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Foreword

, Geometric Geodesy, Volume II, is a continuation of Volume I. While the first volume
emphasizes the geometry of the ellipsoid, the second volume emphasizes problems related to
geometric geodesy in several diverse ways. The four main topic areas covered in Volume II are the
following: the solution of the direct and inverse problem for arbitrary length lines; the
transformation of geodetic data from one reference frame to another; the definition and
determination of geodetic datums (including ellipsoid parameters) with terrestrial and space derived
data; the theory and methods of geometric three-dimensional geodesy.

These notes represent an evolution of discussions on the relevant topics. Chapter 1 (long
lines) was revised in 1987 and retyped for the present version. Chapter 2 (datum transformation)
and Chapter 3 (datum determination) have been completely revised from past versions. Chapter 4
(three-dimensional geodesy) remains basically unchanged from previous versions.

The original version of the revised notes was printed in September 1990. Slight revisions
were made in the 1990 version in January 1992. For this printing, several corrections were made
in Table 1.4 (line E and F). The need for such corrections, and several others, was noted by B.K.
Meade whose comments are appreciated.

Richard H. Rapp
March 25, 1993
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1. Long Geodesics on the Ellipsoid

1.1 Introduction

The purpose of this section is to discuss methods for the solution of the direct and inverse
problem without limitation on distance. There are several solutions that have been derived for lines
whose length does not exceed 500 or 1000 km with a number of solutions for considerably shorter
distances. The most familiar shorter solution is the Puissant's equations, where the result is
interpreted for the normal section or the geodesic as the line is too short for distinction. A
desription of several of the methods and the resultant equations may be found in Bomford (1980,
Sec. 2.14). A discussion of methods for lines up to 200 km in length may be found in Rapp
(1984).

1.2 An Iterative Solution for Long Geodesics

The discussion given here has evolved from the English translation of Helmert's "Higher
Geodesy" written in 1898 and from the Army Map Service translation of Jordan's "Handbook of
Geodesy" - Volume II1, second half, dated 1962 (original 1941), sections 23 and 24.

The problem of computing "long" geodesics is attacked by considering the relationship
between the ellipsoid and sphere, in terms of distance and longitude. The main concept of the
derivation is to use the sphere as an auxiliary surface and relate it to the ellipsoid. We do not
approximate the ellipsoid by a sphere. The radius of the sphere is immaterial and in fact, the
sphere may be considered to have a unit radius.

First let us establish some differential relationships between the ellipsoid and the sphere. We
define first:

o, L geodetic latitude and longitude on the ellipsoid

B reduced latitude, (latitude on auxiliary sphere)
A longitude on the sphere

o geodesic azimuth

o spherical arc on the sphere

A fundamental property of the geodesic on the ellipsoid follows from Clairaut's equation such that:
cos B1 sin o] = cos By sin oy = cos B; sin o = cos Py (1.1

where B and o are the reduced latitude and geodesic azimuth at any point on the geodesic, and By
is the highest reduced latitude that this geodesic has reached. Equation (1.1) represents a property
of all geodesics, whether on the ellipsoid or sphere. We now construct an auxiliary sphere. A
geodesic is mapped from the ellipsoid to a great circle on the auxiliary sphere by specifying that the
highest reduced latitude of the geodesic (extended if necessary) will be the same as the highest
latitude of the corresponding great circle on the sphere. See Figure 1.1.



Pole of sphere

90 -ﬁl 90_B2

P
Py

Figure 1.1
Polar Triangle on the Auxiliarly Sphere

A is the azimuth of the geodesic (great circle on the sphere) from PiPé. Using the property
expressed in equation (1.1) we have:

cos B sin Aj = cos B2 sin A2 = cos Bj sin A;j = cos Po (1.2)

By definition, the Bg in (1.1) must be equal to the Bg in (1.2). We must then have the
azimuths on the ellipsoid and on the sphere the same, i.e. A; = o;.

Next we consider a differential figure on the ellipsoid and sphere as shown in Figure 1.2.

dL da
u u
N'cos¢'dL ' cos B'dA / +dg = g'
¢ tde = ¢ prde = F
Mdey 4 dg do
a a
\ w A | \ B
Ellipsoid Sphere
Figure 1.2

Differential Figures on the Ellipsoid and the Sphere



Then we have for the ellipsoid:

ds cosa = Mdo
ds sinot = N’ cos¢” dL (1.3)

and for the sphere:

do cosa = df
do sina = cosp’ dA (1.4)

Dividing the first equation in (1.3) by the first equation in (1.4), and repeating for the second
equations we have:

do dg di (1.5)

But N’ cos¢’” = a cosf’ so that:

d_s= ME?.: ag].:

Equation (1.6) may be written in several forms. For example:

d_1ds

d 2do (1.7)
or

ds _ 90

ds  dp (1.8)

We consider equation (1.8) by recalling:

1/2
tanf3 =(1 - 62) tan¢ 1.9)

or upon differentiation:

172
d[: = (1 - ez) do so that
cos B cos ¢

92= 1 cos2¢
B ()" cos’B

(1.10)




Equation (1.7) then becomes (with 1.8):

dL M cos2 (0]

T

(1.11)

