CHARLES FELTON SCOTT, Professor of Electrical Engineering of Yale University, will be fifty-eight on the nineteenth of next September. His birthplace was at Athens, Ohio, where his father Dr. William Henry Scott was connected with the Ohio University. He was the eldest of a family of two girls and four boys and conscientiously undertook the duties of that position at an early age. Indeed, he seems to have taken a rather serious attitude toward life and to have been ready to share the responsibilities of his family then, as he has those of whatever organization he has since been associated with. His early education he received at home and indeed, never attended school till he entered the preparatory department of the Ohio University at the age of fourteen. He was always a great reader, his tastes in books being in keeping with his rather serious character. He got a small printing press and started the publication of a newspaper known as “The Midget.” It does not appear, however, that there were any important literary aspirations connected with this, but rather that it was the novelty of the enterprise that appealed to him. It should be noted that there was nothing about his early surroundings that associated him with things technical. His father, during Charles' boyhood, was successively a school principal, a Methodist pastor, a professor of Greek and the president of a classical college. Tools were not familiar objects in the house. He was, however, noted for his ingenuity and early added to his other responsibilities that of keeping the household equipment in repair. In co-operation with a boy friend he built a boat, the use of which on the little nearby river added materially to the pleasures of the family. He seems never to have been greatly interested in athletics nor to have been much concerned about his standing in the social “four hundred.”

In 1883 Dr. Scott became President of the Ohio State University, which lead to his son's entering the Junior year of the University, from which he graduated with the degree of B. A. in 1885. In those days this institution was small, though came one of the many who received scientific inspiration at his hands. Mr. Scott's reputation as a student had preceded him and upon his arrival he was selected by Dr. Mendenhall as a student assistant.

During this period he became much interested in the compound pendulum. He had one of these in the attic tower room in the President's House with which he spent much time. Later in life he looked back upon this experience as an important factor in his training for his work with alternating current theory.

The "college activities" of those days seem to have been pretty much limited to Literary Societies and the Young Men's Christian Association, with three or four fraternities and a little baseball. Mr. Scott was a loyal worker in the first two organizations. In the program of the Horton literary society he took an active part and also held some minor office. The Y. M. C. A. was started soon after he came to the University and he was one of its first members. His coming to the University as a junior, together with his thorough work as a student, doubtless accounts for his not having taken as prominent a place in student affairs as he since has filled in the life of his profession. The Makio of those days contains references to his appearance which indicate that his unusual stature, which has always made him a conspicuous figure, was at that time emphasized by extreme slenderness. The 1885 commencement ready of high grade. There were but sixteen graduates in the class of '85, ten of whom were in the arts courses and six in the engineering. This was years before the establishment of the curriculum in electrical engineering, the first class from which was graduated in 1891. Mr. Scott was unusually fortunate in getting his early scientific training from two men, each of whom later on became famous in the field of education. At Ohio University he had begun his study of physics under C. L. Mees, who later became President of Rose Polytechnic Institute. It was then that his bent toward a scientific life was started.

When he came to Ohio State, he found in the chair of physics Dr. T. C. Mendenhall, now an honored member of our Board of Trustees, and thus began

Charles Fenton Scott
program shows that the subject of his commencement oration was "Perpetuity."

In the fall of '85 Mr. Scott registered here as a graduate student, but the offer of a position to teach in the Apprentice School of the Baltimore and Ohio Railroad soon after took him to Baltimore, where for a year and a half he studied under Johns Hopkins, specializing in chemistry under Dr. Ira Remsen. Early in 1887 the abandonment of the railroad school set him hunting for work, which he found as a foreman on the installation of an electric system in the shops of the Baldwin Locomotive Works in Philadelphia. His work was so satisfactory that he was given charge of other similar contracts. Employment along this line failing, he worked for a time in the engine room of a New York ferry boat.

