 
 

. (4.84) 

 
We further note that, aside from the approximations in equations (4.73) and (4.78), other 
approximations could be considered in deriving the annual aberration formulas, e.g., taking 
Earth’s orbit to be circular.  In this case, corrections may be necessary to account for the actual 
non-constant speed along the elliptical orbit.  Also, if the velocity coordinates are given in a 
heliocentric system, then the motion of the sun with respect to the barycentric system must be 
determined, as must the effect of the planets whose motion causes the heliocentric velocity of the 
Earth to differ from its barycentric velocity. 
 
 
4.2.3 Parallax 
 
Parallax is a displacement of the apparent object on the celestial sphere from its true position 
due to the shift in position of the observer.  Diurnal parallax is due to the observer’s change in 
position associated with Earth’s rotation; annual parallax is due to the observer’s change in 
position associated with Earth’s orbital motion.  For objects outside the solar system, the diurnal 
parallax can be neglected since the Earth’s radius is much smaller than the distance even to the 
nearest stars.  Therefore, we consider only the annual parallax.  For quasars, which are the most 
distant objects in the universe, the parallax is zero. 
 Returning to Figure 4.11, the coordinates of E, denoted by the vector, ( )T, ,B B Bx y z , are given 
in the barycentric frame.  The parallax angle, π , of a star is the maximum angle that the radius, 

Eρ , of Earth’s orbit (with respect to the barycenter) subtends at the star (usually, Eρ  is taken as 
the semi-major axis of Earth’s elliptical orbit, or with sufficient accuracy, 1 AU).  From the law 
of sines applied to the triangle, EBS , according to the figure: 
 

 sin
sin

E

Sr
ρ∆θ π

θ
= = , (4.85) 

 
where Sr  is the distance to the star.  The effect of parallax, is therefore, approximately 
 
 sin∆θ π θ= . (4.86) 

                                                 
27 The Astronomical Almanac, issued annually by the Nautical Almanac Office of the U.S. Naval Observatory, 

Washington, D.C. 
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 Clearly, this formula has a strong similarity to the aberration effect, equation (4.66); and, 
indeed, we can use the same Figure 4.13 as before, but now identify the point, F, with the 
direction from the observer to the barycenter of the celestial coordinate frame.  Also, from Figure 
4.11, the angle between F and S in Figure 4.13 is θ ∆θ+  in the parallax case.  But this is of no 
consequence since this angle enters only as an intermediate quantity in the derivations, not in the 
final result (moreover, equation (4.86) is approximate to first order in ∆θ ); we will ignore this 
difference.  The unit vector defining F is, therefore, 
 

 
cos cos
cos sin

sin

B

E
F F

B
F F

E
F

B

E

x

y

z

ρ δ α
δ α

ρ
δ

ρ

 
− 
      = − =   
   

  
− 
 

p , (4.87) 

 
(note the negative signs in p  are due to the geocentric view).  From equations (4.68) and (4.86), 
 
 sin cos sec S∆α π θ ψ δ= . (4.88) 
 
Substituting equations (4.70) and (4.87), we obtain the effect of annual parallax on right 
ascension: 
 

 sin cos secB B
S S S

E E

x y∆α π α α δ
ρ ρ

 
= − 

 
. (4.89) 

 
Similarly, from equations (4.69) and (4.86), 
 
 sin sin∆δ ∆θ θ ψ= − . (4.90) 
 
Using equation (4.77) with appropriate substitutions for the unit vector components, we find 
 

 cos sin sin sin cosB B B
S S S S S

E E E

x y z∆δ π α δ α δ δ
ρ ρ ρ

 
= + − 

 
. (4.91) 

 
In using equations (4.89) and (4.91), we can approximate 1 AUEρ ≈  and then the coordinate 

vector, ( )T, ,B B Bx y z , should have units of AU. 

 



 
Geometric Reference Systems 4 - 41 Jekeli, January 2012 

 
 

 
4.2.4 Refraction 
 
As light (or any electromagnetic radiation) passes through the atmosphere, being a medium of 
non-zero mass density, its path deviates from a straight line due to the effect of refraction, thus 
causing the apparent direction of a visible object to depart from its true direction.  We distinguish 
between atmospheric refraction that refers to light reflected from objects within the atmosphere, 
and astronomic refraction that refers to light coming from objects outside the atmosphere.  
Atmospheric refraction is important in terrestrial surveying applications, where targets within the 
atmosphere (e.g., on the ground) are sighted.  We concern ourselves only with astronomic 
refraction of light.  In either case, modeling the light path is difficult because refraction depends 
on the temperature, pressure, and water content (humidity) along the path. 
 For a spherically symmetric (i.e., spherically layered) atmosphere, Snell’s law of refraction 
leads to (Smart, 1960, p.63)28: 
 
 sin constantnr z = , (4.92) 
 
where n is the index of refraction, assumed to depend only on the radial distance, r, from Earth’s 
center, and z is the angle, at any point, P, along the actual path, of the tangent to the light path 
with respect to r (Figure 4.16).  It is assumed that the light ray originates at infinity, which is 
reasonable for all celestial objects in this application.  With reference to Figure 4.16, Sz  is the 
true topocentric zenith distance of the object, topocentric meaning that it refers to the terrestrial 
observer.  The topocentric apparent zenith distance is given by 0z ; and, as the point, P, moves 
along the actual light path from the star to the observer, we have 
 
 00 z z≤ ≤ . (4.93) 
 
We define auxiliary angles, Pz  and Pz , in Figure 4.16, and note that 
 
 P Pz z z= + . (4.94) 
 
Also, the total angle of refraction is defined here by 
 
 0 Sz z z∆ = − , (4.95) 
 

                                                 
28 Smart, W.M. (1977): Textbook on Spherical Astronomy.  Cambridge University Press, Cambridge. 
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interpreted as an error in the observed zenith distance.  The error is generally negative, and then 
the correction (being the negative of the error) is positive.  The angle, Pz , is the apparent zenith 
distance of the point, P, as it travels along the path, and the defined quantity, 
 
 0 0P P Pz z z z z z∆ = − = + − , (4.96) 
 
then varies from z∆−  to 0 as P moves from infinity to the observer.  The total angle of refraction 
is thus given by 
 

 
0

P

z

z d z
∆

∆ ∆
−

= ∫ . (4.97) 
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Figure 4.16: Geometry for astronomic refraction. 

 
 
 Now, taking differentials in equation (4.92), we have 
 
 ( )sin cos 0d nr z nr z dz+ = , (4.98) 

 
which leads to 
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 ( )tan
d nr

dz z
nr

= − . (4.99) 

 
From Figure 4.17, which represents the differential displacement of the point, P, along the light 
path, we also have 
 

 tan tanP
P

rdz drz dz z
dr r

= ⇒ = . (4.100) 

 
Substituting equations (4.99) and (4.100) for the differential on the right side of equation (4.96), 
we find: 
 

 
( )

( )tan

P Pd z dz dz

d nr drz
nr r

∆ = +

 
= − − 

 

 (4.101) 

 
This can be simplified using ( )d nr rdn ndr= + , yielding 
 

 ( ) tanP
dnd z z
n

∆ = − . (4.102) 

 
Substituting equation (4.99) now gives 
 

 

( ) ( )P
dn nrd z dz
n d nr

rdn dz
ndr rdn

dnr
dr dzdnn r

dr

∆ =

=
+

=
+

 (4.103) 
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Figure 4.17: Differential change of P along light path. 

 
 
 Putting this change of integration variable from Pz∆  to z into equation (4.97), we have 
 

 
0

0

z dnr
drz dzdnn r

dr

∆ =
+

∫  (4.104) 

 
where the limits of integration are obtained by noting that when P →∞ , 0z = , and when P is at 
the observer, 0z z= .  Again, note that equation (4.104) yields the refraction error; the correction 
is the negative of this. 
 To implement formula (4.104) requires a model for the index of refraction, and numerical 
methods to calculate it are indicated by Seidelmann (1992, p.141-143)29.  The errors in the 
observed coordinates are obtained as follows.  From equation (2.187), we have 
 
 sin cos cos sin sin cosS S S SA z zδ Φ Φ= + , (4.105) 
 
where SA  is the azimuth of the star.  Under the assumptions, 0SA∆ =  and 0∆Φ = , this leads to 
 

                                                 
29 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill 

Valley, CA. 
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 ( )cos cos cos sin sin
cos S S S

S

z A z z∆∆δ Φ Φ
δ

= − , (4.106) 

 
Similarly, from equation (2.179), it can be shown easily that 
 

 sintan
sin cos cos cot

S
S

S S

At
A zΦ Φ

=
−

. (4.107) 

 
Again, with 0SA∆ =  and 0∆Φ = , and noting that S St∆ ∆α= − , one readily can derive (left to 
the reader – use equation (2.179)!) that: 
 

 sin cos
sin cos

S

S S

t z
z

Φ∆α ∆
δ

= − . (4.108) 
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4.2.5 Problems 
 
1. Derive equations (4.92) and (4.108). 
 
2. In VLBI (Very Long Baseline Interferometry), we analyze signals of a quasar (celestial 
object at an extremely large distance from the Earth) at two points on the Earth to determine the 
directions of the quasar at these two points, and thus to determine the terrestrial coordinate 
differences, , ,x y z∆ ∆ ∆ .  The coordinates of the quasar are given in the ICRF.  State which of the 
following effects would have to be considered for maximum accuracy in our coordinate 
determination in the ITRF (note that we are concerned only with coordinate differences): 
precession, nutation, polar motion, proper motion, annual parallax, diurnal parallax, annual 
aberration, diurnal aberration, refraction.  Justify your answer for each effect. 
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4.3 Relationship to the Terrestrial Frame 
 
Previous Sections provided an understanding of the relationship between catalogued coordinates 
of celestial objects (i.e., in a celestial reference frame) and the coordinates as would be observed 
on the rotating and orbiting Earth.  Thus, we are almost ready to transform these apparent 
coordinates to the terrestrial frame.  But the axes that define the terrestrial reference system differ 
from the axes whose dynamics were described in Section 4.1.  In fact, the spin axis and various 
other “natural” axes associated with Earth’s rotation exhibit motion with respect to the Earth’s 
crust due to the natural dynamics of the rotation, but the axes of the terrestrial reference system 
are fixed to Earth’s crust.  Euler’s equations describe the motion of the natural axes for a rigid 
body, but because the Earth is partially fluid and elastic, the motion of these axes is not 
accurately predictable.  The reader is referred to Moritz and Mueller (1987)30 for theoretical and 
mathematical developments of the dynamics equations for rotating bodies; we restrict the 
discussion to a description of the effects on coordinates.  However, a heuristic discussion of the 
different types of motion of the axes is also given here, leading ultimately to the definition of the 
Celestial Intermediate Pole, CIP (previously also called the Celestial Ephemeris Pole, CEP).  
The recent changes in the fundamental conventions of the transformation between the celestial 
reference system and the CIP have also been extended to the transformation between the 
terrestrial reference system and the CIP; and these are described in Sections 4.3.1.1 and 4.3.2.1.  
The last sub-section then summarizes the entire transformation from celestial to terrestrial 
reference frames. 
 
