Ever wonder where our anti-tank weapons get their wallop? Part of the answer is in the way the armor-piercing projectile is made. Hardened at the point, it is made softer toward the base to prevent shattering on impact. Proper range of hardness is insured by testing a section sliced length-wise from the center of a sample projectile. But how do you cut steel tough enough to pierce a tank? With a cutting off wheel such as made by Carborundum!

Cutting off wheels are abrasive discs that are amazingly tough and often extremely thin. They do the work in a fraction of the time required by ordinary methods. Their high precision adapts them to the most delicate operations such as slotting pen points. Such wheels are now used to cut plastics, glass, brick, tile, steel and non-ferrous metals in plate and bar stock. Frequently further finishing is unnecessary.

When you take your place in the war industries, keep Carborundum in mind. We will always be ready to help you with problems where the use of abrasive products is involved. The Carborundum Company, Niagara Falls, New York.

Carborundum is a registered trade-mark of and indicates manufacture by The Carborundum Company.
"FISH-EYE" CAMERA

HOOKED: A means of taking photographs by which illumination problems in war factories can be studied and solved quickly. Made with a "fish-eye" camera, one photograph can now show an entire room.

The experimental model in the G-E Research Laboratory includes an ordinary camera mounted on an iron stand and pointed toward an accurately adjusted mirror, which is curved like a fish eye.

The simple measurement of areas on the photographic print takes the place of elaborate and time-consuming mathematical calculations.

This is because the design of the mirror is such that the area of a window, for example, on the photograph shows directly the proportion of light that window contributes.

IDEA-GENITOR

ONE idea—and zoom went the production of calibrated dials on electrical instruments! These instruments are vitally necessary to mass-produced military equipment, but the output was slowed because the scales on the dials had to be marked by hand. Mrs. Edith Hogan, twelve-year employee of a G-E plant, suggested a plan for marking the scales mechanically—and captured an award of $250.

The suggestion saved 80 woman hours a week on one operation, and when it was found that the idea could also be applied to other types of instruments, thus saving a total of 400 work hours a week, she was given an additional $1000.

The total award made her not only the highest paid idea-genitor among G-E women, but the all-time high, among both men and women, for the entire Company.

HOW DRY I AM

ANOTHER good reason for singing in the rain is the invisible "raincoats" developed recently in the G-E Research Laboratory. Their application to aircraft radio insulators keeps the insulators functioning under difficult atmospheric conditions.

Formerly, when a plane came down from the high colder air to a warmer and more humid atmosphere, the ceramic insulators "steamed up," just as eyeglasses do when you enter a warm house on a cold day. This film of moisture caused the electric currents to leak away, interfering with clear communication until it dried off.

The raincoats are really invisible films produced by exposing the insulators to chemical vapors. The application of the films is not limited to ceramics, however, for they can be formed on many other materials, including cloth and paper.

Tune in the General Electric Mazda Lamp Radio Program — 10:00 p.m. EWT, Sundays — NBC