Floristic Survey of a Highly Disturbed Wetland within Shaker Median Park, Beachwood (Cuyahoga County), Ohio

Floristic Survey of a Highly Disturbed Wetland within Shaker Median Park, Beachwood (Cuyahoga County), Ohio

MICHAEL K. DELONG, SUNEETI K. JOG, JEFFREY R. JOHANSEN, AND GEORGE J. WILDER, Department of Biology, Geology, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115; Department of Biology, John Carroll University, University Heights, OH 44118; Division of Ecological Studies, Florida Gulf Coast University, Fort Myers, FL 33965-6565

ABSTRACT. A 1.5 year-long investigation of a highly disturbed suburban wetland revealed 298 species, varieties, and formas of vascular plants, including several taxa uncommon elsewhere in Cuyahoga County. The site exhibited five vegetation subtypes which we compared using several measures including Floristic Quality Assessment Index and Shannon Diversity Index. Historically, the site has been subjected to numerous massive disturbances, but none in a period of 20 years from ca. 1982-2002. Data indicated that the site had recovered partially from disturbance, but was threatened by invasive species.

INTRODUCTION

Many attempts have been made to describe the Ohio flora, beginning with those of European explorers and surveyors in the late 18th century. Amzi Atwater, a subordinate of Moses Cleaveland, undertook early surveys within Ohio and described forest types in his journals (Atwater 1797). More recently, workers have begun to assess floras of urban and suburban areas in both the US (Aronson and others 2004; DeCandido 2004; DeCandido and others 2004; Wilder and McCombs 1999) and in Europe (Dana and others 2002; Wittig 2002). Many of the studies, aforementioned, yielded “baseline” information that may facilitate assessment of community change over time (including consequences of urban development and the introduction of exotic invasive species).

Most previous floristic surveys were of pristine natural areas, or at least of tracts manifesting unquestioned environmental and/or aesthetic value; however, the value of urban green space for preserving plant diversity was not widely recognized.

Herein, we describe plant diversity within an isolated, small, disturbed portion of Shaker Median Park, a tract of green space within Beachwood, OH, that was barred from public use at the time of the study. The City of Beachwood plans to convert part of this tract, including our study site, into parkland accessible to the public. Data from our investigation will constitute a baseline for monitoring future change.

Site Description

Shaker Median Park is located in Beachwood, OH, a suburb of Cleveland. Our study site comprises the western half of Shaker Median Park. The center of the study site is at, approximately, 41°28′42″ north latitude, 81°30′20″ west longitude. Shaker Boulevard West, Richmond Road, Shaker Boulevard East, and the Beachwood/Shaker Heights boundary comprise the northern, eastern, southern, and western borders of the site, respectively (Fig. 1). The site occupies 11.03 ha and is 0.795 km long and 150 m wide. Three regions compose the site: upland to the north, a large basin in the center, and upland to the south.

Located on a ridge within the glaciated Allegheny Plateau, the study site includes parts of the Chagrin River watershed, the Doan Brook watershed and, to a small extent, the Euclid Creek watershed.

Average high temperature for the area is 14.67°C, average low temperature is 4.72°C; 93.04 cm of rain annually are normal. April 21 is the average date for the last occurrence of 0°C temperature during spring; October 29 is the average date for the first incidence of 0°C temperature in fall (Bray 2003).

Soil at the study site is a loamy udorthent (Ua in the soil

FIGURE 1. Map of site showing vegetation subtypes. Study site is bordered by Richmond Road (east), Shaker Heights border (west), westbound Shaker Boulevard (north), and eastbound Shaker Boulevard (south). Subtypes are color-coded to subtype, as listed above. Legend does not apply to areas outside of the study area.
series; Musgrave and Holloran 1980). This kind of soil may consist of clays, sand, topsoil, fill, rock fragments, ash, or other materials, and has been disturbed to such an extent that distinct horizons are no longer intact. Soil chemistry and soil borings undertaken at the site reveal that the soil is alkaline, rich in calcium, poor in phosphorus and potassium, and has one to several silty clay layers that cover shale bedrock.

Site History

The area now known as Beachwood, OH, was once part of the Connecticut Western Reserve. The first survey of the Western Reserve was completed in 1797. Unpublished, handwritten reports by surveyors showed the north line of plot 39 (which corresponds to the east-west axis of the study area) to be forested, with maple (Acer spp.), linden (Platanus sp.), white ash (Fraxinus americana), beech (Fagus grandifolia), chestnut (Castanea sp.), and elm (Ulmus spp.) trees present (Atwater 1797). After settlement by Europeans, the area was used for farming (Stranahan 1903). In the 1920s, real estate magnates Mantis and Oris Van Sweringen developed the site to be part of an extension of their Shaker Rapid System (Morris 1997). This development included excavating a channel in which the tracks would be laid, and building a bridge over this channel for automobile traffic (Fig. 2). Essentially, all vegetation was removed from the site at this time, as well as most of the soil from the central portion of the site. In 1982, the bridge over the channel was replaced with fill material (primarily soil, clay, and ash), upon which the road was rebuilt. This was the last major disturbance to the site at the time of the study.

MATERIALS AND METHODS

Plant specimens were collected during two growing seasons, from April 2001 to October 2002. Two independent teams of researchers undertook collecting: Wilder and Ms. Martha McCombs (during 2001) and Delong and Jog (during 2001-2002). Plant materials were pressed, dried, and prepared as standard herbarium specimens. Specimens were deposited permanently as one collection at the Cleveland Museum of Natural History (CLM; accession number 2003-14).

Most collections were identified to species (and to variety when possible); however, relatively few specimens, that is, ones lacking characteristics essential for species identification, were identified to genus but not to species. Identifications of problematical specimens were verified by Dr. James Bissell, Dr. George Argus, and Mr. Charles Tubesing.