 
4.3.1 Polar Motion 
 
The motion of an axis, like the instantaneous spin axis, of the Earth with respect to the body of 
the Earth is called polar motion.  In terms of coordinates, the motion of the axis is described as 
( ),P Px y  with respect to the reference pole, CIO, or IRP, of the Conventional Terrestrial 
Reference System.  Figure 4.18 shows the polar motion coordinates for the CIP (see Section 
4.3.2); they are functions of time (note the defined directions of x and y).  Since they are small 
angles, they can be viewed as Cartesian coordinates near the reference pole, varying periodically 
around the pole with magnitude of the order of 6 m; but they are usually given as angles in units 
of arcsec. 
 
 

                                                 
30 Moritz, H., Mueller, I.I. (1987): Earth Rotation, Theory and Observation. Ungar Pub. Co., New York. 
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Figure 4.18: Polar motion coordinates. 
 
 
 The principal component of polar motion is the Chandler wobble.  This is basically the free 
Eulerian motion which would have a period of about 304 days, based on the moments of inertia 
of the Earth, if the Earth were a rigid body.  Due to the elastic yielding of the Earth, resulting in 
displacements of the maximum moment of inertia, this motion has a longer period of about 430 
days.  S.C. Chandler observed and analyzed this discrepancy in the period in 1891 and Newcomb 
gave the dynamical explanation (Mueller, 1969, p.80)31.  The period of this main component of 
polar motion is called the Chandler period; its amplitude is about 0.2 arcsec .  Other components 
of polar motion include the approximately annual signal due to the redistribution of masses by 
way of meteorological and geophysical processes, with amplitude of about 0.05 0.1 arcsec− , and 
the nearly diurnal free wobble, due to the slight misalignments of the rotation axes of the mantle 
and liquid outer core (also known as free core nutation, magnitude of 0.1-0.3 mas).  Finally, 
there is the so-called polar wander, which is the secular motion of the pole.  During 1900 – 
2000, Earth’s spin axis wandered about 0.004 arcsec  per year in the direction of the 80  W°  
meridian.  Figure 4.19 shows the Chandler motion of the pole for the period 2000 to 2010, and 
also the general drift for the last 110 years. 
 
 

                                                 
31 Mueller, I.I. (1969): Spherical and Practical Astronomy as Applied to Geodesy.  Frederick Ungar Publ. Co., New 

York. 



 
Geometric Reference Systems 4 - 49 Jekeli, January 2012 

 
 

0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4 0.5 0.6

0.6−

0.5−

0.4−

0.3−

0.2−

0.1−

0.1
0.2
0.3
0.4
0.5
0.6

y [arcsec]

x [arcsec]

1900

2010

2000

0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4 0.5 0.6

0.6−

0.5−

0.4−

0.3−

0.2−

0.1−

0.1
0.2
0.3
0.4
0.5
0.6

y [arcsec]

x [arcsec]

1900

2010

2000

 
Figure 4.19: Polar motion from 2000 to 2010, and polar wander since 1900.  Polar motion 
coordinates were obtained from IERS32 and smoothed to obtain the trend. 
 
 
 The transformation of astronomic terrestrial coordinates and azimuth from the instantaneous 
pole (the CIP) to the terrestrial reference pole fixed on the Earth’s crust (the CIO or IRP) is 
constructed with the aid of Figures 4.20 and 4.21.  Let tΦ , tΛ , tA  denote the apparent 
(observed) astronomic latitude, longitude, and azimuth at epoch, t, with respect to the CIP; and 
let Φ , Λ , A  denote the corresponding angles with respect to the terrestrial pole, such that 
 

 
t

t

tA A A

∆Φ Φ Φ
∆Λ Λ Λ
∆

= −
= −
= −

 (4.109) 

 
represent the corrections to the apparent angles.  In linear approximation, these corrections are 
the small angles shown in Figures 4.20 and 4.21. 
 

                                                 
32 http://www.iers.org/nn_10968/IERS/EN/DataProducts/EarthOrientationData/eop.html?__nnn=true 
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Figure 4.20: Relationship between apparent astronomical coordinates at current epoch, t, and 

corresponding coordinates with respect to the terrestrial reference frame. 
 
 
 We introduce the polar coordinates, d and θ , so that: 
 

 
cos
sin

P

P

x d
y d

θ
θ

=
=

 (4.110) 

 
Then, for the latitude, we have from the triangle, CIP IRP F− − : 
 

 
( )cos 180

cos cos sin sin
sin cos

t

t t

P t P t

d
d d

y x

∆Φ Λ θ
Λ θ Λ θ
Λ Λ

= °− −
= − +
= −

 (4.111) 

 
For the azimuth, using the law of sines on the spherical triangle, CIP IRP Q− − , we have: 
 

 ( ) ( )
( )

sin 180sin
sin sin 90

tAA
d

θ∆
Φ

°− −−
=

°−
. (4.112) 

 
With the usual small angle approximations, this leads to 
 

 
( )

( )

sin cos cos sin
cos

sin cos sec

t t

P t P t

dA

x y

∆ Λ θ Λ θ
Φ

Λ Λ Φ

= − +

= − +
 (4.113) 
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Finally, for the longitude we again apply the law of sines to the triangle, QRM , Figure 4.21, to 
obtain: 
 

 ( )
( )

sin sin 90
sin sin t

A∆
∆Λ Φ
− °=
−

. (4.114) 

 
From this and with equation (4.113), we have 
 

 ( )
sin

sin cos tan
t

P t P t

A
x y

∆Λ Φ ∆
Λ Λ Φ

=
= − +

 (4.115) 

 
 Relationships (4.111) and (4.115) can also be derived from 
 

 ( ) ( )1 2

cos cos cos cos
cos sin cos sin

sin sin

t t

t t P P

t

R y R x
Φ Λ Φ Λ
Φ Λ Φ Λ
Φ Φ

   
   =   

  
  

, (4.116) 

 
where the vectors on either side represent unit vectors in the direction of the tangent to the local 
plumb line, but in different coordinate systems; and the rotation matrices are given by equations 
(1.4) and (1.6).  The combined rotation matrix, in equation (4.116), for polar motion is also 
denoted by W, representing the transformation from the terrestrial pole to the celestial pole: 
 
 ( ) ( )1 2P PW R y R x= . (4.117) 

 
The polar motion coordinates are tabulated by the IERS as part of the Earth Orientation 
Parameters (EOP) on the basis of observations, such as from VLBI and satellite ranging.  Thus, 
W is a function of time, but there are no analytic formulas for polar motion as there are for 
precession and nutation. 
 
 



 
Geometric Reference Systems 4 - 52 Jekeli, January 2012 

 
 

CIP

IRP (CIO)

Λ

A∆−

Φ
tΦ

px
py

tΛ

∆Λ−

Q

R M

CIP

IRP (CIO)

Λ

A∆−

Φ
tΦ

px
py

tΛ

∆Λ−

Q

R M
 

Figure 4.21: Relationship between the apparent longitude with respect to the CIP and the 
longitude with respect to IRP. 

 
 
 
4.3.1.1  New Conventions 
 
As described in Section 4.1.3, the celestial coordinate system associated with the instantaneous 
pole (the CIP) possesses a newly defined origin point for right ascensions: a non-rotating origin 
(NRO), σ , called the Celestial Intermediate Origin, CIO (previously also called the Celestial 
Ephemeris Origin, CEO; and not to be confused the conventional international origin – the pre-
1980s name for the reference pole).  The instantaneous pole can also be associated with an 
instantaneous terrestrial coordinate system, where likewise, according to resolutions adopted by 
the IAU (and IERS), the origin of longitudes is a non-rotating origin, called the Terrestrial 
Intermediate Origin, TIO (previously also called the Terrestrial Ephemeris Origin, TEO).  It 
should be noted that neither the CIO nor the TIO represents an origin for coordinates of points in 
a reference system.  They are origin points associated with an instantaneous coordinate system, 
moving with respect to the celestial sphere (the CIO) or with respect to the Earth’s crust (TIO), 
whence their previous designation, “ephemeris” and now simply “intermediate”. 
 With this new definition of the instantaneous terrestrial coordinate system, the polar motion 
transformation, completely analogous to the precession-nutation matrix, TQ , equation (4.37), is 
now given as 
 
 ( ) ( ) ( ) ( )3 3 2 3'W R s R F R g R F= − − , (4.118) 
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where the instantaneous pole (CIP) has coordinates, ( ),g F , in the terrestrial reference system.  
As shown in Figure 4.22, g is the co-latitude (with respect to the instantaneous equator) and F is 
the longitude (with respect to the TIO, ω ); and we may write: 
 

 
sin cos
sin sin

cos

P

P

P

x g F
y g F
z g

   
   = −   
   
   

, (4.119) 

 
where the adopted polar motion coordinates, ( ),P Px y , are defined as before (Figure 4.20), with 

Py  along the 270° meridian. 
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Figure 4.22: Coordinates of instantaneous pole in the terrestrial reference system. 

 
 
 With a completely analogous derivation as for the precession-nutation matrix, Q, we find that 
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2
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2 2

1 ' '
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P P P P

a x a x y x
W R s a x y a y y

x y a x y

 − − 
= − − 

  − − + 

, (4.120) 

 
where ( ) ( )2 2' 1 1 cos 1 2 8P Pa g x y= + = + + .  Also, the parameter, 's , defining the location of the 
TIO as a non-rotating origin on the instantaneous equator, is given (analogous to equation (4.43)) 
by 
 

 
0

0' '
1

t

P P P P

Pt

x y y xs s dt
z
−= +
+∫
& &

, (4.121) 

 
again, noting that Py  is positive along the 270°  meridian.  The constant, 0 's , may be chosen to 
be zero (i.e., 's  is zero at 0t t= ). 
 It is easy to show that by neglecting terms of third and higher orders, the exact expression 
(4.120) is approximately equal to 
 

 ( ) ( ) ( )3 3 1 2
1'
2 P P P PW R s R x y R y R x = −  

 
. (4.122) 

 
Furthermore, 's  is significant only because of the largest components of polar motion and an 
approximate model is given by33 
 

 
2

2' 0.0015  [arcsec]
1.2

c
a

as a τ
 

= − + 
 

, (4.123) 

 
where ca  and aa  are the amplitudes, in arcsec, of the Chandler wobble ( )0.2 arcsecO  and the 
annual wobble ( )0.05 arcsecO .  Hence, the magnitude of 's   is of the order of 0.1 mas .  The 
IERS Conventions 2003 and 2010 also neglect the second-order terms (being of order 0.2 asµ ) 
in equation (4.122) and give: 
 
 ( ) ( ) ( )3 1 2' P PW R s R y R x= − , (4.124) 

 
which is the traditional transformation due to polar motion, equation (4.117), with the additional 
small rotation that exactly realizes the instantaneous zero meridian of the instantaneous pole and 
equator. 

