Notes on Recent Development in Concrete

By Lt. Col. H. C. Boyden, Portland Cement Association, 111 West Washington Street, Chicago

It is possible that some of the points to be brought out in this paper are more or less familiar to some of those present, through the reading of publications on the subject and the discussion of them in the technical press. There are many, however, to whom the facts will be new and of interest and the others may have questions they would like to have answered. If these questions are not answered in this paper, the Portland Cement Association will be glad to send further information.

The art of making concrete is an old one, but it is only in recent years that serious large scale investigations of its structure and the real effect of various combinations of the ingredients have been undertaken.

In 1914 the Structural Materials Research Laboratory was established at Lewis Institute, Chicago, with Professor Duff A. Abrams at its head. The establishment of this laboratory was made possible through the cooperation of the Portland Cement Association and the Lewis Institute. This laboratory is a striking example of cooperation between an engineering college and a manufacturing industry of international scope.

There are only two ideas governing the policy of this laboratory: the first is, that the real facts regarding concrete and its ingredients shall be found out, with a liberal policy regarding the time required and the expense involved; the second is, that whatever the conclusion may be, they shall be given to the engineering profession for the improvement of the art of making concrete.

These investigations are still being carried on, but many points of vital importance have already been established. As an example, the established data warrant the use of considerably higher unit stresses than those in common use today, with a consequent reduction in section. Conclusions have also been reached that will enable us to obtain excellent results with aggregates heretofore condemned and to increase greatly the ability of concrete to resist wear.

These conclusions, and many others, are all based on tests running into the thousands and covering long periods of time. Incidentally, the laboratory is equipped for and is making close to 50,000 tests a year, so that there is no lack of facilities for carrying out investigations in the most thorough manner.

GENERAL

The study of concrete may be conveniently divided into three phases:
1. The study of the characteristics of the ingredients;
2. The study of the effect of making various combinations of these ingredients;
3. The study of the effect of the various manipulations of the ingredients in making and curing the concrete.

This paper will touch on only those investigations that have brought out essential changes in our previous ideas of the subject or have confirmed those ideas beyond a doubt.

It has been the custom to speak of concrete as having three ingredients, cement, fine aggregate, and coarse aggregate. The laboratory studies have shown the desirability of classifying the ingredients as cement, aggregate and water, or if it is still desired to maintain the purely arbitrary division of the aggregate into fine and coarse, to add the fourth ingredient, water.

Although cement is one of the most important ingredients of concrete, it requires probably the least discussion, as all the standard brands of Portland Cement on the market today conform to generally accepted specifications and the laboratory investigations have brought out no essential changes in these specifications.

As stated above, the aggregate has always been divided into two parts, sand and crushed stone or pebbles. The line of division, purely an arbitrary one, has been the quarter-inch screen. The portion passing through this screen being classified as fine aggregate or sand, and that portion retained on the screen being called the coarse aggregate. There is no particular advantage gained by this division, but it would be much better to consider the aggregate as a whole, with a proper graduation of the various sizes from the largest to the smallest. It is not intended by this, however, to recommend the use of bank run or crusher run aggregate, as under no conditions should they be used without separating the sizes and recombining in the proper proportions.

However, until such time as this method of considering the aggregate shall have become of general practice we will consider it as divided into two parts by the 1/4" or No. 4 screen, and will so discuss it.

FINE AGGREGATE

It is customary to specify that the fine aggregate shall be clean, sharp and not too fine. It would be better to use the word hard rather than sharp, as sharp sands give lower results than rounded or smooth sands. This is no doubt due to the larger amount of water required to obtain a workable mix when the sand is sharp or angular.

The laboratory studies have brought out two important facts regarding sands. One of these is the great importance of being sure that the material is clean, not only in appearance but in fact. Very often sand which appears to the eye to be clean, contains enough humus or vegetable matter to reduce the strength of the concrete very considerably.

As an illustration a clean sand gave a compressive strength at 28 days of 1,900 pounds. This same sand with one-tenth of one per cent of tannic acid added, gave a strength of only 1,400 pounds; in other words, one thousandth part of organic impurities in terms of the weight of the sand reduced the strength of the concrete over 25 per cent. In the investigation of the effect of organic impurities many natural sands were used.
but as it was not feasible to secure sands containing a wide variation of organic impurities, tannic acid was used as a substitute for the purpose of making further tests. It was felt that the effect produced by such a material would probably be a measure of the effect produced by other organic impurities which might be present in natural sand.