Nomenclature mainly follows Kartesz (1999), with these exceptions: **Rhamnus frangula** L. var. *asplenifolia* Dipp. (Rehder 1927); *Arctium minus* (Hill) Bernh. forma *pallidum* Farw., *Daucus carota* L. forma *epurpuratus* Farw., *Barbara vulgaris* R. Br. var. *arcuata* (Opiz) Fries, and *Glechoma heteracea* L. var. *micrantha* Moric. (Fernald 1950); *Melilotus alba* Desr. (Weishaupt 1971); *Vitis labruscana* Bailey and *Physostegia alba* Bentham var. *alba* Hort. (Bailey 1949); *Spiranthes cernua* (L.) L.C. Rich sensu lato (Case 1987). Also, our material of *S. cernua* has characteristics of both *S. cernua* and *S. ochroleuca*.

In addition, we used the system of nomenclature from Magee and Ahles (1999) for *Crataegus* species. These authors combined many narrowly circumscribed species of *Crataegus* and utilized former names of tribes of *Crataegus* as specific epithets for their broadly defined species.

We obtained stereo pairs of aerial photographs of the study site, prepared in 1998, from the Ohio Department of Transportation Division of Aerial Engineers (scale = 1:1500; enlargement 1:375). Photographs were analyzed with a stereoscope, allowing recognition of different vegetation subtypes, different forest types, and even different ages of vegetation (Hamilton and others 1995). Community types delineated using aerial photos were ground-truthed in the field.

Quantitative studies were conducted during the 2002 growing season. Six transects were established at the study site; plots were delineated at regular intervals along each transect, and these plots were divided into subplots. Creation of subplots was according to the Releve method (Mueller-Dombois and Ellenberg 1974). For herbs, subplot radii were 0.9 m, for shrubs 3.0 m, and for trees 9.1 m. We determined lengths and numbers of plots, using a species-area curve (Mueller-Dombois and Ellenberg 1974). We established one transect within each vegetation subtype except within disturbed wet forest, in which two transects were delineated (on the north side and south side, respectively) (Fig. 3).

We investigated transects three times during 2002. Also, a meander survey (random visual assessment of taxa) was undertaken to account for species observed outside of transects or at different times of year. We compiled percent cover data for transects by combining data from all relevés; thus, it is not uncommon for percent-cover values to exceed 100%. We calculated Shannon Diversity Indices (Ludwig and Reynolds 1988) and generated a cluster dendrogram (using Czekanowski’s Index of Similarity; Pielou 1984).

We determined the floristic quality assessment index (FQAI) for each transect (Andreas and Lichvar 1995). This method assigns numerical values for the coefficient
of conservatism (C of C) for individual plant species of northern Ohio. Coefficient values are defined: 0 = a species that is alien, invasive, or commonly found in highly disturbed areas; 1 to 3 = a species capable of growth in disturbed sites and exhibiting widely varied habitats; 4 to 6 = a species tolerating less disturbance and growing in more specific kinds of communities; 7 and 8 = a species tolerating little disturbance; 9 and 10 = a species tolerating very limited kinds of habitats with very little to no disturbance (Andreas and Lichvar 1995).

The FQAI was calculated using the following formula (I = the FQAI, R = sum of the C of C values for a given area, N = number of native species):

\[I = \frac{R}{\sqrt{N}} \]

Based upon examples cited by Andreas and Lichvar (1995), we defined individual areas with FQAI of 50 or higher as having extremely high quality, whereas, areas of 10 or less had low quality.

We recognize three categories of invasive plants with Ohio (Windus and Kroemer): 1) Targeted species—these are the most problematical and measures are being taken to control or remove them; 2) Well-established non-native species—these are widespread throughout Ohio, but not as invasive in natural areas as are targeted species; 3) Watch list species—these are not problematical yet, but have potential to become so.

RESULTS

Based upon aerial photo interpretation, we found three major vegetation types: wooded areas, open area, and urban area. Wooded areas were uplands, whereas, open area occupied the central basin. Urban area was a fringe of land encircling the entire site. It ranged from 1.5 to 3.0 m wide and consisted of lawns, sidewalks, and driveways of bare soil. Wooded areas and open area were classified among five vegetation subtypes: wet meadow, emergent marsh, disturbed shrub swamp, disturbed wet forest, and mixed hardwood forest (Fig. 1).

A total of 298 species, varieties, subspecies, and forms of vascular plants were found, representing 173 genera and 71 families (Appendix 1). The most prevalent species within the vegetation subtypes are summarized in Table 1. Ohio natives (Weishaupt 1971) comprised 53.4% of taxa. Twenty-seven species were invasive (10 targeted, 15 well-established, and two on the watch list; Table 2). According to wetland status, taxa were OBL (6.7%), FACW (16.1%), FAC (32.9%), FACU (13.1%), and either UPL, NI, or without formal designation (31.2%; Reed 1996).

Coefficient-of-conservatism values were assigned to all taxa observed: 9 to 10 (three taxa), 7 or 8 (three taxa), 4 to 6 (38 taxa), and from 1 to 3 (95 taxa). The remaining 159 taxa had values of zero. Using C of C values, we computed FQAI for each vegetation subtype: wet meadow (I = 13.5), emergent marsh (I = 12.7), disturbed shrub swamp (I = 17.3), disturbed wet forest (I = 19.4), and mixed hardwood forest (I = 18.7). Values indicated that habitats were of modest quality, on the scale between 10 (poor) and 50 (excellent) (Andreas and Lichvar 1995).

Values for Shannon diversity index were low: wet meadow = 2.37, emergent marsh = 1.48, disturbed shrub swamp = 2.87, disturbed wet forest = 3.04, and mixed hardwood forest = 2.47. Sites were fairly dissimilar to one another; however, the most similar subtypes were wet meadow and disturbed shrub swamp (Fig. 4). Disturbed wet forest and mixed hardwood forest were also relatively comparable. Emergent marsh was the subtype least similar to the others, having a distinctive, low-diversity flora.