We also recall at this point the expression for the x coordinate of a point located on a meridian

ellipse (Rapp, 1984, Sec 3.3):

x = acosP = % cosd

where ¢ = a2/b and V2 =1 + €2 cos2 ¢. From (1.12):

2
cos” ¢ _ vZa’

cos’ B 2

Using the relation M = ¢/V3 we many write equation (1.12) as:

1 V2 a2

a(l -62)1/2 2

a 1

o Ve (1 _ ez)1/2

or

S|

£
v

B

Noting that ¢ = a%/b and b = a (1 - €2)1/2 equations (1.14) and (1.7) become:

From Rapp (ibid, eq 3.41):

V= (1 -2 cos? B)-m

so that equation (1.16) can be written as:

is—=a’\/ 1-c20052[3

do

and

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)



E=‘\/ l-ezcoszﬁ
dA

(1.19)

We now must consider the integration of equations (1.18) and (1.19). Consider two points
P; and P on the sphere shown in Figure 1.3.

Equator
_/

Figure 1.3
Geometry of Auxiliarly Spherical Triangle

We let © be an arc length on the great circle and define the following:

¢ =arc from P; to gn arbitrary P’
o1 =arcfromE to P;

oy =arc fromE to P,

oT = arc from P; to P,

We also note that the arc from P’l to His 90° - o1 and o1 = 07 - 01. We let:
o = azimuth of specific geodesic at the equator
o1 = azimuth of specific geodesic at P;

o = azimuth of specific geodesic at P,
Bo = highest reduced latitude geodesic reaches.

From the spherical triangle P Pi H or using (1.1) we have:

sina;, g

so that:
cos B, cosf,



cos By=sin o cos B,

(1.20)
Applying Napier's Rules to triangle P'l PH we have:
cos o1 =tan(90 - o;) cot (90 - Bl) =cotortan B;  so that:
tan B3,
tan G, =
cos oy 1.21)
From the spherical triangle PP,H we have:
sinf, = sin (01 + O'T) sin, (1.22)

If we apply (1.22) at some arbitrary p01nt P’ (where By becomes an arbitrary B, and o is
associated with ¢) we write:

sinP = sin (01 + 0') sinf, (1.23)

From equation (1.18) or (1 19) we need to find an expression for cos2B. Thus using cos2p=1-
sin2fB with sinf} from equation (1.23) we have:

cos2[3 =1- sin2(01+ o) sin2[30 (1.24)
Ifweletx=01+0G sothat
cos2[3 =1-sin’x sinz[.%0 (1.25)

and noting dx = do since G is a constant, we write (1.18) as:

2 2 .2 . 2
ds=aV1-el+e’sin Bosin'x dx
Now

@)
< 1-e2=—1 $O:

el = ,
1+e'2 1+¢e'2




1/2

ds=a L ,_=¢ sinzﬁosinzx dx
‘2 ‘2
l1+e l1+e
or:
ds =_a—1/2 ’\/1 + e'zsinz[iosin2x dx
(1 + e’2)
We note however: —1— = E
22
(1 +e )
2 ‘2.2
We define: k" =¢ “sinB,, (1.26)
so that we now have:
2.2
ds=b"V1+k sinx dx (1.27)

Before we integrate this expression we must establish the limits on x. Recall x=61+0. At the start
of a line 0=0 yielding the lower limit on x: x=0]. At the end of the line 6 = oT. Thus, in integral
form, equation (1.27) is written:

o401
=bﬁ 1+k’sinXx dx
- (1.28)

This integral is similar to what are called elliptic integrals (Bulirsch and Gerstl, 1983). The
evaluation of these integrals could take place in two ways: by numerical integration or by analytic
integration. The first form is possible using various numerical integration methods. The second
procedure, although more complicated than the first, allows a better accuracy control on the
solution and permits a unique set of equations to be established.

We thus look at the integration of (1.28) by analytic procedures. We first expand the kernel of
(1.28):

2.2 1.4.4 1.,6.6
=1+zk"sinx-=k sinx+-—k sin x+...

)1/2
2 8 16 (1.29)

(l +k% sin’

Next we convert from powers of angles to multiple angles. We use the relationships given in Rapp
(ibid, Section 2.5).

Then equation (1.29) becomes, after combining terms:




1/2 2
2.2 k™ 3 .4, 5 .6
(l+k sin X) = (1+T-gzk +§-§'6—k +--)+ -

1,2 1.4 15 .56
Zk +T—6—k 'mk + --}cos2x

k4 3 .6 1 .6
+ -—61+ﬁk + --|cosdx + -ﬁfk + --]cosbx + -~ (1.30)
We now define the coefficients of cos (nx) as A, B, C, D, -- respectively. That is:
2
A=1+K_3 44 5 1 6__175 18, .
L 4 64 256 k 16384 k
B=-lk2+ L x4.15 64 35 484
R T ST R TV TR
k' 3 6 35 s
C=-81%356* F006 % "
1 .6 5 8
D=-gzk +5pgk +- (1.31)
etc.
Then:
5 172
(1 + k" sin x) = A + Bcos2x + Ccosdx + Dcos6x + -- (1.32)
which we now insert for integration into (1.28) yielding
S OO0t SFuacky C;+01 G0t
F=Af dx+Bf COS2x dx+Cf cosdx dx+Df cos6x dx + --
o c c, o, (1.33)
First consider the general integral:
0,+0
OrtOr 1. s 1. .
f cosnx dx = 0 sin nx == [sm n ((Sl+0T) — sin nol]
0, o
! (1.34)
We may abbreviate this by recalling the trigonometric identity:
sinnX - sinnY = 2cos £1—(X +Y) sin E(X -Y)
2 2 (1.35)