How can these organic impurities be detected if they cannot be seen by ordinary inspection? By using the colori-metric test for organic impurities which was devised at the laboratory. This test consists of digesting a representative sample of the sand in a dilute solution of sodium hydroxide (caustic soda = NaOH) and observing the resulting color of the liquid.

All that is needed is a 12-oz. prescription bottle and a little 3 per cent solution of caustic soda or sodium hydroxide, both obtainable at any drug store.

Put in about 4½ ounces of the sand to be tested, fill up to the 7-ounce mark; after shaking, with the solution of caustic soda, let it stand for 24 hours and observe the liquid on top. If this liquid is clear or light straw colored use the sand, if it runs into the brown color, and especially dark brown, reject the sand or wash it thoroughly before using.

The second fact is that with one exception fine sand behaves exactly the same as coarse sand. In order to produce a plastic workable mixture with fine sand it is necessary to use more water than with a coarse sand. It is the excess of water that reduces the strength of the concrete. In other words, if concrete could be mixed with the same quantity of water regardless of the grading of the sand, and a plastic mix obtained in both cases, the same strength would be secured in the concrete.

COARSE AGGREGATE

When studying the characteristics of coarse aggregate one conclusion has been brought out very sharply, namely, that the hardness of the owing to its high specific heat, and may be used without danger of harming the concrete aggregate is a secondary consideration, as compared with other factors, in developing high crushing strength in concrete, and of less importance than ordinarily supposed in developing wearing qualities. This was very clearly shown in comparative tests made of burnt shale for use in building concrete ships. Samples made with this aggregate compared very favorably with those made with a much harder aggregate. A stone must be very friable indeed if it is not strong enough, when properly combined in concrete, to more than maintain the load likely to be carried by the concrete.

The reason for the high compressive results secured where a light, soft aggregate is used, is because the water content is reduced, owing to the porosity of the aggregate, and is not due to a higher compressive strength in the aggregate. Again the water content is the governing factor.

For road surfaces, however, another quality is needed in concrete, namely, wearing or abrasive quality, and to obtain this the stone must not be too soft. It is not advisable to use a stone with a French coefficient of less than 7, although pave-ments have given excellent results made with stone having a coefficient as low as 6.

It is not intended in calling attention to the above results to advise throwing down the bars and allowing the use of any and all stones, irrespective of their hardness or wearing qualities. It is desired, however, to show that many of the safeguards that have been put into specifications in past years are not safeguards at all, and that the effect of following them may be entirely lost through neglect to observe other factors of more vital importance. It is also advisable to use the best materials obtainable, but there have been many cases where the local and easily obtainable material has been rejected, when it could have been used with excellent results, by following proper principles in proportioning and protecting the concrete.

Oftentimes better results would have been obtained than resulted from the use of imported materials and then neglecting the really important factors in making good concrete.

WATER

The remaining ingredient of concrete, water, is in reality, of equal importance with the cement in obtaining good concrete, and yet it is often the most carelessly used and most loosely specified of all the ingredients, generally not being mentioned in specifications and frequently not even reported in test data.

The laboratory is now conducting tests of waters sent in from all parts of the country, but definite conclusions have not as yet been developed. It is safe to say, however, that waters which are strongly alkaline should not be used, and, owing to the possibility that marsh waters may contain sufficient humus matter to affect seriously the strength of concrete, they should be looked upon with suspicion until tested in concrete and found satisfactory.

With regard to the temperature of the mixing water, tests have been made, using water ranging in temperature from 82 degrees to 212 degrees F. It was found that the temperature of the mixing water had very little to do with the strength of the concrete at seven days to one year. The use of hot water is, however, a valuable aid in removing frost from the aggregate in cold weather.

PROPORTIONING

On studying the second phase of concrete making, there have been brought out at the laboratory new, and in some ways, radical changes in the past and present practices of proportioning.

These investigations have brought out the following facts: That the present method of designing concrete mixtures by using arbitrary volumes is wrong; that there is one single proportion which will give the best results with a certain mixture of given fine and coarse aggregates; adding to or reducing the amount of cement is of value only as it affects the relative quantity of water required to make a workable plastic mixture and above all, that the water-ratio is the most important element of a concrete mix. The water-ratio is the ratio of the volume of water to the volume of cement in the batch. If one cubic foot of water (7.5 gals.) is used for each sack of cement, the water ratio is 1.00.