DISCUSSION

The percentage of taxa native to Ohio at the study site was 53.4%. By comparison, a previous study at Fawn Pond (Brecksville, OH) revealed 74.2% native species (Wilder and McCombs 1999), and investigation at Highland Heights Community Park (Highland Heights, OH) indicated 60% native species (Jog and others 2005). In the present study, many non-native species were escapes from cultivation (for example, *Juniperus horizontalis* [creeping juniper], *Pyracantha coccinea* [firethorn], and *Cotoneaster divaricatus* [cotoneaster]). Wilder and McCombs (2003) reported the three species, aforementioned, as new Ohio records.

Probably, humans have inadvertently introduced many escapes to the site. We detected 25 to 30 cases of yard waste dumped at the site during the period of this study. Several species grew within this waste: *Lamium purpureum*, *Viola sororia*, and *Iris* sp. We have not recognized these species herein, because they never became rooted within soil of the site. We speculate that large populations of *Vinca minor*, *Ajuga reptans*, and *Hedera helix* at the site all arose via
Table 1

Summary of most prevalent species in plots by vegetation subtype. Percent cover figure is the total percent cover across all plots in the transect. # = number of plots in the transect in which the species occurred, % cov. = percent cover.

<table>
<thead>
<tr>
<th>Vegetation Subtype</th>
<th>#</th>
<th>% cov.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Meadow - 12 plots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typha angustifolia</td>
<td>4</td>
<td>10.9</td>
</tr>
<tr>
<td>Frangula alnus – seedlings</td>
<td>10</td>
<td>5.0</td>
</tr>
<tr>
<td>Equisetum arvense</td>
<td>11</td>
<td>4.0</td>
</tr>
<tr>
<td>Emergent Marsh - 5 plots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phragmites australis</td>
<td>5</td>
<td>48.4</td>
</tr>
<tr>
<td>Dipsacus sylvestris</td>
<td>2</td>
<td>7.4</td>
</tr>
<tr>
<td>Cirsium arvense</td>
<td>5</td>
<td>6.5</td>
</tr>
<tr>
<td>Disturbed Shrub Swamp -10 plots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frangula alnus</td>
<td>6</td>
<td>8.4</td>
</tr>
<tr>
<td>Malus sp. - small trees</td>
<td>7</td>
<td>5.4</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>5</td>
<td>2.6</td>
</tr>
<tr>
<td>Herb Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex granularis</td>
<td>8</td>
<td>3.9</td>
</tr>
<tr>
<td>Scirpus pendulus</td>
<td>8</td>
<td>1.3</td>
</tr>
<tr>
<td>Fragaria virginiana</td>
<td>2</td>
<td>1.1</td>
</tr>
<tr>
<td>Disturbed Wet Forest - 14 plots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulmus americana</td>
<td>11</td>
<td>19.5</td>
</tr>
<tr>
<td>Malus sp.</td>
<td>9</td>
<td>7.3</td>
</tr>
<tr>
<td>Prunus serotina</td>
<td>6</td>
<td>7.1</td>
</tr>
<tr>
<td>Shrub Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frangula alnus</td>
<td>13</td>
<td>26.0</td>
</tr>
<tr>
<td>Viburnum dentatum</td>
<td>8</td>
<td>19.3</td>
</tr>
<tr>
<td>Ulmus americana – saplings</td>
<td>3</td>
<td>6.4</td>
</tr>
<tr>
<td>Herb Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frangula alnus – seedlings</td>
<td>7</td>
<td>8.1</td>
</tr>
<tr>
<td>Rhamnus cathartica – seedlings</td>
<td>3</td>
<td>3.9</td>
</tr>
<tr>
<td>Toxicodendron radicans</td>
<td>1</td>
<td>3.2</td>
</tr>
<tr>
<td>Mixed Hardwood Forest - 7 plots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostrya virginiana</td>
<td>7</td>
<td>22.4</td>
</tr>
<tr>
<td>Fagus grandifolia</td>
<td>4</td>
<td>21.3</td>
</tr>
<tr>
<td>Fraxinus americana</td>
<td>4</td>
<td>11.9</td>
</tr>
<tr>
<td>Shrub Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fagus grandifolia – saplings</td>
<td>3</td>
<td>3.1</td>
</tr>
<tr>
<td>Carya cordiformis – saplings</td>
<td>2</td>
<td>2.9</td>
</tr>
<tr>
<td>Ulmus americana – saplings</td>
<td>1</td>
<td>2.9</td>
</tr>
<tr>
<td>Herb Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxicodendron radicans</td>
<td>3</td>
<td>20.0</td>
</tr>
<tr>
<td>Podophyllum peltatum</td>
<td>2</td>
<td>2.4</td>
</tr>
<tr>
<td>Potentilla simplex</td>
<td>1</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Table 2

List of invasive species present at Shaker Median Park. Invasive species designations are from Windus and Kroemer 2001.

