AN ELECTRIC ENAMELING OVEN
A continuous conveyor type electric oven used for enameling typewriters. See page 9.
Architecture — Today and Tomorrow

The great buildings of today, designed in masses which rear rugged, mounting profiles into the sky, foretell even greater and more massive structures for the next half century. Always a close co-ordination of architecture and engineering, of design and construction, the architecture of the future will find architect and engineer working ever more closely together.

Certainly modern invention — modern engineering skill and organization, will prove more than equal to the demands of the architecture of the future.
A CRANE PRESSURE REGULATOR WHICH TRANSFORMS HIGHER PRESSURES TO ANY CONSTANT PRESSURE

LOW PRESSURE STEAM FROM HIGH PRESSURE MAINS

Low pressure steam or air delivery direct from higher pressure mains is made uniform and dependable by Crane pressure regulators. Steam for small power units or low pressure heating, constant pressure steam for process heating, and compressed air for blasts, heaters and low pressure tools can be taken from higher pressure mains through this automatic valve at the highest possible efficiency. Crane regulators are furnished with unions or flanged connections for any ordinary temperatures or working pressure. The economy of operation and unfailing delivery of these pressure regulators are typical of all Crane products. Crane country-wide service provides a complete line of valves, fittings and piping for any steam, water, oil or air system.

CRANE

GENERAL OFFICES: CRANE BUILDING, 836 S. MICHIGAN AVENUE, CHICAGO
CRANE LIMITED: CRANE BUILDING, 386 BEAVER HALL SQUARE, MONTREAL

Branches and Sales Offices in One Hundred and Forty-eight Cities
National Exhibit Rooms: Chicago, New York, Atlantic City, San Francisco and Montreal
Works: Chicago, Bridgeport, Birmingham, Chattanooga, Trenton and Montreal

CRANE EXPORT CORPORATION: NEW YORK, SAN FRANCISCO, SHANGHAI
CRANE-BENNETT, Ltd., LONDON
CIF CRANE: PARIS, NANTES, BRUSSELS
Gentlemen,
the ARCHITECT
maker of monuments to mankind

In the first century B.C., Marcus Vitruvius, Architect, named the three fundamentals of his art—"stability, utility, and beauty."

How faithfully the Architect of today adheres to these principles! Look about you!

Utility? There is not a wasted inch in the modern building, be it home or school, factory or hospital or skyscraper . . .

Beauty? Our cities are full of it—a new beauty typifying a new civilization . . .

Stability? Because of the Architect's knowledge of materials, our buildings of today will remain monuments to mankind through ages yet to come!

For instance, there is iron

Ask an architect why he specifies ARMCO Ingot Iron—he will tell you that Ingot Iron is the purest iron made. He will point out that purity in iron means *endurance*—since it is the foreign matter in iron that causes it to rust.

He knows that Ingot Iron, because of its great purity, is of more even grain structure than other ferrous metals—that it is more ductile—easy to bend into different shapes. It takes and holds zinc coating as no other metal will. And that is why he specifies ARMCO Ingot Iron for sheet metal work exposed to corrosive influences.

Its use means long life and freedom from heavy upkeep expense. And this applies relatively as much to the modest home as it does to vast commercial structures. You'll find it in general use for flashing, roofing, siding, rain gutters, downspouts, water tanks, ventilating systems, window and skylight frames, lath, cornices, culverts, smokestacks and the like.

Whether you are building or replacing—whether you require iron by the pound or by the ton—always look for the blue ARMCO triangle on the sheet metal you buy and always ask this question: *"Is it made of ARMCO Ingot Iron?"*

THE AMERICAN ROLLING MILL CO
MIDDLETOWN, OHIO

THE ARMCO INTERNATIONAL CORPORATION
MIDDLETOWN, OHIO

Save that Eighty Cents

Practically eighty cents of every dollar you pay for sheet metal work goes to labor—regardless of what metal is used. It is poor economy to use ordinary iron or steel when Ingot Iron costs but a few cents more. Don't waste that eighty cents by using metal less durable than Ingot Iron.