The use of more cement in a batch does not pro-
duce any beneficial effect except from the fact that a plastic, workable mix can be produced with a lower water-ratio. The reason that a rich mixture gives a higher strength than a leaner one is not that more cement is used, but because the concrete can be mixed with a water-ratio which is relatively lower for the rich mixture than for the lean one. If advantage is not taken of this possibility of reducing the water-ratio the additional cement in the richer mixture is wasted.

FINENESS-MODULUS

In studying the results of the tests of many samples of various combinations of aggregates it was evident that there must be some relation between the size and grading of the aggregates and the strength of the concrete. In trying to find this relation Professor Abrams struck upon what is called the “fineness modulus” of aggregates, and when this was compared with the strengths of the concrete a direct relation was found to exist.

The fineness modulus is a very simple function of the sieve analysis of the aggregates used for any particular concrete. The sand and stone are analyzed with a set of Tyler standard sieves, each of which has a clear opening double the width of the next smaller. The following sizes are used: 100, 48, 28, 14, 8, 4, 3½", 3¼" and 1½". The percentages (by volume or by weight) of the total aggregate coarser than each sieve are added together, the sum of these percentages is divided by 100 and the result is the fineness modulus. The fineness modulus of any combination of the fine and coarse aggregates may be found in exactly the same manner.

It is not possible to go into the details of the use of this factor for the design of concrete mixtures in a paper of this length, but they were published in the Engineering News-Record of April 17, 1919, and a careful study will enable one to use this factor successfully.

It is not claimed that this method of designing concrete mixtures is the only one that will give the desired results, but the laboratory tests prove beyond a doubt that there is a direct relation between the compressive strength of concrete and the factor called the “fineness modulus.” Accepting this as a fact, it is possible to design a concrete mixture that will give a certain desired compressive strength from almost any combination of aggregates.

ABRAMS’ TABLES OF PROPORTIONS

In order to make this more easily available to the engineers of the country Prof. Abrams has worked out a table containing 135 proportions with different combinations of aggregates, which, if used with materials acceptable as to quality, will give a concrete with a compressive strength at 28 days of approximately 3,000 lbs. per square inch. All these tests for the determination of the factors in this table were made of a concrete of a workable plasticity, formed into cylinders 6”×12” in size and tested at the end of 28 days.

In conformity with present practice the aggregate is divided in the table into fine and coarse, and covers combinations of five classes of fine aggregates with twenty-seven classes of coarse aggregates.

In order to determine in what class a known aggregate shall be placed, the following rules should be followed: If it is a fine aggregate at least 15 per cent of the total shall be retained on the next smaller sized sieve; if it is a coarse aggregate at least 10 per cent shall be retained in the same manner.

This table shows a considerable reduction in the amount of cement required as compared with previously published tables, especially when combined with the larger sizes of aggregates. As an illustration, the quantities used today for a 1:2:3 mix, with sand up to No. 4 and stone from No. 4 to 1½" are 1.74 bbls. cement, 0.52 cu. yd. sand and 0.77 cu. yd. of stone, per cu. yd. of concrete. Concrete designed according to Prof. Abrams’ table requires 1.61 bbls. cement, 0.47 cu. yd. sand and 0.72 cu. yd. stone per cu. yd. of concrete.

These figures are the exact quantities required for the making of one cubic yard of concrete having a strength of 3,000 pounds, and if used will effect a very material saving in the cost of concrete roads and pavements, and other concrete structures to be built in the years to come.

An allowance for waste, varying for each ingredient and also according to the particular method employed in handling the work, should be added to the quantities given in the table. Professor Abrams is now preparing tables similar to the one already published, for concrete with compressive strengths of 2,000 and 2,500 lbs. per square inch. As soon as these tables are completed they will be published in the technical press.

WATER CONTENT

It is upon studying the water content that the most radical changes from previous ideas on the design of concrete mixtures is found.

Based upon thousands of tests it has been established that there is a direct connection between the amount of mixing water used and the strength of the concrete, and there is probably no other one factor which has so great an effect upon the strength as the water content.

It has been found that the less water used down to a certain point, the stronger will be the concrete, but this does not mean that the amount of water can be reduced too far, nor that in actual construction it can be reduced to a point that would give the maximum strength shown in laboratory tests. There is another factor that must be taken into account in construction and that is the workability of the mix. In general terms it can be stated that the lowest amount of water should be used that will give a workable mix.