<table>
<thead>
<tr>
<th>Status</th>
<th>Occurrence*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree Layer</td>
<td></td>
</tr>
<tr>
<td>Elaeagnus umbellata</td>
<td>Targeted</td>
</tr>
<tr>
<td>Shrub Layer</td>
<td></td>
</tr>
<tr>
<td>Berberis thunbergii</td>
<td>Well-Established</td>
</tr>
<tr>
<td>Prunus fruticosa</td>
<td>Targeted</td>
</tr>
<tr>
<td>Ligustrum obtusifolium</td>
<td>Watch List</td>
</tr>
<tr>
<td>Viburnum opulus var. opulus</td>
<td>Well-Established</td>
</tr>
<tr>
<td>Viburnum opulus</td>
<td>Targeted</td>
</tr>
<tr>
<td>Rosa canina</td>
<td>Targeted</td>
</tr>
<tr>
<td>Rosa multiflora</td>
<td>Targeted</td>
</tr>
<tr>
<td>Viburnum opulus</td>
<td>Targeted</td>
</tr>
<tr>
<td>Alliaria petiolata</td>
<td>Targeted</td>
</tr>
<tr>
<td>Cirsium arvense</td>
<td>Well-Established</td>
</tr>
<tr>
<td>Conium maculatum</td>
<td>Well-Established</td>
</tr>
<tr>
<td>Coronilla varia</td>
<td>Well-Established</td>
</tr>
<tr>
<td>Daucus carota</td>
<td>Well-Established</td>
</tr>
<tr>
<td>Dipsacus fullonum</td>
<td>Well-Established</td>
</tr>
<tr>
<td>Elymus repens</td>
<td>Well-Established</td>
</tr>
<tr>
<td>Epilobium parviflorum</td>
<td>Well-Established</td>
</tr>
<tr>
<td>Fraxinus graminea</td>
<td>Targeted</td>
</tr>
<tr>
<td>Hemerocallis fulva</td>
<td>Well-Established</td>
</tr>
<tr>
<td>Lysimachia nummularia</td>
<td>Well-Established</td>
</tr>
<tr>
<td>Lythrum salicaria</td>
<td>Targeted</td>
</tr>
<tr>
<td>Melilotus alba</td>
<td>Well-Established</td>
</tr>
<tr>
<td>Melilotus officinalis</td>
<td>Well-Established</td>
</tr>
<tr>
<td>Phalaris arundinacea</td>
<td>Targeted</td>
</tr>
<tr>
<td>Phragmites australis</td>
<td>Targeted</td>
</tr>
<tr>
<td>Rhamnus cathartica</td>
<td>Targeted</td>
</tr>
<tr>
<td>Rosa multiflora</td>
<td>Targeted</td>
</tr>
<tr>
<td>Typha angustifolia</td>
<td>Well-Established</td>
</tr>
<tr>
<td>Viburnum opulus var. opulus</td>
<td>Well-Established</td>
</tr>
<tr>
<td>Vinca minor</td>
<td>Well-Established</td>
</tr>
</tbody>
</table>

*WM = wet meadow, EM = emergent marsh, DSS = disturbed shrub swamp, DWF = disturbed wet forest, MHF = mixed hardwood forest, DR = urban area.

addition of yard waste.

We also envision that seeds of various species (for example, of Pyracantha and Cotoneaster) were consumed by birds in residential areas nearby and later deposited at the site, within excrement. This probably accounts for the existence of certain species within the basin.

The vast majority of taxa at the site had a C of C value of zero. We applied zero-ratings to three categories of species: non-native species, native species that adapt to almost any environment, and invasive species (native or non-native). It is a general rule that species with low C of C values can be found in disturbed areas.

FQAI values of 12.7 to 19.4 signify that habitats at the site were of low to moderate quality. Had solely invasive species entered the site immediately after the
last major disturbance, values would have been even lower. Values indicate recovery of the site after disturbance. Invasive species were unable to completely dominate the site—a conclusion based on the determined that FQAI was moderate for certain subtypes.

The first plants to inhabit the study site after disturbance presumably belonged to native species such as *Elymus rostelleta* and *Asclepias tuberosa*, and to escaped species grown elsewhere in cultivation, for example, *Juniperus horizontalis*. We base this conclusion on the abundance of these species at the study site, yet, of few elsewhere in Cuyahoga County. Apparently such species entered the site soon after disturbance and thrived before invasive species could arrive and out-compete them. Now that invasive species, particularly *Frangula alnus* (P. Mill.) (syn *khanmus frangula L*), are established at the site, the uncommon escaped plants there may cease to thrive.

Wet forest and shrub swamp had higher FQAI values than did the other vegetation subtypes. We conclude that disturbance was either more intense or more recent (or both) in the central basin area than in upland areas. Our conclusion is supported by the circumstance that most soil was removed from the basin area, leaving bedrock exposed in places. Also, fill was added to portions of the basin, most obviously at the eastern end. Recovery might, therefore, be slow in the central basin. Possible, too, is that only competitive *k*-selected species thrive in the areas of shaded forest. Shrub swamp and wet forest are the two largest vegetation subtypes at the site. One might expect community size to correlate positively with species richness, but that Shannon Diversity Index (a measure of evenness) would be independent of these effects. FQAI is also theoretically independent of community size (Andreas and Lichvar 1995).

Values of Shannon Diversity Index mirrored findings pertaining to FQAI. Wet forest scored highest in both indices, followed by shrub swamp, mixed hardwood forest, wet meadow, and emergent marsh, in decreasing order.

Interior-basin areas exhibited more invasive species than did upland areas. The emergent marsh and wet meadow were much smaller and had less vertical stratification than did the other vegetation subtypes. Perhaps sun-loving invasive species have taken advantage of the minimal stratification to enter these areas and become established. The domination of wet meadow and emergent marsh by invasive species corresponds with the presence within these vegetation subtypes of least diversity and least floristic quality.

The emergent marsh having the lowest Shannon value for vegetation subtypes considered in this study contained *Phragmites australis*. This invasive species covered 48.4% of the transect in the emergent marsh. No other species in this study covered as much area of one transect. *Phragmites australis* grows aggressively and tends to out-compete other species for nutrients, light, etc. (Keller 2000). Thus, we conclude that *P. australis* has suppressed species diversity within the emergent marsh, aforementioned.

LITERATURE CITED

APPENDIX 1

Plant list arranged by families.

