COLOR FOR RUBIES . . .

BACKBONE FOR STEEL!

Chromium, the element that imparts precious color to rubies, imparts something more precious to steel. It gives steel incredible hardness and resistance to heat and corrosion. It makes steel strong, yet ductile and shock-resistant.

Chromium is the key that has opened—and is still opening—great new fields of application for steel. Without chromium, the whole wonderful series of stainless steels would not have been possible. From tarnish-free tableware to corrosion-resistant chemical equipment...from strong, lightweight truck bodies to streamlined trains and airplanes...from heat-defiant boiler tubes to high-temperature steam turbines...chromium has made possible a steel with properties of the noble metals.

But the stainless steels are only one great contribution of chromium. This element has also helped to provide hard, shock-resistant armor plate and armor-piercing projectiles; long-wearing engine valves; strong, tough gears, tools, ball bearings, carb trucks, shafts, springs, and dies; and hundreds of other improved articles.

We do not make steel of any kind. But for over 35 years, we have made ferro-alloys and alloying metals used in steelmaking. Among these are chromium, silicon, manganese, vanadium, tungsten, zirconium, columbium, and calcium.

It was our research and development that made the low-carbon grades of ferro-chromium available commercially. Without these, production of a majority of the stainless steels would have been impracticable. Inquiries about stainless and other alloy steels—their manufacture, fabrication, and use—are cordially invited.

The progress made by Electro Metallurgical Company in the manufacture and use of ferro-alloys and in the development of alloy steels has been greatly facilitated by the advances in ferro-alloy research in the laboratories of Electro Metallurgical Company and Union Carbide Company; by the advances in electric furnace electrodes and techniques of National Carbon Company, Inc.; and by the broad experience in the production, fabrication, and treatment of metals of Haynes Stellite Company and Linde Air Products Company. All of these companies are units of Union Carbide and Carbon Corporation.

ELECTRO METALLURGICAL COMPANY

Unit of Union Carbide and Carbon Corporation

30 East 42nd Street
New York, N.Y.
AU-TUBE-IOGRAPHY

GENERAL ELECTRIC'S Radio and Television Department, in its new Radio News Program with Frazier Hunt, is telling the story of electronics to a nation at war—a war in which electronics itself is one of our most powerful tools.

For electronics—the youthful science that embraces all the varied applications of electron tubes—is going into war not only on the front, but behind the front, where it is today revolutionizing many industrial practices.

Unique about this thrice-weekly broadcast (Tuesday, Thursday, and Saturday) is the fact that G.E. is using an electronic device, radio, to carry the story of electronics to America.

In addition to 51 stations of the Columbia Broadcasting System, G.E. is using the first network of FM stations ever to carry a regular series of broadcasts.

dozens of subcontractors.

Major parts of the machines come together for assembly from 12 separate subcontractors in five states; miscellaneous smaller parts come from 38 firms in seven states. Jobs of casting, annealing, and machining involve, besides foundries and steel companies, a Navy yard, shipbuilding yards, a locomotive company, and a maker of steel safes. Co-ordinating and checking all these widespread activities is a major achievement in itself, since the finished machine has to be precise enough to cut gears with an accuracy of $3/10,000$ inch.

"PLEASED TO MEET YOU"

IT USED to take General Electric 18 months to build one of the great 275-ton machines that cut low-speed gears for cargo-ship propulsion sets. Today that time has been halved by farming out the construction of parts to

"FILL HER UP!"

BECAUSE the ocean isn't equipped with filling stations every few miles, naval vessels must carry enough fuel for long voyages. And because finding storage room aboard for this fuel is a serious design problem, anything which cuts down fuel consumption is a great advantage.

Most naval ships today are driven by steam turbines connected to the propeller shafts, through reduction gears. And turbine engineers, working with the Navy, have pioneered in the use of higher steam pressures and temperatures—producing turbines of such improved efficiency that in modern ships the fuel consumption per horsepower is from 25 to 40 per cent lower than in vessels of the same type used during the first World War. Thus it has been possible to design ships with greater cruising radius for the same amount of fuel oil, or with more armor and guns for the same over-all weight of the ship.