                                                 
33 McCarthy, D.D., Petit, G.  (2003): IERS Conventions 2003.  IERS Technical Note 32, U.S. Naval Observatory, 

Bureau International des Poids et Mesures. 
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 The polar motion coordinates should now also contain short-period terms in agreement with 
the new definition of the intermediate pole.  Thus, according to the IERS Conventions 201034, 
which describes these in detail, 
 
 ( ) ( ) ( ) ( )IERS tides libration, , , ,P Px y x y x y x y∆ ∆ ∆ ∆= + + , (4.125) 

 
where ( )IERS,x y  are the polar motion coordinates published by the IERS, ( )tides,x y∆ ∆  are 
modeled tidal components in polar motion derived from tide models (mostly diurnal and sub-
diurnal variations), and ( )libration,x y∆ ∆  are long-period polar motion effects corresponding to 
short-period (less than 2 days) nutations.  The latter should be added according to the new 
definition of the intermediate pole that should contain no nutations with periods shorter than 2 
days. 
 
 

                                                 
34 Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010.  IERS Technical Note No.36, Verlag des Bundesamts 

für Kartographie und Geodäsie, Frankfurt am Main. 
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4.3.1.2  Problems 
 
1. Derive equations (4.120) and (4.122). 
 
 
2. a) From the web site: 
http://www.iers.org/nn_10968/IERS/EN/DataProducts/EarthOrientationData/eop.html?__nnn=true 
extract the polar motion coordinates (Earth orientation parameters (EOP)) from 1846 to 2010 at 
0.05 year (0.1 year) intervals. 
 
 b) Plot the polar motion for the intervals 1900.0 - 1905.95 and 2000.0 – 2005.95.  
Determine the period of the motion for each interval.  Describe the method you used to 
determine the period (graphical, Fourier transform, least-squares, etc.). 
 
 c) Using the period determined (use an average of the two) in b) divide the whole series 
from 1846 to 2010 into intervals of one period each.  For each such interval determine the 
average position of the CIP.  Plot these mean positions and verify the polar wander of 0.004 
arcsec per year in the direction of –80° longitude. 
 
 
3.(advanced) From the data obtained in 1a) determine the Fourier spectrum in each coordinate 
and identify the Chandler and annual components (to use a Fourier transform algorithm, such as 
FFT, interpolate the data to a resolution of 0.05 year, where necessary).  For each polar motion 
coordinate, plot these components separately in the time domain, as well as the residual of the 
motion (i.e., the difference between the actual motion and the Chandler plus annual 
components).  Discuss your results in terms of relative magnitudes.  What beat-frequency is 
recognizable in a plot of the total motion in the time domain? 
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4.3.2 Celestial Ephemeris Pole 
 
This section describes the previously defined Celestial Ephemeris Pole (CEP), as the precursor to 
the newly defined Celestial Intermediate Pole (CIP).  Both are the same at a certain level of 
precision, where the CIP is a refinement on the CEP owing to the increased resolution afforded 
by new VLBI observations.  In order to understand how the CEP was chosen as the defining axis 
for which nutation (and precession and polar motion) are computed, it is necessary to consider 
briefly the dynamics and kinematics of Earth rotation.  The theory is given in detail by Moritz 
and Mueller (1987)35.  We consider the following axes for the Earth: 
 
1. Instantaneous rotation axis, R .  It is the direction of the instantaneous rotation vector, eωωωω . 
 
2. Figure axis, F .  It is the principal axis of inertia that corresponds to the moment of inertia 
with the maximum value.  These terms are explained as follows.  Every body has an associated 
inertia tensor, I , which is the analogue of (inertial) mass.  (A tensor is a generalization of a 
vector, in our case, to second order; that is, a vector is really a first-order tensor.)  The tensor 
may be represented as a 3 3×  matrix of elements, jkI , that are the second-order moments of the 
mass distribution of a body with respect to the coordinate axes.  Specifically, the moments of 
inertia, jjI , occupy the diagonal of the matrix and are given by 
 

 ( )2 2

mass

, 1, 2,3jj jI r x dm j= − =∫ , (4.126) 

 
where 2 2 2 2

1 2 3r x x x= + + ; and the products of inertia, jkI , are the off-diagonal elements expressed 
as 
 

 
mass

,jk j kI x x dm j k= − ≠∫ . (4.127) 

 
Thus, the inertia tensor is given by 
 

 
11 12 13

21 22 23

31 32 33

I I I
I I I I

I I I

 
 =  
 
 

. (4.128) 

 
The products of inertia vanish if the coordinate axes coincide with the principal axes of inertia 
for the body.  This happens with a suitable rotation of the coordinate system (with origin 
assumed to be at the center of mass) that diagonalizes the inertia tensor (this can always be 
                                                 
35 Moritz, H., Mueller, I.I. (1987): Earth Rotation, Theory and Observation. Ungar Pub. Co., New York. 
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assumed possible).  Heuristically, these principal axes represent the axes of symmetry in the 
mass distribution of the body. 
 
3. Angular momentum axis, H .  It is defined by the direction of the angular momentum vector, 
H , as a result of rotation.  We have, by definition, 
 
 eI=H ωωωω .  (4.129) 
 
This shows that the angular momentum vector, H , and the angular velocity vector, eωωωω , 
generally are not parallel.  Equation (4.129) is the analogue to linear momentum, p , being 
proportional (hence always parallel) to linear velocity, v  ( m=p v , where m  is the total mass of 
the body). 
 
 For rigid bodies, Euler’s equation describes the dynamics of the angular momentum vector in 
a body-fixed frame (coordinate axes fixed to the body): 
 
 b b b

e= + ×L H H& ωωωω , (4.130) 
 
where bL  is the vector of external torques applied to the body (in our case, e.g., luni-solar 
gravitational attraction acting on the Earth).  The superscript, b , in equation (4.130) designates 
that the coordinates of each vector are in a body-fixed frame.  In the inertial frame (which does 
not rotate), equation (4.130) specializes to 
 
 i i= &L H .  (4.131) 
 
Again, the superscript, i , designates that the coordinates of the vector are in the inertial frame.  If 

i = 0L , then no torques are applied, and this expresses the law of conservation of angular 
momentum: the angular momentum of a body is constant in the absence of applied torques.  That 
is, i = 0&H  clearly implies that H  remains fixed in inertial space. 
 In general, equation (4.130) is a differential equation for bH  with respect to time.  Its 
solution shows that both bH  and eωωωω  (through equation (4.129)) exhibit motion with respect to 
the body, even if b = 0L .  This is polar motion.  Also, if b ≠ 0L , bH  changes direction with 
respect to an inertial frame.  Indeed, in the presence of external torques, all axes change with 
respect to the inertial frame – we have already studied this as precession and nutation.  
Comprehensively, we define the following: 
 
Polar Motion: the motion of the Earth’s axis ( R , F , or H ) with respect to the body of the 
Earth. 
 
Nutation: the motion of the Earth’s axis ( R , F , or H ) with respect to the inertial frame. 
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Both polar motion and nutation can be viewed as either motion in the absence of torques (free 
motion) or motion in the presence of torques (forced motion).  Thus, there are four possible types 
of motion for each of the three axes.  However, for one axis we can rule out one type of motion.  
For a rotating body not influenced by external torques ( = 0L ), the angular momentum axis, H , 
has no nutation (as shown above, it maintains a constant direction in the inertial frame).  
Therefore, H  has no free nutation.  On the other hand, the direction of the angular momentum 
axis in space is influenced by external torques, and so H  exhibits forced nutations. 
 We thus have the following types of motion: 
 
i) forced polar motion of R , F , or H ; 
ii) free polar motion of R , F , or H ; 
iii) forced nutation of R , F , or H ; 
iv) free nutation of R  or F . 
 
We also note that for a rigid body, F  has no polar motion (free or forced) since it is an axis 
defined by the mass distribution of the body, and therefore, fixed within the body.  On the other 
hand, the Earth is not a rigid body, which implies that F  is not fixed to the crust of the Earth – it 
follows the principal axis of symmetry of the mass distribution as the latter changes in time (e.g., 
due to tidal forces).  In summary, the consideration of nutation and polar motion involves: 
 
a) three axes; R , F , and H  (and one more fixed to the Earth, the CIO or IRP; we call it O ); 
b) rigid and non-rigid Earth models; 
c) free and forced motions. 
 
 From a study of the mechanics of body motion applied to the Earth, it can be shown that (for 
an elastic Earth model; see Figure 4.23): 
a) the axes 0R , 0F , and 0H , corresponding to free polar motion, all lie in the same plane; 

similarly the axes, R , F , and H , corresponding to the (actual) forced motion also must lie 
in one plane; 

b) forced polar motion exhibits nearly diurnal (24-hr period) motion, with amplitudes of 
~ 60 cm  for R , ~ 40 cm  for H , and ~ 60 meters  for F ; 

c) free nutation exhibits primarily nearly diurnal motion. 
 
On the other hand (again, see Figure 4.23): 
d) free polar motion is mostly long-periodic (Chandler period, ~ 430 days ), with amplitudes of 

~ 6 m  for 0R  and 0H , and ~ 2 m  for 0F ; 
e) forced nutation is mostly long-periodic (18.6 yr , semi-annual, semi-monthly, etc.). 
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Figure 4.23: Free (zero-subscripted) and forced polar motions of axes for an elastic Earth.  
(Not to scale; indicated amplitudes are approximate.) 

 
 
 Free motion (polar motion and nutation) cannot be modeled by simple dynamics, and can 
only be determined empirically on the basis of observations.  It is rather irregular.  Forced 
motion, being due to torques from well known external sources, can be predicted quite accurately 
from luni-solar (and planetary) ephemerides. 
 If the Earth were a rigid body, then the F -axis would be fixed to the Earth ( 0F F O= =  in 
this case) and could serve as the reference for polar motion of the H - and R -axes.  However, 
for a non-rigid Earth, in particular, for an elastic Earth, the F -axis deviates substantially from a 
fixed point on the Earth with a daily polar motion of amplitude ~ 60 m .  Thus, F  cannot serve 
as reference axis either for polar motion or for nutation. 
 In Figure 4.23, the point O  is a fixed point on the Earth’s surface, representing the mean 
polar motion (for the elastic Earth), and formally is called the mean Tisserand figure axis.  It can 
be shown that free polar motion affects the nutations of the O - and R -axes, while the nutation 
of the H -axis is unaffected by free polar motion.  This is because the motion of the angular 
momentum axis is determined dynamically from the luni-solar torques (equation (4.129)) and not 
by the internal constitution of the Earth.  This makes H  a good candidate for the reference axis 
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for nutations, since its (forced) nutation is unaffected by difficult-to-model free polar motion, 
and it has no free nutation. 
 However, it still has forced polar motion (diurnal and erratic).  Therefore, the IAU in 1979 
adopted 0H  as the CEP (i.e., the celestial reference pole), since 0H  has no forced polar motion 
(by definition); and it, like H , has no free nutation.  Thus 0H  has no nearly diurnal motions 
according to b) and c) above – it is rather stable with respect to the Earth and space.  Note that 

0H  still has free polar motion and forced nutation.  On the other hand, as mentioned above, the 
(forced) nutation of 0H  does not depend on free polar motion.  And since the O -axis (being 
fixed to the Earth’s crust) also has no polar motion (i.e., by definition), its forced nutation, like 
that of 0H , does not depend on free polar motion.  Therefore, both the O -axis and the 0H -axis 
have the same forced nutations.  All these properties of 0H  make it the most suitable candidate 
for the Celestial Ephemeris Pole (CEP). 
 
