<table>
<thead>
<tr>
<th>Title</th>
<th>Back Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue Date</td>
<td>May-1938</td>
</tr>
<tr>
<td>Publisher</td>
<td>Ohio State University, College of Engineering</td>
</tr>
<tr>
<td>Citation</td>
<td>Ohio State Engineer, vol. 21, no. 7 (June, 1938).</td>
</tr>
<tr>
<td>URI</td>
<td>http://hdl.handle.net/1811/35545</td>
</tr>
<tr>
<td>Appears in Collections</td>
<td>Ohio State Engineer: Volume 21, no. 7 (June, 1938)</td>
</tr>
</tbody>
</table>
The Mt. Vernon Bridge Company

Designers, Fabricators and Erectors of

Structural Steel of
Every Description

Blast Furnaces
Skip Bridges
Ore and Coke Bins
Railway and Highway Bridges
Viaducts and Trestles
Mills and Factory Buildings

MT. VERNON - - - OHIO

UNIVERSITY BOOKSTORE

Owned and Operated by
Ohio State University
For the Benefit of
the Faculty and
Students

We Carry All
Engineering Supplies
Approved
for Classroom Use

EAST BASEMENT
DERBY HALL

The PHILLIPS Printing Co.

- PUBLICATIONS
- CATALOGS
- BOOKS
- FINE STATIONERY
- ART WORK

257 CLEVELAND AVENUE
ADams 8341
A 50,000-WATT General Electric MAZDA lamp, a foot and a half in diameter, was recently installed in the Styling Section of the General Motors Corporation at Detroit. This lamp, the first of its size to be used commercially, is utilized to simulate sunlight on automobiles on display. Previous lighting not only was inadequate, but produced distracting reflections on the car bodies.

By means of a G-E thyratron reactor control similar to devices used to dim lights in many large theaters, the light from the lamp can be varied from full brilliance to a black-out.

Many such practical applications as this are the culmination of group effort. That is why General Electric Test men of today and yesterday are always to be found contributing their part to General Electric's progress.

FOR OUTSTANDING ACHIEVEMENT

Each year General Electric honors those employees who have done outstanding work in their fields as provided in the Charles A. Coffin Foundation. This year 40 men were chosen—15 of them college graduates:

Adelbert Alexay, Polytechnic Institute of Budapest, '11; *Alexander Babillis, Rose Polytechnic Institute, '28; *T. M. Berry, Kansas State College, '27; Michael Broverman, Tri-State College, '22; F. E. Carlson, University of Michigan, '25; *S. B. Crary, Michigan State College, '27; R. E. Farnham, Case School of Applied Science, '17; J. W. Gilchrest, Cooper Union, '08; *A. H. Lauder, University of Wyoming, '22; *Domenico Martignone, Central Technical College of London, '01; *F. N. Neal, University of Utah, '31; *D. R. Shoults, University of Idaho, '25; F. C. Smith, Drexel Institute, '06; *L. A. Umansky, Polytechnical Institute of Petrograd, '15; R. E. Worstell, Purdue University, '25.

If any one generalization could be made to cover the qualifications for this award, it would probably hinge upon the extent to which an employee took advantage of his opportunities, beyond the ordinary routine of his work to achieve an outstandingly worthwhile result.

*Former G-E Test man

LIGHTNING GUIDER

After three years of photographing natural lightning striking the Empire State Building in New York City, it was determined that many lightning strokes which appear to crash from the clouds to the ground actually are met part way by a small flash, originating from the earth, which guides the stroke to its destination.

In addition, laboratory tests, under the direction of Karl B. McEachron, graduate of Purdue University and former G-E Test man, indicate that discharges between points and planes always begin at the point. The Empire State represents to the cloud a tremendous needle on the earth's surface. Thus the guiding flash will originate from the tower and shoot upward.

 Destruction occurs when a lightning bolt contacts a high-resistance area. Lightning conductors prevent this by grounding the discharge in an area of low ground resistance, and the lightning control on the Empire State affords a protective area within a radius of approximately one mile.