In our case:



X=01+0T

Y =01
X+Y=201+0T
X-Y=o0T1

Now (1.35) becomes:

sin n (01 + cT) — sin noj = 2cos % (207 + o7) sin % or (1.36)

Recalling that 6T = 07 - 61, we have: 20, + 6T =20, + 62 - 61 = 61+ 09. If we then define

G = Gl + 02
m 2 1.37)

equation (1.36) becomes:

sin n(0; + OT) - sin nG; = 2c0s NOySin % oT

(1.38)
Thus (1.34) now can be written as:
G1+0t
f cosnx dx = %cos no, sin % oT
o1 (1.38a)

Now we go back to (1.33), using (1.34) with (1.38) to write:

O1+0T
f dx = oT
3]

110t
cos2x dx = c0s20,,SinCT

G +Or

cosdx dx = % cos4(5m sin2(5T

|
f

\

[eFuac)y 1 )
f cos6x dx = cos60,, sinop
c

1

Then equation (1.33) becomes:




s=b Ao+ Bcos2o'm sinG .+ -(25c0s40'm sin2o+ % cos6(rm sin30'T+ — N
(1.3

This equation is an important part of the iterative solution of the direct solution. Before we go
on we define a new set of constants to be consistent with that in a paper of Rainsford (1955): In
addition, we add additional terms as given by Rainsford. We define:

Bpo=A

B>=B
B34=C2

Bg =D/3
Bg=E/4 etc.

We also let u2 = k2 = ¢ 2 sin2 g = €' 2 cos2q, recalling that a is the azimuth of the geodesic at the
equator. Then (1.39) becomes (dropping the subscript, T, on the ©):

s =b|By0 + B, sinc cos26 + B, sin20 cos4c  + B sin3o cos6o

+ By sindo cos8o + --)

(1.40)
In equation (1.40), we have the following coefficients:
Bo=1 ’%“2'%“4*226 u’- 1524 u't -
B2=-;11-u2+11—6u4-—511§2—u6+23—28ué+--
By=- 1;8 ut+ 5?2 u®- 8?32 uie - (1.41)
Bo=- 1336 *gra™ *
Bg=- 6—52_3'6_‘18 + --

10



Equation (1.40) may be used in two ways which will be discussed in detail later. Briefly,
however, we may use it to solve iteratively for ¢ (given s) by first computing a zeroth
approximation as og = s/Ab, using this on the right side of the equation and solving iteratively to
convergence. The value of 6, may be found from spherical trigonometry formulas as will be
shown later. A second application of (1.40) is in the computation of s once ¢ is determined.

At this point we have derived a connection between a distance on a sphere and the distance on
the ellipsoid. However, we do not have a relation (other than in differential form) between the
longitude on the ellipsoid and the longitude on the sphere. We now do this by integrating equation
(1.19). We consider Figure 1.4.

Pole of the auxiliary sphere

dAa

90° -84
90°

B
(3Pl +dP
7, P Equator

Figure 1.4
Auxiliary Spherical Triangle for Longitude Determination

In this figure P; is an arbitrary point on the great circle between P; and P;. This differential
triangle may be enlarged to look as follows:

11



dicosg,

do

Figure 1.5
Differential Triangle for Longitude Determination

We have:

dA cosP; = do sing;

or

dr = _S_l.% do
cosP;

From equation (1.20) we write:

cosPo
cosf;

sinoy; =

Substituting this into (1.42) we have:

dA = cosPo do
cos?p;

Using (1.44) in equation (1.19) we may write (with i now simply B):

(1.42)

(1.43)

(1.44)

12



/ 22
lecosBdG

cos” B (1.45)

dL = cosB,,

Now subtract equation (1.44) from equation (1.45):

v 1-e2c032[3 1

dL - dA = cosB,, 3 -—5—|do
cos” P cos P (1.46)

In order to simplify the bracketed expression we expand the radical term:

s g |12 o2 K K
(l-e cos [3) —1-——cosB 8cosB 1g cos B——
so that:
172
(1 - e%cos? B) 1 cz b
> =—— -5 -5 Cos [3 1g °°8 |3—-—
cos B cos B

Subtracting 1/cos? B from this expression, equation (1.46) may now be written as:

2 4

dL =dA - cosBO(%+ ©

?coszﬁ +£_ cos B+ --) do

16

which may be re-written:

2 o2 K
d?»-dL=32—cosB0(1+ - 08 [3+ cos B+—-)d6
(1.47)