The strength falls off very quickly with the addition of a small amount of water; so much so that in a one bag batch the addition of one pint of water more than is necessary to give a workable mix produces the same loss in strength as if two or three pounds of cement had been left out. Do not think from this that a very lean mix with a small quantity of water will give as strong a concrete as a rich mix with the same quantity of water. This is not true, because it will require a higher water-ratio to produce a workable mix with the lean mixture, thereby causing a loss in strength.

The proper consistency for concrete will vary
The Ohio State Engineer

DANDIE
The Big Value
KOERING-BUILT
Light Mixer

Sizes 4 and 7 cubic feet mixed concrete. May be equipped with low charging platform, charging ship or batch hopper, automatic water measuring tank and light duty hoist.

The Lowest Price You Can Afford to Pay

There are lighter mixers than the Dandie. There are cheaper mixers than the Dandie.

But the Dandie is as light as a good mixer should be built. And its price is the lowest for which such a mixer can be sold.

The Dandie is made by the largest makers of heavy duty mixers in America. Every economy of automatic machinery, standardized processes, and quantity production is reflected in its price.

In it is incorporated many of the features of the Koehrung heavy duty mixers. It has the famous Koehrung re-mixing action—the double gear drum drive—drum rollers keyed to shafts turning in big bearings.

Its cost is the lowest price you can afford to pay! It is not the cheapest mixer, but the reliable, money-making, long-service light mixer, at the extremely reasonable price which makes it the big value buy in the light mixer field.

KOEHRING MACHINE COMPANY
MILWAUKEE, WISCONSIN

MAIL COUPON TODAY

Send back the coupon for the Dandie catalog. You do not obligate yourself in any way—it brings you money-making information about the money-making light mixer.

KOEHRING MACHINE CO
Milwaukee, Wisconsin
Please send me Dandie Catalog
Name___
Address_______________________________________
Hercules Explosives and the Metal Mines

The wide use of Hercules Dynamite in metal mines means that these explosives make good—that they can and do increase production and cut costs.

Dependable explosives, explosives which are known to be of high and uniform quality, are in constant demand in the mines—and the name Hercules stands for all of this.

Hercules Explosives can help you in your mine. Every blasting problem will be quickly and efficiently solved by one or another of the many formulas and strengths of Hercules Powders.

Your own knowledge of local conditions will probably enable you to choose the grade of explosives best suited to your needs, but we are always glad to advise on this when asked.

Our service staff will answer your questions promptly and fully.
The use of mechanical tamping and finishing machines in concrete road construction has made it possible to use the dryer consistency economical, but any method which reduces the water content, such as the use of the light roller, will produce similar results.

The very wet sloppy mixtures that are being used in building construction may seem economical from the contractor's point of view, but they are certainly extremely wasteful from the designer's and owner's point of view, as from 50 to 60 per cent of the possible strength of the concrete is being thrown away.

It may not be possible to reduce the amount of water to the ratio necessary to give the maximum strength, but it certainly can be cut down below the amount commonly used, and the additional strength thus gained will be of advantage in the design of concrete structures. The designing engineer figures on a compressive strength of 650 lbs. per square inch and expects to get a factor of safety of three, but does not get it with the sloppy mixture often used. By cutting down the water to the proper ratio, a factor of safety of five or six can be secured, and the present allowable unit stress raised.

It is not possible to give the exact amount of water required for any particular mixture of aggregates to give the greatest strength in the concrete, owing to the impossibility of determining what amount will produce a workable mix and also due to the varying moisture content of the aggregate. A few approximate quantities for different proportions of well graded aggregates up to 1 1/2 in. in size, may be given to form a basis for trial of the particular mixture at hand. A 1:2:4 mixture will require from 6 to 6 1/2 gallons of water per sack of cement; a 1:2:3 mix, 5 1/2 to 6 1/4 gallons; and a 1:1 1/2:3 mix, 5 1/2 to 6 gallons.

SLUMP TEST

In order to have a simple method for determining the proper consistency in the field the slump test has been devised. At first a metal cylinder 6 inches in diameter and 12 inches high was used, but now a frustum of a cone 4 inches in diameter at the top and 8 inches at the bottom, and 12 inches high, has been adopted as a standard. This cone is filled with the concrete to be tested, which is carefully worked with a metal rod while it is being placed, the form is immediately lifted off, and the settlement or slump measured. It was found the strength increased quite materially with the higher pressures and this increased strength was almost directly proportional to the amount of water squeezed out.

