Ohio Educators Respond to Governor Taft’s Initiative for the Third Frontier: A Call for Action

Karkowski, Andrea M.; Vakalis, Ignatios E.

The Ohio Journal of Science, v104, n5 (December, 2004), 124-125.
http://hdl.handle.net/1811/25167

Downloaded from the Knowledge Bank, The Ohio State University’s institutional repository
Ohio Educators Respond to Governor Taft’s Initiative for the Third Frontier: A Call for Action

ANDREA M. KARKOWSKI AND IGNATIOS E. VAKALIS, Capital University, 2199 East Main Street, Columbus, OH 43209

ABSTRACT. The new science frontier requires training students who have the knowledge and skills to work on scientific problems that transcend specific scientific disciplines. A computational studies curriculum integrated into undergraduate science majors can provide the experiences that students need to succeed in the new science frontier. Computational studies is the use of mathematical modeling and computer visualization to solve problems in biological, physical, medical, and behavioral sciences as well as economics, finance, and engineering. A computational studies curriculum is characterized by: 1) the use of computer visualization techniques and mathematical modeling to answer contemporary questions in science, 2) participation in undergraduate research experiences that includes real-world problem-solving with industry partners, 3) engagement in interdisciplinary conversations within cross-functional teams, 4) development of a computational studies thought process, 5) exploration of the creative nature of science, mathematics, and computer science, and 6) communication of science problems and solutions to a variety of audiences. Opportunities for integrating computational studies into science curricula are explored.

INTRODUCTION

“If we are to succeed as a state, terms like fuel cells, bioscience, polymers, IT, liquid crystals and advanced manufacturing must become part of our everyday vocabulary. Ohio must be the place where new knowledge is used to create new products, new businesses, new companies and new jobs” (Taft 2003, p 1).

“In the coming decades, the number of jobs in the technology sector will continue their overall exponential growth—globally, nationally, in Ohio and in Columbus” (White 2003, p 13).

Thus, the challenge facing Ohio educators is to prepare the future scientists who can fill these jobs, excel in this new science environment, and usher the Third Frontier into Ohio. The Third Frontier is the science of the future-science that transcends traditional disciplinary boundaries. Bruce Johnson, Director of the Ohio Department of Development, asserted that Ohio’s Third Frontier Project is about building a “knowledge economy” in Ohio, which includes bioscience, medical imaging, regenerative medicine, fuel cell research, and technology-based businesses (Johnson 2003). The Third Frontier is the integration of technology, computer visualization, mathematical modeling and science.

The Third Frontier requires scientists who can move beyond traditional disciplinary boundaries and effectively function in cross-disciplinary teams. These scientists must speak a common language and have a shared understanding of the current and future possibilities of science and technology. Computational studies—the integration of computer science, mathematics, and science—provides the foundation for developing the requisite skills to succeed in the new science frontier.

A computational studies curriculum includes six key characteristics.

Use of Computer Visualization Techniques and Mathematical Modeling to Answer Contemporary Questions in Science: As an emerging field, computational studies is concerned with examining scientific questions that are currently relevant. Applied mathematical modeling and computer visualization are the tools used to answer scientific questions. This means that students must have experience with many different software packages so that they can choose the appropriate method for a given problem. This is consistent with the recommendation of the Mathematical Association of America (MAA 2003), which identified as one goal of curriculum change: “... experience with a variety of technological tools, such as computer algebra systems, visualization software, statistical packages, and computer programming languages” (p 54).

Participation in Undergraduate Research Experiences that Includes Real-World Problem Solving with Industry Partners: Undergraduate research is one of the most powerful tools that educators have to help students achieve a profound understanding of the scientific method and develop a passion about scientific issues; it is also the purest form of teaching and learning (Hakim 2000; James 1998). Through undergraduate research, students learn to do research as professionals do it, not as it is simulated in a classroom (Kardash 2000; Landrum and Nelsen 2002). Undergraduate research experiences draw students into the scientific community and serve as a catalyst for students to pursue careers in science (Schowen 1998). Additionally, in order to introduce students to emerging technologies, educators and industry must engage in ongoing dialog. Having students work directly with industry partners during their undergraduate research helps to maintain that dialog, even as student engagement deepens through work that is personally meaningful. The mentoring relationships that
A paradigm shift is never easy. There are significant barriers that must be addressed in order to make the educational changes necessary for the new science frontier. These barriers include: 1) limited materials for teaching...
undergraduate computational studies, 2) a lack of time to redesign a course or curriculum to include computational studies, 3) limited financial and infrastructure resources, and 4) professors who are not trained in computational studies.

Fortunately, several initiatives are attempting to address these barriers. For example, educational materials for computational studies are now available from a variety of different sources, such as the Shodor Foundation (www.shodor.org); the Computational Science Across the Curriculum program at Capital University (www.capital.edu/acad/as/csac/) that includes partnerships with several other institutions across the nation; the National Computational Science Institute (NCSI, www.ncsi.org); the Education, Outreach, and Training Partnership for Advanced Computational Infrastructure (EOT-PACI, www.eot.org); and BIOquest (www.bioquest.org). Organizations such as the Shodor Foundation and Project Kaleidoscope (www.pkal.org) offer workshops for faculty who are interested in building their own computational studies repertoire.

The materials developed by these organizations are in modular format; faculty can pick and choose the materials that they want to integrate into their courses based on their interests and expertise, students’ level of preparedness, and the goals of the course. The flexibility of the modular format also means that faculty can start slowly to build computational studies activities into the curriculum by including a computational studies activity or two into each course. Alternatively, there are now enough materials available for faculty to design an entire course or sequence of courses for a particular curriculum.

In addition to the modular format, the materials were also designed with the financial and infrastructure limitations in mind. Much of the software that is used in the materials is either widely used or freely available and many of the applications cut across computing platforms. Consideration was also given toward using software packages that are used in industry so that students are learning the tools that they will need after graduation.

**CONCLUSION**

Ohio educators must come together to prepare students to be competitive in the Third Frontier. One way to do this is through integration of computational studies into the undergraduate science curriculum.

**LITERATURE CITED**