We now have to put (1.47) into an integrable form. From equation (1.23) we had:
sinf} = sin (01 + 0') sinf,
With x = 01 + o this becomes:

sinP = sinx sinf,

13



Then:
2 .2 .2
cos” B =1-sin" B,sin"x
4 .2 . 2 . 4 . 4
cos B=1-2sin" Bysin” x +sin B,sin x
Now insert these into (1.47):

dA - dL =""2—2 cosBo[l + ‘2—2(1 - sin? By sin? x) + f'gi(l - 2sin? By sinZx
+ sin4[30 sin4x) + --J dx

Now substitute the multiple angle expressions for sin2x, sin?x, etc.:

o2 2
e
dr-dL=% 5 cosBO[l T - sin B [ costD

e’ 2. [1 1 4 (31
£ o l1-2s OS2 i A
+3 (1 2sin B°,2 3 cos-xJ+sm BO(S 5 COS2X
1
+ g Cos 4x 1+ --:I dx
Collecting terms:
K &2 6:4 el
d?»—dL=—2—cos[30 1+T+ T Bo —sin [30 643 sin [30

2 4 4
e’ .2 e .2 e . 4
+(?sm B0+?sm BO+——)cos2x+—ézsm Bocos4x+--]dx

We may substitute:

2 4 2 4
A if:6- e_+e_+_l__5_ 6 sin2[3 +
8§78 18° 0

ie4+i5-e6 B 25 e’ m[3
64 ° T 512 0 1024 © " Po

(1.48)

(1.50)

(1.51)

(1.52)

14



2 4
,_|e 15 6] . 2 e 15 6| . 4 75
B -(?+ TrEe )S‘“ Bo- (ﬁ+_128e)sm Bo+anzg © sin Bo

4
C= (e 1> es)sm Bo+——

64 512
S 6
D' = = 5034 © sin B0+-——

so that (1.52) becomes:

2
d-dL=% cosBO[A’ + B’ cos2x + C’ cosdx + --] dx
2 (1.53)
Integrating, we note:
A L
f di=%, [ dL=L sothar
0 0
ez S0t
(7» - L) =5 cosBOf (A’ + B’ cos2x + C’ cosdx + --) dx
1 (1.54)

The integration required in (1.54) is identical to that in equation (1.33). By inspection we may
write the result:

2 ’

(A-L)= % cosB, [A’ or+ B’ sinopcos2o, + % sin2cpcosdo,, + "] (1.55)

Rainsford (1955) expressed this equation in terms of the flattening, f. Letting cosPg = sina, as
before, we re-write equation (1.55), with ¢ = oT, as:

(A - L) = fsinox (AOG + A, SinG c0s20,_ + A4 sin20 cosdo_

+ A4 sin30 cos6o, + --)

(1.56)
where:
1 2 3 2 9 4 25 3 6
Ao—l-zf(‘l+f+f)cos a+16f (1+4f)cos a-—12—8f cos o + --
A,= %f(1+f+f)cos2a-—f (1+ f)cos a+27556f cos ot + -




1 2 9 4 15 3 6
A4=3—2f (1+Zf)COS o - 'Z—S'B-f cos O + --

5 6
A6—mf3005 o+ -
Certain terms may be dropped from the above coefficients if maximum accuracy is not required.

At this point equation (1.40) for s and equation (1.56) for (A-L) are the important equations
required. We next show how these equations are specifically applied to the inverse and direct
problem.

1.21 The Iterative Inverse Problem

We assume we are given the latitude and longitude of the points for which the distance and
azimuth are to be obtained. We then have given (¢1, L1), (¢2, L2) where all longitudes are positive
east. We can now compute the reduced latitude for each of these points using equation (1.9).
Next consider Figure 1.6 showing the auxiliary sphere:

Figure 1.6.
The Auxiliarly Sphere as Used for the Inverse Problem

From the triangle P; Pole P; we can apply the spherical law of cosines to yield:

coso = sinf, sinf, + cosB, cosB, cosA (1.57)

This formula weakly determines ¢ when G is very small, so that the following equation is
recommended (Sodano, 1963) when coso is close to one or when both sinG and coso are to be
used in subsequent computations.
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2

1/2
2
sinc = [(sinl cosBz) + (sinB2 cosP, - sinf, cosPB, COSK) ] (1.58)

G can then be determined (with a proper quadrant) using arc tangent subroutines where both sinc
and coso are input. If ¢ is regarded as < 180°, quadrant determination is provided only by (1.57).
Starting with the data of the inverse problem we could not evaluate (1.57) or (1.58) since we do
not know A. However, as a first approximation we may let A = L so that an approximate value of
¢ may be found. Iteration procedures will be described shortly to assure a precise determination of
A and consequently, ©.