LYCOPHYTA

Lycopodiaceae
 Lycopodium digitatum Dill. ex A. Braun
 Fan Ground-Pine

SPHENOPHYTA

Equisetaceae
 Equisetum arvense L.
 Field Horsetail

PTEROPHYTA

Aspleniaceae
 Asplenium platyneuron (L.) B.S.P.*
 Ebony Spleenwort
 Spinulose Wood Fern
 Sensitive Fern

Ophioglossaceae
 Botrychium Sw. sp. - probably B. dissectum Spreng. var. obliquum (Muhl.) Clute*
 Grape Fern

CONIFEROPHYTA

Cupressaceae
 Juniperus horizontalis Moench
 Creeping Juniper
 Juniper

Pinaceae
 Pinus sylvestris L.
 Scotch Pine

Taxaceae
 Taxus cuspidata Sieb. & Zucc.
 Japanese Yew

ANGIOPTERAMAE: MONOCOTYLEDONEAE

Alismataceae
 Alisma subcordatum Raf.
 American Water-Plantain

Araceae
 Arisaema tryphyllum (L.) Schott
 Jack-in-the-Pulpit

Cyperaceae
 Carex annectens (Bickn.) Bickn.
 Yellow-Fruit Sedge
 Crested Sedge
 Limestone-Meadow Sedge
 Fuzzy-Wuzzy Sedge
 Sallow Sedge
 Pointed Broom Sedge
 Carex cristatella Britt.
 Carex granularis Muhl. ex Willd.
 Carex hirsutella Mackenzie
 Carex lurida Wahlenb.
 Carex scoparia Schkuhr ex Willd.*

P. 108

Appendix 1 (Cont.)

Plant list arranged by families.

- Carex stipata Muhl. ex Willd.
 Stalk-Grain Sedge
- Carex swanii (Fern.) Mackenzie
 Swan's Sedge
- Carex vulpinoidea Michx.
 Common Fox Sedge
- Eleocharis erythropoda Steud.
 Bald Spike-Rush
- Eleocharis rostella (Torr.) Torr.
 Beaked Spike-Rush
- Schoenoplectus tabernaemontani (K.C. Gmel.) Palla
 Soft-Stem Club-Rush
- Scirpus atrovirens Willd.
 Dark-Green Bulrush
- Scirpus pendulus Muhl.
 Rufous Bulrush

Iridaceae
- Iris L. sp. - sterile*
 Narrow-Leaf Blue-Eyed-Grass
- Iris L. sp.
 Strict Blue-Eyed Grass
- Sisyrinchium angustifolium P. Mill.
 Sisyrinchium montanum Greene

Juncaceae
- Juncus acuminatus Michx.*
 Knotty-Leaf Rush
- Juncus articulatus L.*
 Joint-Leaf Rush
- Juncus dudleyi Wiegr.
 Dudley's Rush
- Juncus effusus L.*
 Lamp Rush
- Juncus gerardii Loisel.
 Saltmarsh Rush
- Juncus tenus Willd.
 Poverty Rush
- Juncus torreyi Coville
 Torrey's Rush

Liliaceae
- Allium canadense L.
 Meadow Garlic
- Allium vineale L.
 Crow Garlic
- Asparagus officinalis L.*
 Garden Asparagus
- Erythronium americanum Ker-Gawl.
 American Trout-Lily
- Hemerocallis fulva (L.) L.
 Orange Day-Lily
- Muscari armeniacum Leichtl. ex Baker
 Armenian Grape-Hyacinth
- Narcissus pseudonarcissus L.
 Common Daffodil

Orchidaceae
- Spiranthes cernua (L.) C. Rich ssp. cernua
 White Nodding Ladies'-Tresses
- Spiranthes cernua (L.) C. Rich sensu lato
 Nodding Ladies'-Tresses
- Spiranthes lucida (H.H. Eat.) Ames
 Shining Ladies'-Tresses

Poaceae
- Agrostis gigantea Roth
 Black Bent
- Andropogon virginicus L.
 Broom-Sedge
- Aristida oligantha Michx.
 Prairie Three-Awn
- Dactylis glomerata L.
 Orchard Grass
- Danthonia spicata (L.) Beauv. ex Roemer & J.A. Schultes
 Poverty Wild Oat Grass
- Dichanthelium acuminatum (Sw.) Gould & C.A. Clark var. fasciculatum (Torr.) Freckmann
 Tapered Rosette Grass
- Digitaria ischaemum (Schreb.) Schreb. ex Muhl.*
 Smooth Crab Grass
- Digitaria sanguinalis (L.) Scop.
 Hairy Crab Grass
- Echinocloa crus-galli (L.) Beauv.
 Large Barnyard Grass
- Elymus repens (L.) Gould
 Creeping Wild Rye
- Festuca rubra L.
 Little Love Grass
- Glyceria striata (Lam.) A.S. Hitchc.
 Red Fescue
- Lolium arundinaceum (Schreb.) S.J. Darbyshire*
 Fowl Manna Grass
- Lolium perenne L.
 Tall Rye Grass
- Lolium pratense (Huds.) S.J. Darbyshire
 Perennial Rye Grass
- Panicum capillare L.
 Meadow Rye Grass
- Phalaris arundinacea L.
 Common Panic Grass
- Phleum pratense L.
 Reed Canary Grass
- Phragmites australis (Cav.) Trin. ex Steud.
 Common Timothy
- Poa annua L.*
 Annual Blue Grass
- Poa compressa L.
 Flat-Stem Blue Grass
- Poa pratensis L.
 Kentucky Blue Grass
- Puccinellia tenella (Lang.) Holmb. ssp. langeana (Berlin) Tzvelev*
 Tundra Alkali Grass
Plant list arranged by families.