 
4.3.2.1  Celestial Intermediate Pole 
 
The Celestial Ephemeris Pole (CEP) was defined to be a pole that has no nearly diurnal motions 
with respect to inertial space and with respect to the Earth’s crust.  This pole served as the 
intermediate pole in the transformation between the celestial and terrestrial reference systems.  
That is, polar motion referred to the motion of the CEP relative to the terrestrial reference pole, 
and nutation referred to the motion of the CEP relative to the celestial reference pole.  As such, 
the realization of the CEP depends on the model developed for nutations and it also depends on 
observations of polar motion.  Moreover, modern observation techniques, such as VLBI36, are 
now able to determine motion of the instantaneous pole with temporal resolution as high as a few 
hours, which means that no intermediate pole is defined for such applications.  Also, the modern 
theories of nutation and polar motion now include diurnal and shorter-period motions 
(particularly the variations due to tidal components).  These developments have made it 
necessary to define a new intermediate pole.  Rather than defining it in terms some particular 
physical model, such as the angular momentum axis, it is defined in terms of realizing frequency 
components of motion, separating those that conventionally belong to space motion (nutation) 
and those that can be treated as terrestrial motion (polar motion).  In this way it is precisely an 
intermediate pole used in the transformation between the celestial and terrestrial systems. 
 The new intermediate pole is called, to emphasize its function, the Celestial Intermediate 
Pole (CIP).  It separates the motion of the terrestrial reference pole (CIO or IRP) in the celestial 
reference system into two parts (nutation and polar motion) according to frequency content.  
According to a resolution adopted by the IAU, the precessional and nutational motion of the CIP 
with respect to the celestial sphere has only periods greater than 2 days (frequencies less than ± 
0.5 cycles per sidereal day).  These are the motions produced mainly by external torques on the 

                                                 
36 For an introduction to VLBI, see Seeber, G. (1993): Satellite Geodesy. Walter DeGruyter, Berlin. 
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Earth.  Also included are the retrograde diurnal polar motions since it can be shown that they are 
equivalent to nutations with periods larger than 2 days.  The terrestrial motions of the CIP, on the 
other hand, are defined to be those with frequencies outside the so-called retrograde diurnal 
band (frequencies between  –1.5 and –0.5 cycles per sidereal day).  These are retrograde motions 
with periods of the order of half a day or less or periods greater than 2 days, as well as all 
prograde polar motions.  They include prograde diurnal and semi-diurnal nutations which can be 
shown to be equivalent to polar motions.  In that sense, the CIP is merely an extension of the 
CEP in allowing higher frequency nutation components to be included (but as polar motions) in 
the intermediate pole.  They have minimal impact for most users, having at most a few tens of 
micro-arcsec in amplitude (for the nutations) and up to a few hundred micro-arcsec for tidally 
induced diurnal and semi-diurnal polar motions.  The reader is referred to the IERS Conventions 
201037 and the IERS Technical Note 2938 for further summaries, details, and references. 
 
 
4.3.3 Transformations 
 
We are interested in transforming the coordinates of a celestial object as given in a Celestial 
Reference Frame to the apparent coordinates as would be measured by a terrestrial observer.  
The transformation, of course, is reversible; but this direction of the transformation is most 
applicable in geodesy, since we want to use the given coordinates of celestial objects in our 
observation models (e.g., to determine the coordinates for terrestrial stations).  The given 
celestial frame coordinates are mean coordinates referring to some fundamental epoch and the 
transformations account for precession up to the epoch of date, nutation at the epoch of date, 
Earth rotation, polar motion, and various systematic effects due to proper motion of the object, 
aberration, parallax, and refraction.  Some other considerations are needed, as well, with respect 
to the new definition of the ICRS.  The transformation is formulated in terms of an algorithm for 
geocentric and topocentric observers. 
 
 
4.3.3.1  Apparent Place Algorithm 
 
The object of this procedure is to formulate a transformation to compute the apparent geocentric 
coordinates of a star, given its mean position as listed in a catalogue.  Apparent coordinates are 
those that would be observed in a geocentric, intermediate (instantaneous) celestial frame with 
annual aberration and parallax effects removed.  Additional corrections for diurnal aberration 
                                                 
37 Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010.  IERS Technical Note No.36, Verlag des Bundesamts 

für Kartographie und Geodäsie, Frankfurt am Main. 
38 Capitaine, N. (2002): Comparison of “old” and “new” concepts: the celestial intermediate pole and Earth 

orientation parameters.  In: IERS Technical Note No. 29, Capitaine, N., et al. (eds.), Verlag des Bundesamts fü r 
Kartographie und Geodä sie, Frankfurt am Main.  Available on-line: 
http://www.iers.org/iers/publications/tn/tn29/. 
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(and diurnal parallax for objects in the solar system) are applied to obtain coordinates in a 
topocentric, intermediate celestial frame.  Applying polar motion and Earth rotation then brings 
the coordinates into the terrestrial reference frame.  Finally, refraction needs to be considered 
when modeling observed coordinates. 
 The Apparent Place Algorithm follows the procedure described in the Astronomical 
Almanac39.  The coordinates of a star are given in some catalogue that is a realization of the 
Celestial Reference System and includes also information on the velocity of the star (among 
other parameters).  The coordinates and velocity, using the notation of Hipparcos Catalogue, are 
valid at the epoch, 0t : 
 
i) 0 0, ,α δ π :   catalogue celestial coordinates and parallax angle of the star; 
 
ii) * 0 0 0cos , , r vα δα µ δ δ µ= = =&& & :   velocities of proper motion. (4.132) 
 
The algorithm proceeds by first determining the geocentric coordinates of the star at the epoch of 
the observation, t, still referred to the catalogue system.  Usually, we have some time system in 
which we operate, e.g., Universal Time (Chapter 5).  The star catalogues and celestial reference 
systems are established with respect to Barycentric Dynamic Time (TDB).  Technically, one 
should distinguish between Terrestrial (Dynamic) Time (TT) and TDB, but practically the 
difference is less than 2 ms and can be ignored.  We will define the relationship between TT and 
Universal Time, and among other time scales in Chapter 5.  For now, assume that the time of 
observation, t, is in the scale of dynamic time, TT, in terms of Julian day numbers, e.g., 

2455984.5 JDt = , which corresponds to hr0  (midnight, civil time in UT) at Greenwich on the 
morning of 27 February 2012.  The time interval from the fundamental epoch, 0t , of the 
catalogue, in units of Julian centuries is given by equation (4.3).  We will assume that 0Ft t=  
(see also equation (4.31)), and for J2000.0, 0 2451545.0 JDt = .  The Julian day number for t can 
be obtained from the Julian calendar (Astronomical Almanac, Section K); then we compute the 
fraction of a Julian century using 
 

 0 2451545.0
36525 36525
t t tτ − −= = . (4.133) 

 
 To continue with the determination of geocentric coordinates of the star at the time of 
observation, we require the location and velocity of the Earth at the time of observation in the 
barycentric system of reference.  We may also need the barycentric coordinates of the sun for 
light-deflection corrections.  The Jet Propulsion Laboratory publishes the standard ephemerides 

                                                 
39 The Astronomical Almanac, issued annually by the Nautical Almanac Office of the U.S. Naval Observatory, 

Washington, D.C. 
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for bodies of the solar system, called DE40540.  The Astronomical Almanac, Section B, lists 
some of these coordinates, as well, specifically, the vectors: 
 
 ( )B tE : barycentric coordinates of Earth at time, t , in the ICRS. 
 
 ( )B tE& : barycentric velocity of Earth at time, t , in the ICRS. 
 
We need only 3 and 5 digits of accuracy, respectively, to obtain milliarcsec accuracy in the star’s 
coordinates.  The barycentric coordinates of the sun in the ICRS, ( )B tS , are provided by DE405, 
and the heliocentric coordinates of the Earth are then 
 
 ( ) ( ) ( )H B Bt t t= −E E S ; (4.134) 

Both ( )B tS  and ( )H tE  are needed to compute the general relativistic light-deflection 
correction. 
 The catalogued position of the star may be represented by the vector in the barycentric 
system in units of A.U.: 
 
 ( ) ( )T

0 0 0 0 0 0 0cos cos cos sin sinB t r δ α δ α δ=r , (4.135) 
 
with corresponding unit vector (direction), ( ) ( )0 0 0B Bt t r=p r .  From equation (4.57), the 
coordinate vector of the star at time, t, due to proper motion is given by 
 
 ( ) ( ) ( )0 0B B Bt t tτ= +r r r& , (4.136) 

 
where from equations (4.59), (4.61), and (4.132) 
 

 ( ) ( )
0 0 * 0 0 0

0 0 0 0 * 0 0 0 0 0

0 0

cos cos sin sin cos
cos sin cos sin sin

sin cos
B

v
t r v r t

v

α δ

α δ

δ

π δ α µ α µ δ α
π δ α µ α µ δ α

π δ µ δ

− − 
 = + − = 
 + 

r m& . (4.137) 

 
Substituting the unit vector at 0t  into equation (4.136), the corresponding unit vector for the 
star’s direction at the epoch of date is 
 

 ( ) ( ) ( )
( ) ( )

0 0

0 0

B
B

B

t t
t

t t
τ
τ

+
=

+
p m

p
p m

. (4.138) 

 

                                                 
40 http://ssd.jpl.nasa.gov/?ephemerides#planets 
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It is, of course, also important to ensure that all terms in equation (4.137) have the same units 
([rad/cent.] in this case, since τ , equation (4.133), is a fraction of a century).  Note that the 
correction for proper motion is performed in the catalogue reference system; that is, the vector, 

( )B tp , does not indicate mean coordinates at the epoch of date, because precession has not yet 
been applied.  With first-order approximation, we can also compute ( )B tp  as follows, using 
equation (4.62): 
 

 ( )
( ) ( )
( ) ( )