In seeking to apply equation (1.56) we need to find a and functions of 20y, as well as have
0. We note from Figure 1.6;

sind;  sin),

cosB, sinc
so that:
i sink cosf,
sinot; = ——=

sino (1.59)

Applying equation (1.1) to the problem of the geodesic (great circle) passing through P, Pi and
the point on the equator we have:

. . . o
sinal, cosP, = sina; cosP, = sino cosO (1.60)
Using (1.59) we may write from (1.60):

sinA cosf, cosp,

sina = sina; cosB, = -
sinc (1.61)
from which we could find sin a and thus cosine a. In order to find 26, we first write:

1

°m=‘2'(°1+ 02)=%(201 +o)

(1.62)
C0s2G, = COS (201 + 0') = €020 COSO - sin20 sinc
. 2 . .
=coso {1 - 2sin"0, | - 25inC, COsO, sinG

= COSO - 25in<51 (sinO'1 COsC + €SO, sino)

= C0sO - 2sin0, sin ("1 + o) (1.63)
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Now we can show:

sino1 = sinf1/cosa (using the law of sines in triangle P'1EF) (1.64)

and
sin (01 + ©) = sinPy/cosa (using the law of sines in triangle P'ZEG) (1.65)

Then equation (1.63) becomes:

2sinf, sinf3,
c0s20 = COSC - ——————

2
cos o (1.66)
from which we can find 26, 40, 66, etc. using half angle formulas.

With these values we may compute (A- L) from equation (1.56). Recall, however, at this
time, the value of (A- L) is not exact as we needed to assume A = L in the initial evaluation of
equation (1.57) or (1.58). However, with this new computation we can compute a new, better
value of A by using:

A=L+(r-1) (1.67)

Using this value we return to (1.57) and (1.58), compute a new o, find a new o from (1.61), and
20, from (1.62), and finally a new (A - L) from (1.56). The iteration process is considered
complete when the value of (A - L) does not differ by a certain amount from the preceding
computed value. The amount may be on the order of 0."0001 to 0."00001 for most applications.
The number of iterations to be expected is about 4 although certain special cases to be discussed
later will not converge.

At the conclusion of the iteration, we can evaluate equation (1.40) for the distances. In order
to determine the azimuths we may use equation (1.60) to write:

. sing
Sm(l1 =
cosP, (1.68)
. sinx
sma2 =
cosP, (1.69)

where o0 would be that value found from (1.61) at the last iteration for (A-L).

Somewhat more stable equations are recommended by Sodano (1963) for azimuth
determinations:

sinA cosf3,
tantpy = B

sinf; cosP; - cosA sinPy cosp; (1.70)
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sin) cosp,

tanaz =
! sinB, cosP, cosA - sinB, cosf, 1.71)

Proper quadrant determinations for the azimuths can be made by using arc tangent subroutines
where the input parameters are sin, and sin/tan. Sodano (1963) points out that for short lines the
denominators of (1.70) and (1.71) may be close to zero and therefore he suggests the following
alternate forms:

sinA cosp,
. . .2
sin (B2 -B 1) + 2sinf, cosp, sin 5 (1.72)
sinA cosB,
tano,, = "
. . . 2
sin (B2 -B 1) - 2cosP, sinp, sin 3 (1.73)

This completes the discussion of the iterative inverse problem. Maintaining the coefficients
given in the (A-L) and s expressions, the accuracies are on the order of 0."00001 in azimuths and a
millimeter in distance for any length lines. This, of course, would assume that all calculations
carried the proper number of significant digits. The actual accuracy will depend on the number of
series terms carried and the geometry of the line.

1.22 The Iterative Direct Problem

Using the equations previously derived, it is possible to formulate an iterative solution to the direct
problem. We assume we are given the following quantities.

¢1, L1
a,, s geodesic referenced quantities.

Knowing ¢1, we may compute the reduced latitude, B, of the first point using equation (1.9). In
addition we may determine the azimuth (@) at the equator of the geodesic using equation (1.61).
The next step requires the computation of G by an iteration process using the inversion of equation
(1.40). We note that we may write from (1.40):

B¢ .
el sin3o cos6($m --

B
5 2 sinc cos20_ - 4 B
0 (1.74)

°= b8, B, n By

sin2c cos4(5m -

Noting that the coefficients By, B4, Bg (which may be computed from the given information) are
small, we may write a first approximation to ¢ = gV as:
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0 g
0 = o
BB, (1.75)

In order to iterate for ¢ in equation (1.74) we must determine 26y,. Recalling from (1.22) and
immediately preceding it that 26, = 201 + 6 we need to know at this point 0, as an
approximation to ¢ has been obtained through (1.75). This may be done by using equation (1.21)
for tancy. We can also find o1 using (1.64). We thus have all the information required to iterate
equation (1.74) to convergence.

Assuming we now know G we can apply equation (1.22) to find §2. We may note here that
sina = cosPg, so (1.22) may be written:

sinB, = sin (ol + o) cosQ

Knowing B2 we can then find ¢2. With B2 found we can find A by applying equation (1.59) to
yield:

. sinG sinal,
sinh = ————

cos, (1.76)
We can also use equation (1.57) to determine cosA, which then, in conjunction with (1.76), allows
the proper quadrant determination for .. We then evaluate (A-L) using equation (1.56) and find L
by computing:

L=A-(A-L) (1.77)

Finally the back azimuth may be computed by applying equation (1.73).
We thus see that this form of the direct problem required iteration. This iteration is required in only

one equation. Vincenty (1975) has given step by step procedures and compact equations to invoke
the procedures described in sections 1.21 and 1.22. These are as follows:

Direct Problem - Given ¢, L), . s - Vincenty Formulation

tanf = (1 - f) tan¢
tano] = tanf/cosa
sina = cosf3; sinoty

u2=¢2cos2a

2

l
N u 2| 2 ] 2
A=1 +—~———16384 {4096 +u [ 768 +u (320 175u )]} (178)
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2

