Helps to Success

The Units of Equipment which Help, rather than Hinder, in the successful completion of any work, are those of correct design and careful building.

Units produced by The Hadfield-Penfield Steel Co., of Bucyrus, O., are so built and include—

Diesel Engines
Gasoline Locomotives
Clay Products and Cement Machinery
One Man Graders for Fordsons
Crawler Tracks for Fordsons
Manganese Steel—“ERA” Brand

DIESEL ENGINES—Produce as much power on one car of oil as can be developed from ten cars of coal under boilers. No shoveling of coal or ashes. One-tenth freight. Cost starts when work starts.

GASOLINE LOCOMOTIVES—Built in several sizes. Economic motive power at minimum cost. No skilled help. Low upkeep cost.

CLAY WORKING MACHINERY—Full equipment for making every product made of clay. Also cement machinery.

ONE MAN GRADER—Attaches to a Fordson in an hour. One man cuts grading cost to one-fourth. Grades, scrapes, ditches, removes snow.

CRAWLER TRACKS—Make a Crawler of any Fordson. Doubles its pulling power. Goes anywhere. Ford service and low upkeep.

MANGANESE STEEL—For repair parts “ERA” brand has no equal. Extra life without extra cost.

We have other activities and invite correspondence.

The Hadfield-Penfield Steel Co.
BUCYRUS, OHIO

200 Horse Power Diesel Engine
Gasoline Locomotive
No. 290 Auger Brick Machine
One Man Grader and Crawler Tracks for Fordson Can be used Separately or Together
Many exclusive methods and much uniquely efficient equipment have been developed within our own organization.

THE BUNTING BRASS & BRONZE COMPANY, Toledo, Ohio

Branches and Warehouses at

NEW YORK
245 West 54th St.
Circle 9844

PHILADELPHIA
1330 Arch St.
Spruce 5296

CLEVELAND
710 St. Clair Ave., N. E.
Main 5991

SAN FRANCISCO
198 Second St.
Douglas 6245

CHICAGO
722 S. Michigan Ave.
Wabash 9153

BOSTON
36 Oliver St.
Main 8488

Much of the success of any engineer depends upon the accuracy with which supply sources work to his specifications. This is only possible in a plant where the acquisition of knowledge is a constant factor in operation.
SHOP LIGHTING.

In an address delivered before the members of the Western Pennsylvania Division of the National Safety Council, Pittsburg, Pa., March, 1918, by C. W. Price, the importance of good lighting in industrial establishments was discussed, and the disadvantages of poor lighting were clearly shown by some figures mentioned by Mr. Price.

A large insurance company analyzed 91,000 accident reports, for the purpose of discovering the causes of these mishaps. It was found that 10% was directly traceable to inadequate lighting and in 15.8% the same cause was a contributory factor. The British Government in a report of the investigation of causes of accidents determined a close parallel to the findings of the insurance company above quoted. The British investigators found that by comparing the four winter months with the four summer months, there were 39.5% more men injured by stumbling and falling in winter than in summer.

Mr. John Calder, a pioneer in safety work, made an investigation of accident statistics covering 80,000 industrial plants. His analysis covered 700 accidental deaths, and of these 45% more occurred during the four winter months than during the four summer months.

Mr. C. L. Eschleman, in a paper published in the proceedings of the American Institute of Electrical Engineers several years ago, reported the result of an investigation of a large number of plants in which efficient lighting had been installed. He found that in such plants as steel mills, where the work is of a coarse nature, efficient lighting increased the total output 2%; in plants, such as textile mills and shoe factories, the output was increased 10%.

In an investigation of the causes of eye fatigue, made by the Industrial Commission of Wisconsin, it was found that in a large percentage of industries, such as shoe, clothing and textile factories, the lack of proper lighting (both natural and artificial) resulted in eye fatigue and loss of efficiency. At one knitting mill, where a girl was doing close work under improper lighting conditions, her efficiency dropped 50% every day during the hours from 2:30 to 5:30 P.M.

The above mentioned incidents indicate how important a factor lighting is in the operation of the industrial plant. It has been well said, "Light is a tool, which increases the efficiency of every tool in the plant." Glare or too much light is as harmful as not enough lighting, and in no case should the eyes of the workers be exposed to direct rays, either of sun or electric light.