( )

0 0 0 0

0 0 0 0

0 0

cos cos

cos sin

sin

B t

δ τ δ α τ α

δ τ δ α τ α

δ τ δ

 + +
 
 ≈ + +
 
 + 

p

& &

& &

&

, (4.139) 

 
where 0α&  may need to be derived from the catalogue data, if given through equation (4.132). 
 The corrections of the other effects continue to be based on information described in the 
catalogue coordinate system.  We proceed by transforming from the barycentric to the geocentric 
system, which corrects for parallax (see Figure 4.11): 
 
 ( ) ( ) ( )G B Bt t t= −r r E . (4.140) 

 
Now, substituting equations (4.136) and (4.61), we have 
 

 ( ) ( ) ( ) ( ) ( )0 0
0

G
G B B

t
t t t t

r
τ π= = + −

r
U p m E  (4.141) 

 
where the components of ( )B tE  are given in terms of AU.  Again, we let 
 

 ( ) ( )
( )

G
G

G

t
t

t
=
U

p
U

 (4.142) 

 
be the unit vector corresponding to ( )G tU .  These coordinates still refer to the catalogue 
reference system, but now with the effects of annual parallax (and proper motion) applied.  
Using angles, we augment equation (4.139) and get to first-order approximation: 
 

 ( )
( ) ( )
( ) ( )

( )

0 0 0 0

0 0 0 0

0 0

cos cos

cos sin

sin

G t

δ τ δ ∆δ α τ α ∆α

δ τ δ ∆δ α τ α ∆α

δ τ δ ∆δ

 + + + +
 
 ≈ + + + +
 
 + + 

p

& &

& &

&

, (4.143) 
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where ∆α  and ∆δ  account for annual parallax and are given, respectively, by equations (4.89) 
and (4.91). 
 One can now apply corrections for gravitational light-deflection and aberration according to 
specific models.  The light-deflection model utilizes ( )H tE  and ( )B tS  and the reader is referred 
to (Seidelmann, 1992, p.149)41.  We neglect this part as it only affects stars viewed near the sun.  
The annual aberration can be included using vectors, according to equation (4.63), where the 
aberrated coordinates are given in the form of a unit vector by 
 

 ( ) ( ) ( )
( ) ( )

' G B
G

G B

t t c
t

t t c
+

=
+

p E
p

p E

&
& , (4.144) 

 
and, if ( )B tE&  is given in units of [AU/day], then the speed of light should be expressed 
accordingly: 173.1446 AU/dayc = .  The formula given in the Astronomical Almanac42 includes 
special relativistic effects: 
 

 ( )
( ) ( ) ( ) ( )

( )
( )

( ) ( )

2

2
1 1

1 1
'

1

G
G

G
G

t t
V t t t

V t
t

t t

  ⋅  − + +   + −  =
+ ⋅

p V
p V

p
p V

, (4.145) 

 
where ( ) ( )Bt t c=V E& , ( ) ( )V t t= V .  Alternatively, to first-order approximation, one can 
simply augment the angular coordinates in equation (4.143) with the changes due to aberration 
given by equations (4.73) and (4.78).  In any case, the result yields coordinates at the epoch of 
date that are geocentric and aberrated by Earth’s velocity, but still referring to the catalogue 
reference system. 
 Finally, we apply precession and nutation to bring the coordinates from the ICRS to the 
apparent coordinates in the intermediate (instantaneous) celestial frame.  One may apply the 
traditional transformations, as in equation (4.34) (called the equinox method).  However, the 
small offset (frame bias) between the dynamical system and the new definition of the celestial 
reference system should be included.  Thus, 
 
 ( ) ( ) ( ) ( )0, 'Gt N t P t t B t=p p , (4.146) 

 
where P and N are given, respectively, by equations (4.16) and (4.32), and from equation (4.50), 
 

                                                 
41 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill 

Valley, CA. 
42 The Astronomical Almanac, issued annually by the Nautical Almanac Office of the U.S. Naval Observatory, 

Washington, D.C. 
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 ( ) ( ) ( )1 0 2 0 3 0B R R R dη ξ α= − . (4.147) 
 
Since ( )'G tp  is a unit vector, so is ( )tp ; and, its components contain the apparent coordinates 
of the star, with ( ) ( )T

x y zt p p p=p : 
 

 1tan y

x

p
p

α −= ,     1

2 2
tan z

x y

p
p p

δ −=
+

. (4.148) 

 
 Using the new conventions (Section 4.1.3), the alternative transformation procedure (called 
the CIO method) substitutes equation (4.36) for equation (4.146), where Q is given by equation 
(4.45) with X, Y, s, and a shown in equations (4.46), (4.47), (4.48), and (4.56), respectively: 
 
 ( ) ( )T 'Gt Q t=p p . (4.149) 
 
Both methods give the same result if consistent models for precession and nutation (e.g., the IAU 
2006/2000A precession-nutation models) are used.  The corresponding apparent celestial 
coordinates are given by equation (4.148). 
 To bring the coordinates of the star to the Terrestrial Reference Frame requires a 
transformation that accounts for Earth’s rotation rate and for polar motion.  We have 
 
 ( ) ( ) ( )( ) ( )T

3T t W t R GAST t t=p p , (4.150) 

 
where ( )GAST t  is Greenwich Apparent Sidereal Time (Section 2.3.4; also Section 5.1, equation 
5.32), and W is the polar motion matrix, given by equation (4.117).  The coordinates, ( )T tp , are 
the apparent coordinates of the star at time, t, in the Terrestrial Reference Frame.  With the new 
conventions, the GAST in the transformation (4.150) is replaced by a time angle that refers to the 
CIO.  This is the Earth rotation angle, defined in Section 5.2.1.  The polar motion matrix, W, is 
the same as before, but the extra rotation, 's , may be included for higher accuracy (equation 
(4.124)). 
 
 
4.3.3.2  Topocentric Place Algorithm 
 
Topocentric coordinates of stars are obtained by applying diurnal aberration using the terrestrial 
position coordinates of the observer.  Diurnal parallax can be ignored, as noted earlier.  
Furthermore, the topocentric coordinates and the velocity of the observer need only be 
approximate without consideration of polar motion.  We first find the observer’s geocentric 
position in the inertial frame: 
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 ( ) ( )3t R GAST= −g r , (4.151) 
 
where r  is the terrestrial position vector of the (stationary) observer (Earth-fixed frame).  ( )tg  
gives “true” coordinates at the time of observation.  We find the velocity, ( )tg& , according to 
 

 ( ) ( )3

0 0
0 0

0 0 0

e

et R GAST
ω

ω
− 

 = −  
 
 

g r& , (4.152) 

 
since eGAST tω= , and apply nutation and precession to obtain the geocentric velocity in the 
mean coordinate system of the fundamental epoch, 0t : 
 
 ( ) ( ) ( ) ( )T T

0,t P t t N t t=G g& & . (4.153) 
 
This neglects a small Coriolis term which occurs when taking time-derivatives in a rotating (true) 
system.  Now the velocity of the observer, due to Earth’s rotation and orbital velocity, in the 
barycentric reference system is given by 
 
 ( ) ( ) ( )B Bt t tO = E +G& && , (4.154) 
 
which would be used in equation (4.144) or (4.145) instead of ( )B tE& .  The result, equation 
(4.146) or (4.149), is then the topocentric place of the star. 
 A complete set of computational tools is available from the U.S. Naval Observatory on its 
internet site: http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas.  
These are FORTRAN, C, or Python programs that compute the various transformations 
discussed above with the older, as well as the new conventions.  Details may be found, e.g., in 
(Kaplan et al. 2011)43. 
 
 

                                                 
43 Kaplan, G., Bartlett, J., Monet, A., Bangert, J., Puatua, W. (2011): User’s Guide to NOVAS Version F3.1, Naval 

Observatory Vector Astrometry Software.  U.S. Naval Observatory, Washington, D.C. 
http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas/novas-
fortran/NOVAS_F3.1_Guide.pdf 
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4.3.3.3  Problems 
 
1. Given the mean celestial coordinates of a star: 195α = ° , 23δ = °  in the ICRS (assume that 
the coordinates refer to 0 2000.0t J= ), determine the apparent coordinates of the star for noon, 4 
July 2020, in Greenwich.  Apply the 1976 precession model, the 1980 nutation model (18.6 year, 
semi-annual, and fortnightly terms, only), parallax, aberration, and space motion.  Also apply the 
frame bias.  Use the Julian day calendar available in the Astronomical Almanac and the 
following information: 
 

0 0.003598723 rad/centα = −& , 

0 0.000337430 rad/centδ = +& , 

0 22.2 km/sr = −& , 
 

63.6458 10  radπ −= × , 
 

( ) ( )T0.200776901 0.911150265 0.394806169  AUB t = − −E , 

( ) ( )T 916551216 3183909 1380187 10  AU/dayB t −= ×E& . 
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Chapter 5 
 

Time 
 
 
A system of time is a system just like any other reference system (see Section 1.2), except that it 
is one-dimensional.  The definition of a time system involves some kind of theory associated 
with changing phenomena.  If the universe in its entirety were completely static, there would be 
no time as we understand it, and the only reason we can perceive time is that things change.  We 
have relatively easy access to units of time because many of the changes that we observe are 
periodic.  If the changing phenomenon varies uniformly, then the associated time scale is 
uniform.  Clearly, if we wish to define a time system then it should have a uniform time scale; 
however, very few observed dynamical systems have rigorously uniform time units.  In the past, 
Earth’s rotation provided the most suitable and evident phenomenon to represent the time scale, 
with the unit being a (solar) day.  It has been recognized for a long time, however, that Earth’s 
rotation is not uniform (it is varying at many different scales (daily, bi-weekly, monthly, etc., and 
even slowing down over geologic time scales; Lambeck (1988)1).  In addition to scale or units, 
we need to define an origin for our time system; that is, a zero-point, or an epoch, at which a 
value of time is specified.  Finally, whatever system of time we define, it should be accessible 
and, thereby, realizable, giving us a time frame. 
 Prior to 1960, a second of time was defined as 1 86400 of a mean solar day.  Today (since 
1960), the time scale is defined by the natural oscillation of the cesium atom and all time systems 
can be referred or transformed to this scale.  Specifically, the SI (Système International) second 
is defined as: 
 

1 SI sec = 9,192,631,770 oscillations of the cesium-133 atom between two 
   hyperfine levels of the ground state of this atom. (5.1) 

 

                                                 
1 Lambeck, K. (1988): Geophysical Geodesy. Clarendon Press, Oxford. 
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There are four basic types of time systems in use: 
 

1. Sidereal time: scale defined by Earth’s rotation with respect to the celestial sphere. 
2. Universal time: scale defined by Earth’s rotation with respect to the mean sun. 
3. Dynamic time: scale defined by the time variable in the equations of motion describing 

the dynamics of the solar system. 
4. Atomic time: scale defined by the number of oscillations in the energy states of the 

cesium-133 atom. 
 