_u 2 2 2]
B—m{256+u [ 128 + u?(74 - 47 )}

26,,=20,+0C

AC = Bsino {c0526m+ %B [cosc (l.l + 2cos2 20'“J

- %BcosZGm(- 3+ 4Sin2(5) (- 3+ 4cos226m)}

S
o—-bK+Ac

(1.79)

(1.80)

Equation (1.78), (1.79) and (1.80) are iterated until there is a negligible change in ¢ . The first
approximation for ©, needed in (1.79) is taken as the first term in (1.80). The following equations

are then evaluated:

sinf3, coso + cosP, sinG cosa,

tang, =

5 1/2
(1- ﬂ[sinza + (sinB1 $inG - cosf | cosc cosal) ]

sino sinOL1
tanA =

cosP, coso - sinf, sinc cosa,

f 2 2 ]
C=—1€cos a[4+f(4—3cos oc)_

L=2A-(1-C)fsinat {o + Csino |cos20, + Ccoso |- 1 +2 cos220m)]}

sino

tanoL, =
- sinf; sinG + cosf; coso cosa,

Inverse Problem - Given ¢;, L;, ¢, L, - Vincenty formulation.

A =L (first approximation)

(1.81)

(1.82)

(1.83)

(1.84)

(1.85)

(1.86)



9 2
sinZo = (00532 sin?L) + (cosB1 sinP, - sinf, cosP, cos?») (1.87)
coso = sinP; sinf, + cosB, cosB, cosA (1.88)
B sinc
COSC (1.89)
. cosf, cosP, sinA
sinol = :
sinc (1.90)
2sinf3, sin
COS20 = COSO - —M
cos o (1.91)

A is obtained by equation (1.82) or (1.84). This procedure is iterated starting with equation (1.87)
until the change in A is less than some specified value. Then:

s=bA(c- Ao) (1.92)
where AG is obtained from (1.76), (1.77) and (1.79). Finally:
cosf3, sink
tano,, =
cosp, sinf, - sinfi, cosP, cosi (1.93)
cosf, sinA
tanc, =
-sinB, cosP, + cosf, sinf3, cosh (1.94)

1.23 Improved Iteration Procedures for the Inverse Problem

Bowring (1983) has discussed several ways in which the iterative inverse problem can be
improved by the implementaion of various iteration procedures. Bowring first expresses our
equation (1.56) in the following form:

A-L=E=(1-D) fv<<f+ Dsi“G[C + Deosalat - 1)]} (1.95)

where
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x = sinf}, sinB,
y = cosp, cosB,
x=cosf, sinp,
y = sinP, cosp,
Y= ys.in?» = sindt (see 1.90)
sino (1.96)

2x
{ =coso - —
r
£ =Tcoso - x

D=1—16-fr(4+4f-3ﬂ‘)

With this notation the simple interation procedure previously discussed could be written as:

Ape=L+E(L) (1.97)

where Ag=L.

The Newton-Raphson method can be first implemented by writing the ideal function:

F(A)=2-L-E(})=0 (1.98)

We differentiate (1.98) with respect to A:

F(\)=1-E() (1.99)
Then the Newton-Raphson procedure yields the following iterative procedure:
A +17= Ay- F_()f_n)_
B (1.100)

This can be written as:

_ _[xn-L-E(x ]
)"n+1 A'l’l [1 ) E' (xn)]

(1.101)

where
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E’ (X) =f ('y2 + _Ci)
sing (1.102)

Bowring also discusses an extended Newton-Raphson procedure and Lagrange's method.
The extended Newton-Raphson procedure uses first and second derivatives of F(A). It should be
more accurate than the simple Newton-Raphson procedure. The Lagrangian method creates a
series expansion for A of the following form:

A=L+E(L)+E{LFE L)+ %Ez(L) E"(L) + E(L)(E'(L))2 (1.103)

Note that the right hand side of this equation is a function of L alone and this in reality is a non-
iterative procedure.

These improved procedures have been tested for a series of lines described in section 1.7.
Results show that the number of iterations required in the Newton-Raphson procedure is about half
that of simple iteration. This is done with a reduction of computer time needs by about 20%. The
extended Newton-Raphson procedure shows a small improvement over the Newton-Raphson
procedure.

The Lagrange method gave no iterations but yielded results that were not as accurate as the
other methods. It seems clear that the software for the iterative inverse problem should include
either the simple or the extended Newton-Raphson procedure.

The methods described in this section have not been applied to the iterative direct problem.
This may not be necessary because of the existence of accurate, non-iterative inverse problem
procedures to be discussed later.

1.24 The Non-Iterative Direct Problem

There are several solutions to the direct problem that are quite accurate and require no iteration.
Papers of interest include those of McCaw (1930), referenced in Rainsford (1955), a report by
Sodano and Robinson (1963) that expands a report of Sodano (1963), and a thesis by Singh
(1980) that discusses a non-iterative procedure based on some McCaw procedures. For the
purposes of this text we examine first the principles involved with the McCaw solution with more
detailed discussion being found in Ganshin (1969, p.86) or Singh (1980).

