Student engineers of today will have a terrific responsibility in the future; for upon their shoulders to a very great extent will fall the responsibility of developing new and better machines of all kinds to help in the reconstruction of the economic fabric of the nation.

A thorough knowledge of Timken Tapered Roller Bearings will be a valuable asset to every young engineer starting out on his career during the next two or three years—probably the most critical period our country has ever had to face.

Begin to acquire this knowledge now; write for a free copy of the Timken Reference Manual. Then you will be in position to master any bearing problem that may ever come up—no matter what combination of requirements it may involve; friction elimination; radial, thrust and combined load capacity; preservation of alignment of moving parts.

Send for your copy of the Timken Reference Manual today. Mention the name of your school when writing.

THE TIMKEN ROLLER BEARING COMPANY, CANTON, OHIO
The heat treatment that contradicted itself

How Westinghouse Engineers straightened out a paradox in steel

Metallurgists have been heat-treating steel for 2,500 years. They've taken steel parts, subjected them to heat, cooled them quickly by quenching them in water, oil, or gas, and so hardened them. But the heat treatment contradicted itself.

For while they were heat-treating the steel to harden it... they also softened it. As the steel was being heat-treated, oxygen combined with the surface carbon, decarburized and softened the surface.

Naturally, metallurgists had to remove this softened surface. They had to pickle, grind, or machine the surface—processes which not only wasted time and cost money but also accounted for a whole lot of inefficiency.

The dimensions of many steel parts, especially dies, have to be accurate to a few thousandths of an inch. So, metallurgists had to make the steel parts larger to start with, just enough larger so that they'd be the right size after the softened surface had been removed. And that left room for plenty of mistakes.

Something, Westinghouse engineers decided, should be done to get rid of all this heat-treating trouble.

They figured the thing to do was to find a way to keep carbon-hungry oxygen from getting at the steel surface. And that was the thing they did.

First, they settled on using an electric furnace since it would give them accurate temperature control and entirely eliminate gas fumes. Then, they created a special atmosphere for the furnace. They heated ammonia (NH₃) in the presence of a catalyst and separated it into its component parts, nitrogen and hydrogen. The nitrogen is inert and won't combine with anything. The hydrogen, in the absence of oxygen and water vapor, also refuses to have anything to do with the carbon.

In this special atmosphere, which Westinghouse engineers called Ammogas, steel parts could be treated with electric heat and... no softening of the outer surface took place, no time-wasting, inefficient finishing had to be done. The dies and other steel parts came out of their heat treatment bright, shiny, all ready to use.

The Ammogas furnace that Westinghouse engineers created took care of the heat-treating of costly parts like dies, which can be gas-hardened and are not produced in great quantities. But Ammogas is expensive—too expensive for carbon to the steel that's being heat-treated.

Today, the Ammogas and Endogas furnaces are hard at work heat-treating dies, castings, airplane parts, steel parts of all kinds, helping to turn them out faster and better—saving industry time, money, and mistakes—speeding crucial war production.

There is one reason why Westinghouse was able to create controlled atmosphere furnaces and lick decarburization. It is because Westinghouse is an engineer's company.

There are 3,500 engineers in Westinghouse... in service, in sales, in design, in research, in management, in every branch of the business. Engineers hold key positions in each of the 17 Divisions of the Westinghouse Company.

Engineers determine our ability to find better ways to get jobs done. Engineers direct the creation and manufacture of our products. Upon engineers our success depends.

Behind our training and our encouragement of individual effort, there is a definite purpose. Behind our organization set-up of many divisions, which are like small companies within a company, there is a definite purpose. That purpose is to develop young engineers like you into the kind of engineers who will take good care of our future.

Westinghouse
Return of the Carbon Age

CARBON ... one of Nature's oldest and most plentiful materials ... is making possible some of industry's newest achievements.

In the chemical industry, massive black towers of carbon ... erected in incredibly short periods of time ... speed the delivery of vital acids. The all-carbon electrostatic precipitator... built of carbon from the bottom to the top of the stack ... is now an actuality. Such towers can be erected in as little as a week's time! Staunchly immune to corrosion and thermal shock, they should last indefinitely.

Today ... due to basic and applied research into the properties of carbon and graphite... it is possible to obtain these black, wonder-working materials in such a variety of forms—blocks, bricks, beams, tubes, pipes, and fittings ... even valves and pumps ... that almost any size or shape of structure can be built from them. For making tight joints, which give the structure uniform properties throughout, special carbon- and graphite-base cements have been developed.

Undisturbed by the torture of heat, carbon is also a "must" in the metallurgical industry. Carbon cannot be melted ... will not soften ... and has remarkable dimensional stability even at incandescent heat. In addition, it will not flake off hot metal will not stick to it. That is why it is ideal for such uses as molds, cores, and plugs ... for the lining of furnaces ... and for sampling-dippers.

Because electric-furnace graphite conducts heat even better than most metals, it is becoming increasingly important in the manufacture of heat exchangers for the processing of corrosive liquids and gases.

These new uses for carbon and graphite ... added to the almost interminable list of uses that existed before ... make this era truly a carbon age. Your inquiries are cordially invited.

The strides made in the development of structural carbon, and in the uses of other carbon and graphite products, are greatly facilitated by the technical assistance of other Units of Union Carbide and Carbon Corporation including The Linde Air Products Company, Carbide and Carbon Chemicals Corporation, Electro Metallurgical Company, Haynes Stellite Company, and Union Carbide and Carbon Research Laboratories, Inc.—all of which collaborate with National Carbon Company in research into the properties and applications of carbon and graphite.

NATIONAL CARBON COMPANY, INC.
Unit of Union Carbide and Carbon Corporation
30 East 42nd Street New York, N.Y

This all-carbon electrostatic precipitator stands 55 feet, 2 inches high.
TABLE OF CONTENTS

Frontispiece .. 4
Color for the Amateur Photographer 5
Engineers' Bookshelf .. 8
You Did It Again ... 9
Smoke Prevention ... 10
Chit-Chat ... 11
When the Swallows Came Back to Capistrano 11
Engineers' Prom of 1942 ... 12-13
Around and About .. 14
Departments and Societies ... 18
From Our Public ... 22
The Man Behind the Cover .. 24

Members of the Engineering College Magazines Associated

Robert L. Taylor, National Chairman, Monsanto Chemical Company, St. Louis, Mo.

Arkansas Engineer ... University of Missouri
Colorado Engineer .. Shamrock
Cornell Engineer .. Nebraska Blue Print
Drexel Technical Journal .. New York University
Iowa Engineer .. Quadranlage
U. of Iowa Transit .. North Dakota State
Kansas Engineer .. Engineer
Kansas State Engineer .. University of North Dakota
The Marquette Engineer ... Engineer
Michigan Technic .. The Ohio State Engineer
Minnesota Techno-Log ... Oklahoma State Engineer

DONALD S. ARNOLD, Editor
RUSSELL BARTHOLOMEW, Bus. Mgr.

Published in the months of November, December, February, March, April, May and June by the students in the College of Engineering, The Ohio State University, Columbus, Ohio. Subscription price, 97 cents (tax 3 cents) per year for seven copies: Single copies, 15 cents each. Make checks and money orders payable to THE OHIO STATE ENGINEER.