The effect of pressure on concrete immediately after moulding is found to be due to the amount of water squeezed out, making a consequent reduction of the water-ratio. Tests were made on concrete of the same proportions, by applying pressure from zero to 500 lbs. per square inch. The water expelled was carefully collected and measured. It was found the strength increased quite materially with the higher pressures and this increased strength was almost directly proportional to the amount of water squeezed out. It is not surprising to find, then, that the duration of the pressure had no effect whatever on the strength of the concrete. Whether pressure was applied for a few minutes or for several hours, the effect produced was exactly the same. It is undoubtedly the squeezing out of the water and consequent reduction of water-ratio that produces the excellent results when the roller method of finishing concrete roads is used.

The time that can be allowed between the time of mixing and the time of placing has not as yet been made the subject of extensive tests at the laboratory. This knowledge is of value when considered in conjunction with central mixing plants, which are used with success in many places. The lapsed time is undoubtedly governed to a certain extent by the kind of cement used, by the temperature of the ingredients and by the temperature of the mixed concrete. In Illinois a limit of 40 minutes lapsed time is allowed, but it is generally believed that the economical haul for the job will be the governing factor rather than the fixing of a time limit.
It is possible that some of the present ideas regarding this factor may be changed by the results of such a series of tests, but until such a time it would not be advisable to allow retempering of concrete that has been too long in transit, as the addition of water will no doubt result in a reduction in strength.

PROTECTION

The proper protection of concrete during the early hardening period is a detail of construction that is only too often overlooked and many times only indifferently carried out. The effect of proper curing conditions upon the ability of the concrete to withstand abrasion has been very strongly brought out by numerous tests in the laboratory. There is probably no factor in the handling of concrete that so affects its wearing ability as that of providing proper protection while curing or hardening.

It is true that any and all of the factors that tend to produce strength in concrete also tend to increase its wearing qualities; nevertheless all of our tests show that, other factors being the same, the concrete which is properly protected will show much less wear than that which has been allowed to dry out too quickly. As an illustration of this, the strength of a concrete of 1.25 consistency was about 1700 lbs. per square inch when it was allowed to dry out in the air unprotected, while exactly the same concrete stored in damp sand for 21 days gave a strength of about 4,000 lbs. per square inch, and a correspondingly less wear under the rattler test.

One of the principal causes of the poor wearing resistance that is sometimes found in concrete floors is due to the practice of allowing them to dry out without proper protection during the hardening period. Concrete floors under roof should be covered and kept moist just as outside roads and pavements are protected. Why throw away one-half of the life of a concrete floor by failing to observe this rule and holding back from using them for so short a period?

The essential requirements for proper hardening are warmth and the presence of moisture, especially the latter. The tests show a less increase in wearing resistance and strength after 21 days have elapsed and a constant rate of increase during this period. In deciding on the length of time that a pavement, or other structure, shall be kept covered and moist, it is simply a matter of deciding how much of the potential strength and wear resisting qualities it is desirable to throw away, and reducing the 21-day period by that amount.

There are several methods of protecting concrete pavements during this period, the most effective of which is the ponding method, and where the grades and other conditions will permit this method to be used, it will give the most lasting results. The protection of concrete structures other than pavements is very often either neglected altogether or at best only half carried out. Many times the leaving on of the forms is considered to be sufficient protection in itself, but this is not so.

The forms of all exposed surfaces should be kept thoroughly wet, or, at least very moist, continuously for not less than 14 days and whenever possible for 21 days or more.

CONCLUSION

This paper outlines to you some of the more important developments resulting from the studies at the laboratory. It has a double object: First, to impress upon you the advisability of designing each concrete mixture to produce a concrete of a certain desired strength, with the particular ingredients available. Second, to show you how the desired results could be obtained.

In reviewing the methods to be employed in obtaining good concrete there are two points which stand out above all others, and if these are followed more good will have been done than by following all other refinements put together. The first of these is, that the least amount of mixing water shall be used that will give a workable mix, and not one drop more. The second is, that no matter with what care the ingredients are chosen, proportioned, mixed and placed, a considerable portion of the beneficial results of this care will be nullified unless the concrete is kept moist during the early hardening period.

September, 1920.