McCaw's solution also uses an auxiliary sphere for computational purposes. But this sphere
is used such that a point on the ellipsoid with latitude ¢, has a corresponding point on the sphere
with the same geodetic latitude. With this correspondence the longitude difference on the sphere
must be different than on the ellipsoid, and the azimuths on the sphere will differ from the
corresponding azimuths on the ellipsoid. To show the relationship between the azimuths we first
write equation (1.1):

cosP, sina; = cosP, sina, = cosB, sina

(1.1)
On the McCaw sphere, the corresponding equation will be:
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. * . * I3 *
cos0, sina; = cosd, sinc, = cosp, = sinal (1.104)

where the a* are called the reduced azimuths of the geodesic line. Note that an o* corresponds to
an (o) used in the Rainsford (1955) paper. Now we know that:

(1 - ez)mcosB

)1/2

cosf =
2 2
(1-¢*cos”p (1.105)

At 69, (1.105) becomes:

1/2 12
(1 - e2) cosf, (1 - ez)
costy = =

22 172 2.2
Cl-e cos BO) (l—e sin a)

cosP,
1/2

(1.106)

Then from (1.1), (1.104), and (1.105) we have:

)1/2

. 2 .2
sina. cosPy |{1-e"sin“a

.+ cosd 2\1/2
sinot 0 (1 -e ) (1.107)

Now we solve (1.107) for sina* and substitute it into (1.104) to find:

1/2
. 2
. sma(l-e)
cosd, sina, =
1 1 Lo g 2
(l—e sin oc)

Substituting on the left side of (1.108) for cos¢; from (1.105), dividing the left side by sincl;
cosP and the right side by sina we find:

(1.108)

sinoy _ (1 - €2 sin2a)t/?

.k 1/2
smOL] (1 - e2 COSZBl) (1.109)

Squaring (1.109), substituting for sin2c and sin2a;; by 1 - cos? o and substituting for €2 in terms
of ¢’2 we find:
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cosaL, = k cosa’; (1.110)

where

) 1/2
2
(1 +¢" cos a)

k 1/2
2/
1+¢

Equation (1.110) is valid for a point on the geodesic under consideration. Now, since sina=cosfg
we can write k in the form:

K*=1-¢”cos [30EL2
Vo
so that
COS(x1=VOCOS(Il (1.111)

We can also show that:

.« Vo
sin0; = <7 sina, (1.112)

The method of solution of the problem from this point may be found in McCaw (1930) or in
Ganshin. Singh discusses the general philosophy of the mapping from the ellipsoid to a sphere
and the development of equations similar to the above for different mappings. The general
mapping is represented by:

tanm = Jtan¢ (1.113)

where 1 is the auxiliary latitude on the sphere and a. is the corresponding auxiliary azimuth. Singh
develops the differential relationships between s (the distance on the geodesic) and o, and L and A.
We have:

5 172
gi=a(1_ez) (1+Glsin T]) 1
do J

372

(1 +G, sinza)m (ll +G, sinzn) (1.114)

where
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sinm = sinG coso (1.115)

The longitude relationship is:

1/2
[1 +(J2(1 + e’z) ; 1)cos2n]

2
cos M (1.116)

dL - d = (1 + (12-1) coszn)-m] sin;do

The mapping J = 1 corresponds to the McCaw case; J = (1 - €2)1/2 corresponds to the classical
(Bessel, Helmert) case; and J = (1 - €2) corresponds to the case of the auxiliary latitude being the
geocentric latitude.

The equations of the original McCaw solution were re-cast by Rainsford (1955) and put into
the following computational form given ¢1, L1, 012, and s:

12
tanp=(1-¢  tan (1.9)
sina = sina; cosf, (1.60)
22 2
u =¢ cosa (1.117)
2 (l+u2)
k™= 5
(14¢”) (1.118)
ktan
tanG1= ¢l
cosa, (1.119)
2
K = 1+u
b (1.120)
v=KCqs (1.121)

'Y]=Gl- C2 Sin2G1+C4 Sin4G1' C6 Sin6G1 (l 122)
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Yo=Y+

2Ym= ’Yl + 'YZ

G =y + D, siny cos2y,, + D4 sin2y cos4y,,, + D¢ sin3y cos6Y,,

G2=G1+G,2Gn =G+ Gy

_g 2+£u4_133 5+ 7491 8
2" *eaY 256" T16383 ¢

Co=1

o323 4,111 6 141 s
2=g" "1¢ 1024 Y 2048

15 4 15 6 405 8

Ca=5355U -356 " *3797 "
c._35 6 105 s
6~ 256 6144
315 8
Cs=131072 ¢
D.o3,2.3,4,213 6 255 s
2574 "3 1024 Y ~2048

21 4 21 6 1599 8

Di=13gv "128 % * 12283 "

151 6 453 8

Ds=3573 2 - 6144 ©

1097 8

Dy = 5536 ¢

) sinG, cosa

cosa, = k cotG, tand,

(cosG - sin, sin¢2)

sinG A/ ik2-cos2(x J
COSA = ; sinA =

cosd, cosd, kcoso,

(1.123)

(1.124)

(1.125)
(1.126)

(1.127)

(1.128)

(1.129)

(1.130)

(1.131)
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(A-L)= fsinat (EG - E25inG c0s2G,y + 4 5in2G cos4Gyy

- E6 din3G COS6Gm) (1132)

Ey= 1-—f(1+f+f )cos o+1e f (1+—f)cos o - 12258 f3cos6a
(1.133)

E, =% f (3+5f+7f2) cosza £ (1% f) cos4a + ;gg f cossa

Ey4= 37 f2 01 f)cos o- 05 22 £ cos’a

256
E¢= 768 t3 cos’a

We thus have found ¢ from equation (1.129), the azimuth at the second point from equation
(1.130), and the longitude of the second point by using:

L,=L;+A-(A-L) (1.134)

The accuracy of these equations is fully compatible with the set used in the iterative inverse
problem.