We have already encountered sidereal time when discussing astronomic coordinates (Section 
2.3) and dynamic time when discussing precession and nutation (Section 4.1).  We present these 
again with a view toward transformation between all time systems. 
 
 
 
5.1 Sidereal Time 
 
Sidereal time, generally, is the hour angle of the vernal equinox; it represents the rotation of the 
Earth with respect to the celestial sphere and reflects the actual rotation rate of the Earth, plus 
effects due to precession and nutation of the equinox.  Because of the nutation, we distinguish 
between apparent sidereal time (AST), which is the hour angle of the true current vernal equinox, 
and mean sidereal time (MST), which is the hour angle of the mean vernal equinox (also at the 
current time). 
 The fundamental unit in the sidereal time system is the mean sidereal day, which equals the 
interval between two consecutive transits of the mean vernal equinox across the same meridian 
(corrected for polar motion).  Also, 
 
 1 sidereal day = 24 sidereal hours = 86400 sidereal seconds. (5.2) 
 
The apparent sidereal time is not used as a time scale because of its non-uniformity, but it is used 
as an epoch in astronomical observations.  The relationship between mean and apparent sidereal 
time derives from nutation.  Referring to Fig 4.6, we have 
 
 cosAST MST ∆ψ ε= + , (5.3) 

 
where the last term is called the “equation of the equinoxes” and is the right ascension of the 
mean equinox with respect to the true equinox and equator.  Since the maximum-amplitude term 
in the series for the nutation in longitude is approximately 17.2 arcsec∆ψ ≈ , the magnitude of 
the equation of the equinoxes is ( )17.2cos 23.44  arcsec 1.05 s° = , using the conversion, 
15 1 hr° = . 
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 We specialize our definitions of sidereal time according to the astronomic meridian to which 
it refers, as follows: local sidereal time (LST) (mean, LMST, and apparent, LAST) and Greenwich 
sidereal time (GST) (mean, GMST, and apparent, GAST), where 
 
 tGST LST Λ= − , (5.4) 

 
and the longitude, tΛ , refers to the CIP, not the IRP.  Clearly the equation of the equinoxes 
applies equally to GST and LST.  Due to precession (in right ascension), 24 hours of sidereal time 
do not correspond exactly to one rotation of the Earth with respect to inertial space.  The rate of 
general precession in right ascension is approximately (using equation (4.14) with equations 
(4.23) and (4.24)): 
 
 24612.4362 [arcsec/cent] 2.79312 [arcsec/cent ]m T= + , (5.5) 

 
where T is in Julian centuries.  The amount for one day is 
 

 7 120.126 arcsec/day 0.0084 s/day 6.11 10  rad/day 7.07 10  rad/s
36525

m − −= = = × = × . (5.6) 

 
 
 
5.2 Universal Time 
 
Universal time is the time scale used for general civilian time keeping and is based (only 
approximately, since 1961) on the diurnal motion of the sun.  However, the sun, as viewed by a 
terrestrial observer, moves neither on the celestial equator, nor on the ecliptic (strictly speaking), 
nor is the motion uniform on the celestial sphere.  Therefore, the hour angle of the sun is not 
varying uniformly.  For these reasons and the need for a uniform time scale, a so-called fictitious, 
or mean sun is introduced, and the corresponding time for the motion of the mean sun is known 
as mean solar time (MT).  The basic unit of universal time is the mean solar day, being the time 
interval between two consecutive transits of the mean sun across the meridian.  The mean solar 
day has 24 mean solar hours and 86400 mean solar seconds.  Universal time (UT) is defined as 
mean solar time on the Greenwich meridian. 
 If Mt  is the hour angle of the mean (or fictitious) sun with respect to the local meridian, then 
in terms of an epoch (an accumulated angle), mean solar time is given by: 
 
 180MMT t= + ° , (5.7) 

 
where we have purposely written the units in terms of angles on the celestial equator to denote an 
epoch.  The angle, 180° , is added because when it is noon (the mean sun is on the local meridian 
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and 0Mt = ° ), the mean solar time epoch is 12 hours, or 180 degrees.  Again, in terms of an 
angle, the universal time epoch in Greenwich is 
 
 180G

MUT t= + ° . (5.8) 

 
 The relationship between the universal time and mean sidereal time scales can be established 
once the right ascension of the mean sun, Mα , is determined.  Always in terms of angles 
(epochs), we have from equations (2.181) and (5.8) 
 

 
180

G
M M

M

GMST t

UT

α
α

= +
= + − °

 (5.9) 

 
The right ascension of the mean sun is determined on the basis of an empirical expression (based 
on observations), first obtained by Newcomb.  The 1984 version (i.e., using modern adopted 
constants) is as follows, 
 

 

( )

( )

h m s 2 3

2 8 3

18 41 50.54841 8,640,184.812866 0.093104 0.0000062  [s]

=280.460618374 36000.7700536 0.000387933 2.6 10  [deg]

Mα τ τ τ

τ τ τ−

= + + −

° + + − ×

 (5.10) 

 
where τ  is the fraction of Julian centuries of 36525 mean solar days since the standard epoch 
J2000.0.  We note that Greenwich noon defines the start of a Julian day; therefore, if we seek 

Mα  for midnight in Greenwich, the number of mean solar days since J2000.0 (which is 
Greenwich noon, 1 January 2000, or 1.5 January 2000, see Figure 4.1) is (from equation 4.31): 
 
 36525 0.5, 1.5, 2.5,τ = ± ± ± … . (5.11) 

 
Now, substituting equation (5.10) into equation (5.9), and solving for UT  (the epoch), we find 
 

 ( )2 8 3100.460618374 36000.7700536 0.000387933 2.610  [deg]UT GMST τ τ τ−= − ° − + − × . 

    (5.12) 
 
 The universal time scale relative to the mean sidereal time scale is obtained by taking the 
derivative of equation (5.12) with respect to τ  (mean solar Julian centuries).  We have 
 

 
( ) ( )8 236000.7700536 [deg/cent] 0.000775867 7.8 10  [deg/cent]

d GMST UT

d
τ τ

τ
−−

= + − × . 

   . (5.13) 
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Hence, the number of degrees on the celestial equator between the epochs GMST and UT after 
one mean solar day ( 1 36525  centdτ = ) is 
 

 ( ) ( )( )8 236000.7700536 0.000775867 7.8 10  [deg] 36525d GMST UT τ τ−− = ° + − × ; (5.14) 

 
or, one mean solar day is a sidereal day (360° or 86400 sidereal seconds) plus the excess being 
the right-hand side, above, in degrees or sidereal seconds (see also Figures 5.1 and 5.2): 
 

 ( ) ( )d s s 6 10 21 86400 236.55536790872 5.098097 10 5.09 10  [s]MT τ τ− −= + + × − × . (5.15) 

 
From this we find 
 

 

( )
( )

( )s 6 10 2d

d s

11 15 2

86636.55536790872 5.098097 10 5.09 10 [s]1

1 86400

1.002737909350795 5.9006 10 5.9 10

MT

MST

τ τ

τ τ

− −

− −

+ × − ×
=

= + × − ×

 (5.16) 

 
Neglecting the small secular terms: 
 

 

h m s

h m s

1 mean solar day 24 03 56.5554  in sidereal time

1 mean sidereal day 23 56 04.0905  in solar time

=

=

 (5.17) 

 
A mean solar day is longer than a sidereal day because in order for the sun to return to the 
observer’s meridian, the Earth must rotate an additional amount since it has advanced in its orbit 
and the sun is now in a different position on the celestial sphere (see Figure 5.1). 
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sun
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Figure 5.1: Geometry of sidereal and solar days. 

 
 
 We note that UT and ST are not uniform because of irregularities in Earth’s rotation rate.  
The most important effect, however, in determining UT from observations is due to polar 
motion; that is, the meridian with respect to which the transit measurements are made refers to 
the IRP (fixed meridian on the Earth’s surface), while UT should refer to the instantaneous 
rotation axis.  Thus, one distinguishes between the epochs: 
 

UT0: universal time determined from observations with respect to the fixed meridian (the 
IRP); 

UT1: universal time determined with respect to the meridian attached to the CIP. 
 
From Figure 4.21 we have 
 
 CIP IRPΛ Λ ∆Λ= − , (5.18) 

 
where ∆Λ  is the polar motion in longitude.  Hence, as shown in Figure 5.2, the IRP meridian 
will pass a point on the celestial sphere before the CIP meridian (assuming, without loss in 
generality, that 0∆Λ > ).  Therefore, the GMST epoch with respect to the IRP comes before the 
GMST epoch with respect to the CIP: 
 
 CIP IRPGMST GMST ∆Λ= + . (5.19) 
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Thus, from equation (5.12) 
 

 
1

0
CIP IRPUT GMST GMST

UT

∆Λ
∆Λ

= − = +
= +

…
 (5.20) 

 
 

∆Λ IRP meridian

CIP meridian

ωE

ϒ

∆Λ IRP meridian

CIP meridian

ωE

ϒ
 

Figure 5.2: Geometry for the relationship between UT0 and UT1. 
 
 
 UT1 is still affected by irregularities in Earth’s rotation rate (length of day variations), which 
can be removed to some extent (seasonal variations), thus yielding 
 
 2 1 corrections for seasonal variationsUT UT= + . (5.21) 
 
Presently, UT2 is the best approximation of UT to a uniform time (although it is still affected by 
small secular variations).  However, UT1 is used to define the orientation of the Greenwich mean 
astronomical meridian through its relationship to longitude, and UT1 has principal application 
when observations are referred to a certain epoch since it represents the true rotation of the Earth. 
 In terms of the SI second, the mean solar day is given by 
 

 ( )1 86400  [s]d MT
n

∆τ= − , (5.22) 

 
where ∆τ , in seconds, is the difference over a period of n days between UT1 and dynamic time 
(see Section 5.3): 
 
 1UT TDT∆τ = − . (5.23) 
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The time-derivative of ∆τ  is also called the length-of-day variation.  From observations over the 
centuries it has been found that the secular variation in the length of a day (rate of Earth rotation) 
currently is of the order of 1.4 ms per century (Lambeck, 1988, p.607)2. 
 