ARMCO INGOT IRON
The Purest Iron Made

IS IT MADE OF ARMCO INGOT IRON?

Designers and builders who have occasion to specify sheet metal, find in ARMCO Ingot Iron a durable metal that has won widespread acceptance. By years of national advertising, the merits of ARMCO Ingot Iron have been made known to millions. The blue triangle is recognized as the mark of sheet metal quality. This reproduced Saturday Evening Post Advertisement is just one of the many ARMCO advertisements that are designed to help the building profession.
OHIO STATE ENGINEER
Member Engineering College Magazines Associated
Published quarterly by the students in the College of Engineering, Ohio State University.

Vol. VIII MAY, 1925 No. 4

STAFF
MANAGING BOARD
J. K. GRIFFIN '26 Editor
T. H. SCHWARZKOPF '25 Managing Editor
H. H. ROSS '26 Circulation Manager
D. G. WETTERAUER '26 Business Manager
C. L. TERREL '26 Advertising Manager

EDITORIAL BOARD
R. E. BIRCH '27 Assistant Editor
E. V. HUNT '25 News Editor
O. W. BARD '25 Alumni Editor
C. E. BEARD '26 Humor Editor
R. R. GRANT '25 Art Editor

BUSINESS BOARD
ED. SAWYER '27 Assistant Advertising Manager
J. W. MERCER '27 Assistant
C. L. LAMBRIGHT '28 Assistant
L. P. DOYLE '29 Assistant
HARRY WHITE '27 Assistant

ADVISORY BOARD
Dean E. A. Hitchcock Prof. C. J. Meyers
Prof. Leslie Van Hagan, University of Wisconsin, Madison, Wisconsin.

MEMBERS OF THE ENGINEERING COLLEGE MAGAZINES ASSOCIATED
The Cornell Civil Engineer Ohio State Engineer Tech Engineering News
The Transit Princeton News Letter Kansas State Engineer
Colorado Engineer Penn State Engineer Rose Technic
Nebraska Blue Print Kansas Engineer Michigan Technic
Sibley Journal Wisconsin Engineer Minnesota Techno-log

Subcription price, $1.00 per year, 25c per copy. Checks, money orders, etc., payable to the Ohio State Engineer.
Entered as second-class matter May 15, 1922, at the post office at Columbus, Ohio, under the act of March 3, 1879. Acceptance for mailing at special rate of postage provided for in Section 1103, Act of October 3, 1917, authorized December 3, 1922.

CONTENTS

PULVERIZED COAL FURNACES .. 5
CHEMICAL ENGINEERING DEVELOPMENTS 7
JAPANNING ... 9
POST WAR DEVELOPMENTS IN ORDNANCE 11
THE TECHNICAL WRITER.. 13
EDITORIALS .. 14
THE BOOKSHELF SPEAKS .. 16
WHAT IS IRON, WHAT IS STEEL? .. 17
CRANKS AND COUNTERSHAFTS .. 18
CAMPUS NOTES ... 19
ENGINEERING COLLEGE GROUP ... 20
ALUMNI NEWS ... 22
What Is Timken Dual Duty?

The twist of the rope tells that the shell spins 'round and 'round even as it thrusts its way forward. There is both revolving motion and forward (endwise) motion.

Tendency toward motion in more than one direction, at one time, is very common mechanically. The wheels of a motor car are spinning around and are also pushed from the side, due to the weight of the car, slope of the road, and the force of turning corners. The discs of a plow, forced forward at an angle, not only revolve, but are thrust sidewise at the earth ahead. And the whirling pulleys in a machine shop are also being whipped from the side by the weaving, swishing belts.

Pure spinning or revolving motion is known as Radial motion to engineers. The sidewise or pushing motion is quite naturally called Thrust. It stands to reason that both the radial forces and the thrust forces, almost invariably combined, must be properly handled by any bearing qualified for most efficient machine design.

The Timken Tapered principle enables Timkens to do Dual Duty, carrying both radial and thrust loads. This is one of the advantages which has made the use of Timkens so nearly universal. All types of machinery, including motor cars, are being Timken-equipped by leading engineers.