Sporobolus compositus (Poir.) Merr. var. *compositus*
Head-Like Dropseed

Smilacaceae
Smilax rotundifolia L.
Horsebrier

Typhaceae
Typha angustifolia L.
Narrow-Leaf Cat-Tail
Typha latifolia L.
Broad-Leaf Cat-Tail

ANGIOSPERMAE: DICOTYLEDONEAE

Aceraceae
Acer platanoides L.
Norway Maple
Acer rubrum L.
Red Maple
Acer saccharinum L.
Silver Maple
Acer saccharum Marsh.
Sugar Maple

Anacardiaceae
Rhus typhina L.
Stag-Horn Sumac
Toxicodendron radicans (L.) Kuntze
Eastern Poison-Ivy

Annonaceae
Asimina triloba (L.) Dunal
Common Pawpaw

Apiaceae
Aegopodium podagraria L.
Bishop's Goutweed
Conium maculatum L.
Poison-Hemlock
Daucus carota L. forma *epurpuratus* Farw.
Queen Anne's-Lace
Daucus carota L. - typical forma
Queen Anne's-Lace

Apocynaceae
Apocynum cannabinum L.
Indian-Hemp
Vinca minor L.
Lesser Periwinkle

Aquifoliaceae
Ilex crenata Thunb.
Japanese Holly
Ilex opaca Ait.
American Holly

Araliaceae
Hedera helix L.
English-Ivy

Asclepiadaceae
Asclepias incarnata L.
Swamp Milkweed
Asclepias syriaca L.
Common Milkweed
Asclepias tuberosa L.
Butterfly Milkweed

Asteraceae
Achillea millefolium L.
Common Yarrow
Ambrosia artemisiifolia L.
Annual Ragweed
Antennaria parlinii Fern. ssp. *fallax* (Greene) Bayer & Stebbins*
Parlin's Pussytoes
Antennaria Gaertn. sp. - possibly A. neglecta Greene*
Pussytoes
Arctium lappa L.
Greater Burdock
Arctium minus Bernh.
Lesser Burdock
Arctium minus (Hill) Bernh. forma *pallidum* Farw.
Common Burdock
Bellis perennis L.
Lawn Daisy
Bidens aristosa (Michx.) Britt.
Bearded Beggarticks
Bidens frondosa L.
Devil's-Pitchfork
Cichorium intybus L.
Chicory
Cirsium arvense (L.) Scop.
Canadian Thistle
Cirsium vulgare (Savi) Ten.
Bull Thistle
Conyza canadensis (L.) Cronq. var. *canadensis*
Canadian Horseweed
Erechtites hieracifolia (L.) Raf. ex DC.*
American Burnweed
APPENDIX 1 (Cont.)

Plant list arranged by families.

- **Berberidaceae**
 - *Berberis thunbergii* DC.
 - *Podophyllum peltatum* L.

- **Betulaceae**
 - *Betula pendula* Roth
 - *Ostrya virginiana* (P. Mill.) K. Koch

- **Brassicaceae**
 - *Alliaria petiolata* (Bieb.) Cavara & Grande
 - *Barbarea vulgaris* R. Br. var. *arcuata* (Opiz.) Fries
 - *Barbarea vulgaris* Ait. f. var. *vulgaris*
 - *Cardamine concatenata* (Michx.) Sw.
 - *Lepidium virginicum* L.

- **Buxaceae**
 - *Pachysandra terminalis* Sieb. & Zucc.

- **Cannabinaceae**
 - *Cannabis sativa* L.*

- **Caprifoliaceae**
 - *Lonicera X bella* Zabel
 - *Lonicera japonica* Thunb.*
 - *Lonicera maackii* (Rupr.) Herder*

- **Berberidaceae**
 - Japanese Barberry
 - Holly-Leaf Oregon-Grape
 - May-Apple

- **Betulaceae**
 - European Weeping Birch
 - Eastern Hop-Hornbeam

- **Brassicaceae**
 - Garlic-Mustard
 - Yellow-Rocket
 - Garden Yellow-Rocket
 - Cut-Leaf Toothwort
 - Poorman’s-Pepperwort

- **Buxaceae**
 - Japanese Mountain-Spurge

- **Cannabinaceae**
 - Hemp

- **Caprifoliaceae**
 - Honeysuckle
 - Japanese Honeysuckle
 - Amur Honeysuckle
Plant list arranged by families.

Lonicera ruprechtiana Regel
Lonicera L. sp. - not *L. maackii*
Viburnum dentatum L.
Viburnum lantana L.
Viburnum lentago L.*
Viburnum opulus L. var. *opulus*
Viburnum prunifolium L.*
Viburnum recognitum Fern.*

Caryophyllaceae
Cerastium fontanum Baumg.
Spergularia maritima (All.) Choiv.

Chenopodiaceae
Atriplex hastata L.*
Atriplex patula L.*
Atriplex L. sp.
Chenopodium album L.
Chenopodium glaucum L.*

Clusiaceae
Hypericum perforatum L.
Hypericum prolificum L.

Convolvulaceae
Calystegia sepium (L.) R. Br. ssp. *sepium*

Cornaceae
Cornus amomum P. Mill.
Cornus florida L.
Cornus racemosa Lam.*
Cornus sericea L. ssp. *sericea*

Dipsacaceae
Dipsacus fullonum L.

Elaeagnaceae
Elaeagnus umbellata Thunb.

Euphorbiaceae
Chamaesyce maculata (L.) Small

Fabaceae
Coronilla varia L.
Lotus tenuis Waldst. & Kitt. ex Willd.
Medicago lupulina L.
Melilotus alba Desr.
Melilotus officinalis (L.) Lam.
Rohinia pseudocacacia L.
Trifolium hybridum L.
Trifolium pratense L.
Trifolium repens L.

Fagaceae
Fagus grandifolia Ehrh.
Quercus palustris Muenchh.
Quercus rubra L. var. *ambigua* (Gray) Fern.

Geraniaceae
Geranium sp. L. - sterile*

Hippocastanaceae
Aesculus hippocastanum L.