 
5.2.1  Earth Rotation Angle 
 
With the definitions of the Celestial Intermediate Origin (CIO) and the Terrestrial Intermediate 
Origin (TIO), both being non-rotating origins on the instantaneous equator, we are able to define 
UT1 more succinctly.  The angle between the CIO and the TIO (Figure 5.3) is known as the 
Earth Rotation Angle, θ .  Since neither the CIO nor the TIO, by definition, have angular rate 
along the instantaneous equator due to precession and nutation, the time associated with Earth’s 
rotation rate, that is, UT1, is defined simply as being proportional to θ : 
 
 ( ) ( )0 12UT UTθ τ π ψ ψ τ= + , (5.24) 

 
where 0ψ  and 1ψ  are constants (with units of [cycle] and [cycle per day], respectively), and 
 
 0 Julian 1 date UT UT tτ = − , (5.25) 

 
and the Julian UT1 date is the Julian day number interpreted as UT (mean solar time) scale. The 
fundamental epoch, 0t , is, as usual, the Julian day number, 2451545.0, associated with 
Greenwich noon, 1 January 2000.  In practice, the Julian UT1 day number is obtained from 
 
 ( )1 1UT UTC UT UTC= + − , (5.26) 

 
where UTC is Coordinated Universal Time (an atomic time scale, see Section 5.4), and the 
difference, 1UT UTC− , is either observed or provided by the IERS.  The constants, 0ψ  and 1ψ , 
are derived below from theory and models; and the constant, 12πψ , is Earth’s rotation rate in 
units of [rad/day], if ( )1 d 86400 sUTτ = = . 
 If the new transformation, equation (4.36), with matrix, Q, is used to account for precession 
and nutation, then the Earth Rotation Angle, θ , should be used instead of the Greenwich 
Apparent Sidereal Time (GAST), in the transformation between the Celestial and Terrestrial 
Reference Systems.  The total transformation under the old conventions from the Celestial 
Reference System to the Terrestrial Reference System was given by equation (4.34) to account 
for precession and nutation, and by equation (4.150) to account for polar motion and Earth 
rotation, where we omit the observational effects, for the moment: 

                                                 
2 Lambeck, K. (1988): Geophysical Geodesy. Clarendon Press, Oxford. 
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 ( ) ( ) ( ) ( ) ( ) ( )T

TRS 3 0 CRS 0,t W t R GAST N t P t t t=u u , (5.27) 

 
where u  is a unit vector on the celestial sphere.  The new transformation, based on IAU 
resolutions adopted in 2000 and the new IERS 2003 Conventions, is 
 
 ( ) ( ) ( ) ( )T T

TRS 3 CRSt W t R Q tθ=u u , (5.28) 
 
where the polar motion transformation, W, is given by equation (4.124), and the precession-
nutation transformation, Q, is given by equation (4.45).  The Greenwich Sidereal Time (GST) 
now is no longer explicitly involved in the transformation, but we can demonstrate the essential 
equivalence of the old and new methods of transformation through the relationship between the 
Earth Rotation Angle, θ , and GST. 
 
 

true (instantaneous) equator

σ
(CIO)

ϖ
(TIO)

θ

GAST

ϒ
( )mα ϒ ( )mA ϒ−

mϒ

( )α σ

true (instantaneous) equator

σ
(CIO)

ϖ
(TIO)

θ

GAST

ϒ
( )mα ϒ ( )mA ϒ−

mϒ

( )α σ  
Figure 5.3: Relationship between GAST and Earth Rotation Angle, θ . 

 
 
 From Figure 5.3, it is clear that if GAST is the hour angle, at the TIO, of the true vernal 
equinox at the epoch of date, t, then 
 
 ( )GAST α σ θ= + , (5.29) 

 
where ( )α σ  is the right ascension of the CIO relative to the true equinox at t.  It is also called 
the equation of origins (analogous to the equation of the equinoxes, (5.3)).  The old precession 
and nutation transformations, P and N, bring the reference 1-axis (reference equinox) to the true 
equinox of date.  Therefore, a further rotation about the CIP by ( )α σ  brings the 1–axis to the 
CIO, σ ; and we have: 
 
 ( )( ) T

3R NP Qα σ = , (5.30) 
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since the CIO is the point to which the transformation, TQ , brings the 1-axis due to precession 
and nutation.  Combining equations (5.29) and (5.30), we have 
 
 ( ) ( )T

3 3R Q R GAST NPθ = , (5.31) 

 
showing that equations (5.27) and (5.28) are equivalent. 
 The GAST differs from the Greenwich Mean Sidereal Time (GMST) due to nutation of the 
vernal equinox.  This was defined as the “equation of the equinoxes” in Section 5.1.  A more 
complete expression may be found in (McCarthy and Petit, 2003, Chapter 5, p.15)3 and is 
derived in (Aoki and Kinoshita, 1983, Appendix 2)4; it includes the complete periodic part of the 
difference between GAST and GMST.  Without details, we have from (ibid, equ.(A2-39)) 
 
 periodicGAST GMST q∆= + . (5.32) 
 
Recall equation (5.9), 
 
 1 180MGMST UTα= + − ° , (5.33) 
 
where Mα  is the right ascension of the mean sun and we have used 1UT , specifically referring 
universal time to the instantaneous Earth spin axis (the CIP pole).  Substituting this and equation 
(5.29) into equation (5.32), we have 
 
 ( )periodic1 180MUT qθ α ∆ α σ= + − ° + − . (5.34) 

 
 Now, the right ascension of the mean vernal equinox, ( )mα ϒ , consists of a periodic part and 
a secular part, the periodic part being the equation of the equinoxes, defined above, and a secular 
part (due to nutation), given by5 
 
 secular 0.00385  [arcsec]q∆ τ= − . (5.35) 
 
Furthermore, from Figure 5.3, the right ascension of the mean vernal equinox is given by: 
 
 ( ) ( ) ( )m mAα α σϒ = + ϒ , (5.36) 

                                                 
3 McCarthy, D.D., Petit, G. (2003): IERS Conventions 2003.  IERS Technical Note 32, U.S. Naval Observatory, 

Bureau International des Poids et Mesures. 
4 Aoki, A., Kinoshita, H. (1983): Note on the relation between the equinox and Guinot’s non-rotating origin. 

Celestial Mechanics, 29, 335-360. 
5 Capitaine, N., Guinot, B., Souchay, J. (1986): A non-rotating origin on the instantaneous equator: definition, 

properties and use. Celestial Mechanics, 39, 283-307. 
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where ( )mA ϒ  is the instantaneous right ascension of the mean vernal equinox relative to the 
non-rotating origin, σ  (with sign convention of positive eastward).  As such (since the NRO 
does not rotate on the equator during precession, by definition), ( )mA− ϒ  is the accumulated 
precession in right ascension, having rate, m, as given in equation (5.5); see also Figure 4.4.  
Therefore, 
 
 ( ) ( ) ( ) ( )periodic secular secularm mq q A q∆ α σ α ϒ ∆ α σ ϒ ∆− = − − = − ; (5.37) 

 
and 
 

 

0

secular1 180

t

M

t

UT q mdtθ α ∆= + − ° − − ∫ . (5.38) 

 
Substituting the numerical values from equations (5.10), (5.5), and (5.35) yields 
 
 ( ) ( )2 0.7790572732640 1.00273781191135448  [rad]UT UTθ τ π τ= + , (5.39) 

 
where UTτ  is the number of mean solar days since 1.5 January 2000 (equation (5.25)), and where 
UT1 in equation (5.38) should be interpreted as 1 0.5 day 1 daysUT UT= +  since 1.5 January 
2000.  Equation (5.39) is of the form of equation (5.24) and provides the linear relationship 
between the Earth Rotation Angle, θ , and the time scale associated with Earth’s rotation. 
 
 
 
5.3 Dynamic Time 
 
As already discussed in Chapter 4, the dynamic time scale is represented by the independent 
variable in the equations of motion of bodies in the solar system.  In theory it is the most uniform 
time scale known since it governs all dynamics of our local universe according to the best theory 
(the theory of general relativity) that has been developed to date.  Prior to 1977, the “dynamical” 
time was called ephemeris time (ET).  ET was based on the time variable in the theory of motion 
of the sun relative to the Earth – Newcomb’s ephemeris of the sun.  This theory suffered from 
the omission of relativistic theory, the dependence on adopted astronomical constants that, in 
fact, show a time dependency (such as the “constant” of aberration).  It also omitted the effects 
of planets on the motion. 
 In 1976 and 1979, the IAU adopted a new dynamic time scale based on the time variable in a 
relativistic theory of motion of all the bodies in the solar system.  The two systems, ET and DT, 
were constrained to be consistent at their boundary (a particular epoch); specifically 
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 d h m s at 1977 January 1.0003725 (1 00 00 32.184 , exactly)DT ET= . (5.40) 

 
The extra fraction in this epoch was included since this would make the point of continuity 
between the systems exactly 1977 January 1.0 in atomic time, TAI (Section 5.4).  This is the 
origin point of modern dynamic time.  The unit for dynamic time is the SI second, or, also a 
Julian day of 86400 SI seconds. 
 Because of the relativistic nature of the space we live in, the origin of the spatial coordinate 
system in which the time is considered (in which the equations of motion are formulated) must 
be specified.  In particular, geocentric and barycentric time scales must be defined.  We have: 
 
TDT: Terrestrial dynamic time is the dynamic time scale of geocentric ephemerides of bodies 

in the solar system.  It is defined to be uniform and the continuation of ET (which made 
no distinction between geocentric and barycentric coordinate systems).  It is also 
identical, by resolution, to the time scale of terrestrial atomic physics. 

 
TDB: Barycentric dynamic time is the time scale of barycentric ephemerides of bodies in the 

solar system.  The difference between TDB and TDT is due to relativistic effects caused 
mainly by the eccentricity of Earth’s orbit, producing periodic variations. 