Several letters and one personal visit, applying to the Westinghouse Company for employment in their laboratories, failed to produce any result, but in the summer of 1888 a second visit was successful. The connection was thus formed which kept him actively at work for the Westinghouse interests during twenty-three years and which, in a consulting capacity, remains to the present day. He was thus associated with the development of the Westinghouse alternating current system, almost from its very beginning. It is interesting to note that he and Mr. Lamme started into this work at almost the same time. He had the good fortune to be assigned as an assistant to Nikola Tesla in the development of the newly invented induction motor. His originality, good judgment and thoroughness led to his rapid advancement, through the engineering department to the positions of "Chief Electrical Engineering" in 1896 and of "Consulting Engineer" in 1904, which position he held till he went to Yale in 1911.

During this period there were few of the developments of the Westinghouse system in which he did not have a part. His first important contribution to electrical literature was a paper on "Long Distance Transmission for Light and Power" before the American Institute of Electrical Engineers in June, 1892. This paper had the distinction of being the first one on this important subject to be presented before that body.

Of his many inventions, the one with which his name is most frequently associated is the system for transforming between two-phase and three-phase circuits. This was made in 1894. Throughout these early years he was closely connected with the development of the long distance transmission of power and made many important contributions to its advancement. Thus about the year 1900 he had a part in the first great Niagara power project. His connection with the first alternating current railway work led to his making an extended study of inductive interference, upon which he is now an international authority.

Mr. Scott has always amply fulfilled obligations to the engineering profession. In recognition of the valuable work already done, he was, in 1889, made a member of the Board of Managers of the American Institute of Electrical Engineers and in 1902 President. He was one of the youngest Presidents the Institute has had. He has always been an effective committee worker, generally serving on more than one of the Institute's many committees.

While President of the American Institute of Electrical Engineers Mr. Scott conceived the idea of a common engineering building to be used as the headquarters of all the National Engineering Societies. He spoke of this idea at an Institute dinner in New York. At this dinner he sat next to Andrew Carnegie, with whom he discussed this plan. Mr. Carnegie asked him to come to his home for a further conference. He went, accompanied by another engineer from Pittsburgh. Mr. Carnegie placed one on either side of himself, then laying a hand on a knee of each of his guests, he said, "We three Pittsburghers will settle this matter." When they left he gave them a memorandum promising to donate one million dollars toward the erection of such a building. Later he increased this by half a million dollars. Mr. Scott was made chairman of the Building Committee and now there stands at 29 West 39th Street the splendid 16-story Engineering Societies Building as a monument to Mr. Scott's vision. It is the headquarters in New York not only of all the great national societies but also of the Engineers of all the country as well. Recently Mr. Scott has been active in the organization of the Federated Engineering Societies and is now on the American Engineering Council, its governing body.

"Mr. Scott has always had a lively interest in education. While President of the American Institute of Electrical Engineers, he originated the idea of the "Student Branch," which has since been copied in most of the National Societies. He was instrumental in starting the Westinghouse Club at Pittsburgh with its many educational opportunities for the employees of the Westinghouse group and also the Electrical Journal, with the editorial management of which he has always remained connected. At Yale he has developed one of the strongest electrical engineering departments in the country. He is now President of the Society for the Promotion of Engineering Education and is conducting an active campaign for the establishment of chapters of the Society at all the important engineering colleges.

In studying Mr. Scott's career one is impressed with the extent to which he has been active in the development of new ideas and enterprises. He is a progressive of the type most useful to the community. He is remarkable for the number of subjects in which he is regarded as an authority, but perhaps he finds his greatest interest in advancing the cause of education and in promoting co-operation among engineers.

MAX IS A FAILURE

When he has no confidence in himself nor his fellow men.
When he values success more than character and self respect.
When he does not try to make his work a little better each day.
When he becomes so absorbed in his work that he cannot say that life is greater than work.
When he lets a day go by without making some one happier and more comfortable.
When he values work above health, self-respect and the good opinion of others.
When he is so burdened by his business that he finds no time for rest or recreation.
When he loves his own plans and interests more than humanity.
When his friends like him for what he has more than for what he is.
When he is so busy doing that he has no time for smiles and cheering words.—Minnesota Techno-Log.