Manchurian Honeysuckle
Honeysuckle
Southern Arrow-Wood
Wayfaring-Tree
Nanny-Berry
Highbush-Cranberry
Smooth Blackhaw
Smooth Arrow-Wood

Common Mouse-Ear Chickweed
Satin-Flower

Orache
Halberd-Leaf Orache
Orache
Lamb's-Quarters
Oak-Leaf Goosefoot

Common St. John's-Wort
Shrubby St. John's-Wort

Hedge False Bindweed

Silky Dogwood
Flowering Dogwood
Gray Dogwood
Redosier

Fuller's Teasel

Autumn-Olive

Spotted Sandmat

Purple Crown-Vetch
Narrow-Leaf Bird's-Foot Trefoil
Black Medick
White Sweet-Clover
Yellow Sweet-Clover
Black Locust
Alsike Clover
Red Clover
White Clover

American Beech
Pin Oak
Northern Red Oak

Cranesbill

Horse-Chestnut
Appendix 1 (Cont.)

Plant list arranged by families.

Juglandaceae
- Carya cordiformis (Wangenh.) K. Koch
 - Bitter-Nut Hickory

Lamiaceae
- Ajuga reptans L.
 - Carpet Bugle
- Glechoma hederacea L. var. micrantha Moric.
 - Groundivy
- Leonurus cardiaca L.
 - American False Pennyroyal
- Lycopus americanus Muhl. ex W. Bart.
 - Motherwort
- Lycopus virginicus L.*
 - Cut-Leaf Water-Horehound
- Melissa officinalis L.*
 - Virginia Water-Horehound
- Mentha spicata L.*
 - Lemonbalm
- Physostegia virginiana (L.) Benth.
 - Obedient-Plant
- Physostegia virginiana Benth. var. alba Hort.
 - Obedient-Plant
- Prunella vulgaris L.
 - Common Selfheal
- Pycnanthemum tenuifolium Schrad.
 - Narrow-Leaf Mountain-Mint

Lythraceae
- Lythrum salicaria L.
 - Purple Loosestrife

Malvaceae
- Malva alcea L.
 - Vervain Mallow

Myricaceae
- Morella pensylvanica (Mirbel) Kartesz
 - Northern Bayberry

Oleaceae
- Chionanthus virginicus L.
 - White Fringetree
- Prunus americana L. var. americana
 - White Ash
- Prunus pensylvanica Marsh. var. subintegerrima (Vahl.) Fern.
 - Green Ash
- Ligustrum obtusifolium Sieb. & Zucc.
 - Border Privet
- Ligustrum vulgare L.
 - European Privet
- Syringa vulgaris L.
 - Common Lilac

Onagraceae
- Circium laetigantium L.
 - Broad-Leaf Enchanter's-Nightshade
- Ipomoea coloratum Biehler*
 - Purple-Leaf Willowherb
- Ipomoea parviflorum Schreber.
 - Small-Flower Hairy Willowherb
- Oenothera biennis L.
 - King's-Cureall
- Oenothera fruticosa L.
 - Narrow-Leaf Evening-Primrose
- Oenothera perennis L.*
 - Small Evening-Primrose

Orobanchaceae
- Epifagus virginiana (L.) W. Bart.
 - Beechdrops

Oxalidaceae
- Oxalis stricta L.
 - Upright Yellow Wood-Sorrel

Phytolaccaceae
- Phytolacca americana L.
 - American Pokeweed

Plantaginaceae
- Plantago lanceolata L.
 - English Plantain
- Plantago major L.
 - Great Plantain

Polygonaceae
- Polygonum aviculare L.
 - Yard Knotweed
- Polygonum pensylvanicum L.*
 - Pinkweed
- Polygonum punctatum Ell.*
 - Dotted Smartweed
- Polygonum persicaria L.
 - Lady's-Thumb
- Polygonum virginianum L.
 - Jumpseed
- Rumex acetosilla L.
 - Common Sheep Sorrel
Appenidix 1 (Cont.)

Plant list arranged by families.