 
In 1991, as part of a clarification in the usage of these time scales in the context of general 
relativity, the IAU adopted a change in the name of TDT to Terrestrial Time (TT).  TT is a proper 
time, meaning that it refers to intervals of time corresponding to events as measured by an 
observer in the same frame (world-line) as occupied by the event.  This is the time scale most 
appropriate for near-Earth applications (e.g., satellite orbits), where the Earth-centered frame is 
considered locally inertial.  TT is identical to TDT and has the same origin defined by equation 
(5.40).  Its scale is defined by the SI second.  It differs from atomic time only because of 
potential errors in atomic time standards (currently no distinction is observed between the two 
scales, but the epochs are offset as noted above).  For relationships between TT and TDB and 
other scales based on coordinate time in general relativity, the reader is directed to Seidelmann 
(1992)6, McCarthy (1996)7, Petit and Luzum (2010, Chapter 10)8, and the Astronomical 
Almanac (Section B6)9 
 
 

                                                 
6 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill 

Valley, CA. 
7 McCarthy, D.D. (ed.) (1996): IERS Conventions (1996).  IERS Tech. Note 21, Observatoire de Paris, Paris. 
8 Petit, G., Luzum, B. (eds.) (2010): IERS Conventions 2010.  IERS Technical Note No.36, Verlag des Bundesamts 

für Kartographie und Geodäsie, Frankfurt am Main. 
9 The Astronomical Almanac, issued annually by the Nautical Almanac Office of the U.S. Naval Observatory, 

Washington, D.C. 
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5.4 Atomic Time 
 
Atomic time refers to the time scale realized by the oscillations in energy states of the cesium-
133 atom, as defined in equation (5.1).  The SI second, thus, is the unit that defines the scale; this 
is also the time standard for International Atomic Time (TAI, for the French Temps Atomique 
International) which was officially introduced in January 1972.  TAI is realized by the BIPM 
(Bureau International des Poids et Mesures) which combines data from over 200 high-precision 
atomic clocks around the world in order to maintain the SI-second scale as closely as possible.  
The TAI scale is published and accessible as a correction to each time-center clock.  In the U.S., 
the official atomic time clocks are maintained by the U.S. Naval Observatory (USNO) in 
Washington, D.C., and by the National Institute of Standards and Technology (NIST) in Boulder, 
Colorado.  Within each such center several cesium beam clocks are running simultaneously and 
averaged.  Other participating centers include observatories in Paris, Greenwich, Tokyo, Ottawa, 
Braunschweig (Germany), and Berne (Switzerland).  The comparison and amalgamation of the 
clocks of participating centers around the world are accomplished by LORAN-C, satellite 
transfers (GPS playing the major role), and actual clock visits.  Worldwide synchronization is 
about 100 ns (Leick, 1995, p.34)10.  Since atomic time is computed from many clocks it is also 
known as a paper clock or a statistical clock. 
 Due to the exquisite precision of the atomic clocks, general relativistic effects due to the 
spatially varying gravitational potential must be considered.  Therefore, the SI second is defined 
on the “geoid in rotation”, meaning also that TAI is defined for an Earth frame and not in a 
barycentric system. 
 Atomic time was not realized until 1955; and, from 1958 through 1968, the BIH maintained 
the atomic time scale.  The origin, or zero-point, for atomic time has been chosen officially as 

h m s0 0 0 , January 1, 1958.  Also, it was determined and subsequently defined that on h m s0 0 0 , 
January 1, 1977 (TAI), the ephemeris time epoch was h m s0 0 32.184, January 1, 1977 (ET).  Thus, 
with the evolving definitions of dynamic time: 
 
 s32.184ET TAI TDT TAI TT TAI− = − = − = . (5.41) 
 
So far, no difference in scale has been detected between TAI and TT, but their origins are offset 
by s32.184 . 
 All civil clocks in the world now are set with respect to an atomic time standard.  But since 
atomic time is much more uniform than solar time, and yet we still would like civil time to 
correspond to solar time, a new atomic time scale was defined that keeps up with universal time 
in discrete steps.  This atomic time scale is called Universal Coordinated Time (UTC).  It is 

                                                 
10 Leick, A. (1995): GPS Satellite Surveying, 2nd ed.  John Wiley & Sons, New York. 
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adjusted recurrently to stay close to universal time.  UTC was established in 1961 by the BIH and 
is now maintained by the BIPM.  Initially, UTC was adjusted so that 
 
 2 0.1 sUT UTC− < , (5.42) 

 
which required that the UTC be modeled according to 
 
 ( )0TAI UTC b s t t− = + − , (5.43) 

 
where b is a step adjustment and s a frequency offset.  As of 1972, the requirement for the 
correspondence of UTC with universal time was loosened to 
 
 1 0.9 sUT UTC− < , (5.44) 
 
with 1 sb =  and 0s = .  The step adjustment, b, is called a leap second and is introduced either 
July 1 or January 1 of any particular year.  The last leap second (as of January 2012) was 
introduced at the end of December 2008.  Historical astronomic evidence indicates that the 
Earth’s rotation rate is decreasing, due to tidal friction, at the rate of roughly 1.4 msec/day per 
century.  Thus, the length of a day increases by about 1.4 msec per century.  It has been 
determined that the mean solar day today is actually about 86400.0027 SI seconds long (which 
means that it was exactly 86400 SI seconds long in about 1820, 1.92 centuries ago).  However, 
this disparity in the scales of the defined SI second and the current mean solar day accumulates 
about 1 second to UT1 every year; hence the introduction of the leap seconds.  The difference, 
 
 1 1DUT UT UTC= − , (5.45) 
 
is broadcast along with UTC so that users can determine UT1.  There is current debate11 about 
the need to maintain a small difference between UTC and UT1 considering the technical 
inconveniences (if not outright difficulties) this imposes on the many civilian 
telecommunications systems and other networks that rely on a precise time scale. 
 GPS time is also an atomic time scale, consistent with TAI to within 1 sµ .  Its zero point is 
 
 ( )0 GPS  January 6.0, 1980 JD2444244.5t = = , (5.46) 

 
and it was the same as UTC at that epoch only, since GPS time is not adjusted by leap seconds to 
keep up with universal time.  Thus, we have always that 
 

                                                 
11 Nelson, R.A., et al. (2001): The leap second – its history and possible future.  Metrologia, 38, 509-529. 
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 ( )GPS 19.0 st TAI= − . (5.47) 

 
These relationships among the various atomic time scales are illustrated along with dynamic time 
in Figure 5.4. 
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Until 1960, the second was defined by mean Earth rotation 

ET = Ephemeris Time, based on orbital motion of Earth, excluding general relativistic effects 

TDT = Terrestrial Dynamic Time; Earth-centered and based on dynamics of Solar System incl. general relativity 

TT = Terrestrial Time; the same as TDT 

TAI = Temps Atomique International (International Atomic Time) 

UTC = Coordinated Universal Time (atomic time scale) 

GPS time is an atomic time scale used for the Global Positioning System (GPS) 

UT1 = Universal Time based on Earth’s rotation referring to the CIP 

 
Figure 5.4: Relationships between atomic time scales and dynamic time (indicated leap seconds 
are schematic only). 
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 Note in Figure 5.4 that the time scales of TAI and TDT (TT) are the same (1 SI second is the 
same in both), but they are offset.  Also, the time scale for UTC is 1 SI second, but occasionally 
it is offset by 1 s.  The time scale for UT1 is very close to 1 SI second; that is, the difference 
between the UT1 and the TAI “clocks” is only about 30 s over 40 years (compare this to the 
difference between mean solar time and mean sidereal time of 4 minutes per day!).  The history 
of TAI UTC−  (only schematically shown in Figure 5.4) can be obtained from the USNO12.  
Currently (2012) the difference is 34 sTAI UTC− = .  Note, however, that this does not mean 
that the Earth has slowed down at the rate of more than 30 s in the last fifty years.  The continual 
slowing of the UT1 clock relative to the TAI clock represents the accumulative effect of Earth’s 
decreasing rate of rotation (a deceleration), which is only about 1.4 msec per day per century. 
 
 
5.4.1 Determination of Atomic Time 
 
Atomic time is currently the most precise and accessible of the uniform scales of time.  It is 
determined using frequency standards, or atomic clocks, that are based on atomic energy 
oscillations.  The standard for comparison is based on the oscillations of the cesium atom, but 
other atomic clocks are used with different characteristics in stability and performance.  For any 
signal generator, considered as a clock, we assume a nearly perfect sinusoidal signal voltage: 
 
 ( ) ( )( ) ( )0 sinV t V V t tδ φ= + , (5.48) 

 
where ( )V tδ  is the error in amplitude, which is of no consequence, and ( )tφ  is the phase of the 
signal.  The change in phase with respect to time is a measure of time.  The phase is given by 
 
 ( ) ( )t t tφ ω δφ= + , (5.49) 

 
where ω  is the ideal (radian) frequency of the generator (i.e., ω  is constant), and ( )tδφ  
represents the phase error; or, its time derivative, ( )tδφɺ , is the frequency error.  Note that in 
terms of cycles per second, the frequency is 
 

 
2

f
ω
π

= . (5.50) 

 
Thus, let 
 

                                                 
12 ftp://maia.usno.navy.mil/ser7/tai-utc.dat 
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 ( ) ( ) ( )1 1

2
y t t t

f
δφ δφ

ω π
= =ɺ ɺ  (5.51) 

 
be the relative frequency error. 
 Now, the average of the relative frequency error over some interval, 1k kt tτ += − , is given by 
 

 ( ) ( ) ( )( )
1

1

1 1

2

k

k

t

k k k

t

y y t dt t t
f

δφ δφ
τ π τ

+

+= = −∫ . (5.52) 

 
The stability of the clock, or its performance, is characterized by the sample variance of the first 
N differences of contiguous averages, ky , with respect to the interval, τ : 
 

 ( ) ( )22
1

1

1 1

2

N

y k k

k

y y
N

σ τ +
=

= −∑ . (5.53) 

 
This is known as the Allan variance, and yσ  represents the fractional frequency stability of the 
oscillator.  Substituting equation (5.49) into equation (5.52) yields 
 

 ( ) ( )( )1

1
k k ky t tδφ δφ ωτ

ωτ += − − . (5.54) 

 
Putting this into equation (5.53) gives 
 

 ( )
( )

( ) ( ) ( )( )22
2 12

1

1
2

2

N

y k k k

k

t t t
N

σ τ δφ δφ δφ
ωτ + +

=

= − +∑ , (5.55) 

 
which is a form that can be used to compute the Allan variance from the indicated phase, ( )tφ , 
of the oscillator. 
 Most atomic clocks exhibit a stability as a function of τ , characterized generally by ( )yσ τ  
decreasing as τ  increases from near zero to an interval of the order of a second.  Then, ( )yσ τ  
reaches a minimum over some range of averaging times; this is called the “flicker floor” region 
and yields the figure of merit in terms of stability.  For longer averaging times, after this 
minimum, ( )yσ τ  again rises.  Table 5.1 is constructed from the discussion by Seidelmann 
(1992, p.60-61)13; and, Figure 5.5 qualitatively depicts the behavior of the square root of the 

                                                 
13 Seidelmann, P.K. (ed.) (1992): Explanatory Supplement to the Astronomical Almanac. Univ. Science Books, Mill 

Valley, CA. 
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Allan variance of different types of clocks as a function of averaging time (see also Kamas and 
Howe (1979)14. 
 
 

Table 5.1: Fractional frequency stabilities for various atomic (and other) clocks. 
Clock stability (min yσ ) range of τ  
quartz oscillator  1310−≥  0.1 s 1 dayτ≤ ≤  
cesium beam laboratory 141.5 10−×  several years 
 commercial 122 10−×  1 yrτ ≤  
  143 10−×  1 dayτ ≤  
 Block II GPS ( )1410O −  1 dayτ ≤  
rubidium laboratory 1310−≥  1 dayτ ≤  
 GPS 132 10−×  1 dayτ ≤  
hydrogen maser  152 10−×  3 410 10  sτ≤ ≤  

 
 
 

quartz oscillator
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τ [s]

1110−
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110− 110010 310210 510410 610
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Figure 5.5: Fractional frequency stability for various clocks. 

                                                 
14 Kamas, G., Howe, S. (1979): Time and frequency users’ manual. NBS Special Publication 559, National Bureau 

of Standards, Boulder, Colorado. 
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