Windows and reflectors should always be kept clean; that is, cleaning them at least once a week, for where dust and dirt are allowed to collect, efficiency of the light is decreased as much as 25%.

Good lighting, in addition to its other marked advantages, is a strong incentive towards keeping working places clean, for it clearly exposes any place where dirt or other material has been allowed to collect. White walls and clean windows glazed with Factrolite Glass will eliminate the sun glare and increase the illumination 25 to 50 feet from the window from 38% to 72% as compared with plain glass.

Lighting is of primary importance to every employer and fully warrants a careful investigation of the subject, for there is no substitute for good lighting, and if it is not supplied the efficiency of the entire working force must suffer a serious reduction.

If you are interested in the distribution of light through Factrolite, we will send you a copy of Laboratory Report—"Factrolited."

MISSISSIPPI WIRE GLASS CO.,
220 Fifth Avenue,
St. Louis, New York, Chicago

A sound basis for accurate measurements

WHEN you stop to consider what machinists' tools mean to the various metal working industries, their importance becomes apparent.

In nearly every modern shop, precision tools are invaluable aids in reducing time. They permit metal products made by different manufacturers, to be assembled with unerring certainty and at greatly reduced cost.

Sooner or later you will need to know about the different machinists' precision tools. Why not write for Brown & Sharpe Small Tool Catalog No. 29 and examine the line of 2000 tools—every one of importance in reducing time?

BROWN & SHARPE MFG. CO.
Providence, R. I., U. S. A.

No. 264 Inside Micrometer
With a clamping device
ONE OF MANY NEW TOOLS SHOWN IN CATALOG No. 29
The Responsibility Is Partly Yours

We take unusual precautions in the manufacture and testing of our electric blasting caps, often using an X-ray to check the adjustment of the minute platinum-iridium bridge and to detect any faults, the evidence of which would be destroyed in the usual method of testing caps by shooting them.

But, important as it is, the use of reliable detonators does not remove your responsibility of taking certain simple but necessary precautions when firing shots by electricity. Among these precautions are the galvanometer and rheostat tests.

Breaks, short circuits, or faulty connections can be easily detected and located with a Hercules galvanometer before an attempt is made to fire a shot. This helps to prevent misfires and saves both time and money.

The Hercules rheostat is a handy and inexpensive little instrument with which the capacity of blasting machines can be quickly tested in the field.

It will pay you to be sure that your blasting equipment includes the necessary number of Hercules galvanometers and rheostats.

HERCULES POWDER COMPANY

Norristown, Pa. Pittsburgh, Pa. Salt Lake City, Utah
St. Louis, Mo. Wilkes-Barre, Pa.
Wilmington, Del.
Sailing West to India

SINCE the days of Christopher Columbus men have felt the call to "sail due west to find India". In an organization like Westinghouse, such pioneering spirits find happy haven as research engineers. Their every thought is a question—every energy bent to discover new and more effective answers to baffling problems.

Immediately Westinghouse began to build alternating current machines of high voltages, for example, the problem of insulation became acute. For thirty-five years high voltages and insulation have formed an endless chain of problems. As voltages have been increased, improved insulation has been demanded. As insulation has been bettered, voltages have been still further increased.

One striking contribution of Westinghouse research engineers has been the perfection of an entirely new insulation material—Micarta. Possessing many of the qualities of metal, paper, fiber, mica, gum, rubber, Micarta differs in radical respect from all of these.

It serves industry indirectly as improved insulation material, and also directly because of superiorities when used for gears, propeller blades, and the like.

Only the imagination can set a limit on the field for the research engineer—or for an organization that centers around him.
Emerson tells how the mass of men worry themselves into nameless graves, while now and then a great, unselfish soul forgets himself into immortality. One of the most inspiring influences in the life of a modern corporation is the selfless work of the scientists in the laboratories, which it provides for their research.

If you are interested to learn more about what electricity is doing, write for Reprint No. AR391 containing a complete set of these advertisements.

Thomas A. Edison and Charles F. Steinmetz in the Schenectady laboratories of the General Electric Company, where Dr. Steinmetz did his great work.

Steinmetz

The spirit of Dr. Steinmetz kept his frail body alive. It clothed him with surpassing power; he tamed the lightning and discharged the first artificial thunderbolt.

Great honors came to him, yet he will be remembered not for what he received, but for what he gave. Humanity will share forever in the profit of his research. This is the reward of the scientist, this is enduring glory.