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rumex crispos L.</td>
<td></td>
<td>Curly Dock</td>
</tr>
<tr>
<td>Rumex obtusifolius L.</td>
<td></td>
<td>Bitter Dock</td>
</tr>
<tr>
<td>Portulacaceae</td>
<td>Portulaca oleracea L.</td>
<td>Little Hogweed</td>
</tr>
<tr>
<td>Primulaceae</td>
<td>Anagallis arvensis L.</td>
<td>Scarlet Pimpernel</td>
</tr>
<tr>
<td></td>
<td>Lysimachia ciliata L.</td>
<td>Fringed Yellow-Loosestrife</td>
</tr>
<tr>
<td></td>
<td>Lysimachia nummularia L.</td>
<td>Creeping-Jenny</td>
</tr>
<tr>
<td>Ranunculaceae</td>
<td>Aquilegia vulgaris L.</td>
<td>European Columbine</td>
</tr>
<tr>
<td></td>
<td>Ranunculus acris L.</td>
<td>Tall Buttercup</td>
</tr>
<tr>
<td>Rhamnaceae</td>
<td>Frangula alnus P. Mill.</td>
<td>Glossy False Buckthorn</td>
</tr>
<tr>
<td></td>
<td>Rhamnus cathartica L.</td>
<td>European Buckthorn</td>
</tr>
<tr>
<td></td>
<td>Rhamnus frangula L. var. asplenifolia Dipp.</td>
<td>Buckthorn</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>Agrimonia gryposepala Wallr.</td>
<td>Tall Hairy Grooveburr</td>
</tr>
<tr>
<td></td>
<td>Agrimonia parviflora Att.*</td>
<td>Harvestlce</td>
</tr>
<tr>
<td></td>
<td>Amelanchier arborea (Michx. f.) Fern.</td>
<td>Downy Service-Berry</td>
</tr>
<tr>
<td></td>
<td>Cotoneaster divaricus Rehd. & Wilson</td>
<td>Spreading Cotoneaster</td>
</tr>
<tr>
<td></td>
<td>Crataegus mollis Scheele</td>
<td>Downy Hawthorn</td>
</tr>
<tr>
<td></td>
<td>Crataegus monogyna Jacq.</td>
<td>English Hawthorn</td>
</tr>
<tr>
<td></td>
<td>Crataegus pedicillata Sarg.</td>
<td>Scarlet Hawthorn</td>
</tr>
<tr>
<td></td>
<td>Crataegus puciata Jacq.</td>
<td>Dotted Hawthorn</td>
</tr>
<tr>
<td></td>
<td>Fragaria virginiana Duchesne*</td>
<td>Virginia Strawberry</td>
</tr>
<tr>
<td></td>
<td>Geum canadense Jacq.</td>
<td>White Avens</td>
</tr>
<tr>
<td></td>
<td>Geum laciniatum Murr.</td>
<td>Rough Avens</td>
</tr>
<tr>
<td></td>
<td>Malus pumila P. Mill.*</td>
<td>Cultivated Apple</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>Potentilla recta L.</td>
<td>Sulphur Cinquefoil</td>
</tr>
<tr>
<td></td>
<td>Potentilla simplex Michx.</td>
<td>Oldfield Cinquefoil</td>
</tr>
<tr>
<td></td>
<td>Prunus avium (L.) L.</td>
<td>Sweet Cherry</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>Prunus serotina Ehb.</td>
<td>Black Cherry</td>
</tr>
<tr>
<td></td>
<td>Prunus virginiana L.</td>
<td>Choke Cherry</td>
</tr>
<tr>
<td>Salicaceae</td>
<td>Pyracantha coccinea M. Roemer</td>
<td>Scarlet Firethorn</td>
</tr>
<tr>
<td></td>
<td>Rosa canina L.</td>
<td>Dog Rose</td>
</tr>
<tr>
<td></td>
<td>Rosa multiflora Thumb. ex Marr.</td>
<td>Rambler Rose</td>
</tr>
<tr>
<td></td>
<td>Rosa setigera Michx.</td>
<td>Climbing Rose</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>Rosa L. sp. - cultivated hybrid</td>
<td>Rose</td>
</tr>
<tr>
<td></td>
<td>Rubus occidentalis L.*</td>
<td>Black Raspberry</td>
</tr>
<tr>
<td>Salicaceae</td>
<td>Rubus pensilvanicus Poir.</td>
<td>Pennsylvania Blackberry</td>
</tr>
<tr>
<td></td>
<td>Sorbus aucuparia L.</td>
<td>European Mountain-Ash</td>
</tr>
<tr>
<td></td>
<td></td>
<td>White Poplar</td>
</tr>
<tr>
<td></td>
<td>Populus alba L.</td>
<td>Eastern Cottonwood</td>
</tr>
<tr>
<td></td>
<td>Populus deltoides Bartr. ex Marsh.</td>
<td>Big-Tooth Aspen</td>
</tr>
<tr>
<td>Salicaceae</td>
<td>Salix alba L.</td>
<td>White Willow</td>
</tr>
<tr>
<td></td>
<td>Salix atrocinerea Brot.</td>
<td>Smooth-Twig Gray Willow</td>
</tr>
<tr>
<td></td>
<td>Salix caprea L.</td>
<td>Goat Willow</td>
</tr>
<tr>
<td></td>
<td>Salix discolor Muhl.</td>
<td>Pussy Willow</td>
</tr>
<tr>
<td></td>
<td>Salix ertocephala Michx.</td>
<td>Missouri Willow</td>
</tr>
<tr>
<td></td>
<td>Salix purpurea L.</td>
<td>Purple Willow</td>
</tr>
<tr>
<td></td>
<td>Salix X rubens Schrank. (pro sp.)*</td>
<td>Hybrid Crack Willow</td>
</tr>
<tr>
<td></td>
<td>Salix X sepulchrist Simonkai</td>
<td>Willow</td>
</tr>
<tr>
<td>Scrophulariaceae</td>
<td>Penstemon digitalis Nutt. ex Sims</td>
<td>Foxglove Beardtongue</td>
</tr>
</tbody>
</table>
APPENDIX 1 (Cont.)

Plant list arranged by families.

<table>
<thead>
<tr>
<th>Family</th>
<th>Plant Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solanaceae</td>
<td>Solanum dulcamara L.</td>
<td>Climbing Nightshade</td>
</tr>
<tr>
<td>Tiliaceae</td>
<td>Tilia americana L. var. americana</td>
<td>American Basswood</td>
</tr>
<tr>
<td>Ulmaceae</td>
<td>Ulmus americana L.*</td>
<td>American Elm</td>
</tr>
<tr>
<td>Verbenaceae</td>
<td>Verbena bastata L.</td>
<td>Simpler’s-Joy</td>
</tr>
<tr>
<td></td>
<td>Verbena urticifolia L.</td>
<td>White Vervain</td>
</tr>
<tr>
<td>Vitaceae</td>
<td>Parthenocissus quinquefolia (L.) Planch.</td>
<td>Virginia-Creeper</td>
</tr>
<tr>
<td></td>
<td>Vitis aestivalis Michx. var. aestivalis</td>
<td>Summer Grape</td>
</tr>
<tr>
<td></td>
<td>Vitis aestivalis Michx. var. bicolor Deam</td>
<td>Summer Grape</td>
</tr>
<tr>
<td></td>
<td>Vitis labruscana Bailey</td>
<td>Grape</td>
</tr>
<tr>
<td></td>
<td>Vitis riparia Michx.</td>
<td>River-Bank Grape</td>
</tr>
</tbody>
</table>