Another version of the non-iterative direct problem has been described by Singh (ibid) based
on some procedures developed by McCaw applied to the original iterative solution discussed in
section 1.21. To consider the new procedure we start with equation (1.33) written in the following
indefinite form:

—S——f(A+B0032x+Ccos4x+ )dx

b (1.135)
Integrating this we have:
S = lax+ 3 sin2x o+ 5 sindx + ..
(1.136)

Divide each side by A to write:
s . .
—Co=x+ C, sin2x + C, sind4x, where
b0 2 4 (1.137)
C -1 Co=5:;C -C etc
0~ A 2= 2A° 4= 4A .
Note that the C values appearing in (1.137) are not the C values defined in (1.127). Similar notice

should be taken for the D values to be defincd in (1.142) which are not the same as the D values in
(1.128).
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Now evaluate (1.137) between 6 = 0 and 6 = 0] where s = s3. Then we define y; which becomes

SICO . .
Y= ——=06,+C;sin206, + C4sindo, + ...

1575 (1.138)

Now evaluate (1.137) for the distance O to s + s = s where s is the length of the line between the
two points of interest. We have:

Co (s+s1)

b =7Y+7v; =63+ Cz sin20, + C4 sindo; + ...

(1.139)

where o7 is the arc corresponding to s + s;. Here ¥ = Cp s/b and would be a known quantity in the
direct problem. Now perform a series inversion (Rapp, 1984) of (1.138) and (1.139) to find:

o=V + 62 sin2y, + —64 sindy, + 66 sinby; + ... (1.140)

0= (¥+7,)+ Casin2fy +v,) + Ty sindfy + "+ (1.141)

The arc between the two points is 6 = 62 - 61 which can be found by differencing (1.140) and
(1.141) and using (1.35). We have:

6 =Y+ D, siny cos2y, + D, sin2y cosdy_ + D¢ sin3y cos6y,, + ...

(1.142)
where:
2y =7+2y, (1.143)
1t 21 4 71 6 85 8
Da=zv-3u *1052" 208" ¥
5 4 5 6 383 3
Da=12gv ~128% Y1288 "t
D. = 29 b - 29 ot
67 3072 " 2048 T (1.144)
539 8
DS—————“1966OSU + ...

2
2 . 2
u =¢' sin"B,

In the actual computations for the direct problem using the Singh procedure the value of 67 is
found using equation (1.21). Knowing u? the C and D coefficients can be computed. Then find
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v(=Cps/b) and y; from (1.138). Using (1.143) we can then find ¢ from (1.142) after which the
usual equations developed for the iterative direct solution can be used.

Numerical tests conducted by Singh indicated the procedures give accuracies equivalent to the
iterative procedure. Due to the way in which the inverse problem is developed the procedure of
Singh does not appear to be applicable. However other techniques are available as discussed in the
next section.

1.3 The Non-Iterative Inverse Problem

The computation of an iterative solution to a high accuracy can be time consuming.
Requirements for a non-iterative approach led Sodano (1958) to the development of such a system.
In the following paragraphs we outline the method of derivation and present working formulas.

If we consider (1.56) we see that it can be written in the form:
A=L+x (1.145)

where x is a small quantity equal to the right-hand side of (1.56). We may use (1.145) wherever
the value of A is required. For example, we need cosA in equation (1.57). We may write:

cosA = cos (L + x) = cosL cosx - sinL sinx

2 3
cosA = cosL (1 - _xi_ + --) - {sinL) (x - ')351" + ---)

and finally:

cosA = cosL - (sinL} x - X2 4o

1
'2" cosL

(1.146)

The process of developing the non-iterative procedure consists of substituting series such as
(1.146) and all subsequent series into the usual iterative procedures. For example, equation (1.57)
could be written:

cosG = sinf3; sinf3» + cosPy cosP, [cosL - sinlLx - 1 cosLx? --
B sinf, B [32( 3 ) (1.147)

= sinf3, sinf, + cosP, cosf, cosL.
- cosP cosP; sinL x
1 2
-5 cosf, cosP, cosL x

If we let

31



: 1 2
c05G = C05Gy - cosB; cosP, sinl. x - 5-cosP; cosP, cosL x ™+ - (1.148)

which may be written:
2
COsO = CosO+ ky X + Ko X" + ---

where k1, k2 are appropriate constants that may be read from equation (1.148). We could continue
writing:

2
o=0p+kyx+ksx"+-- (1.149)

sink = sinL + kex + kgx” = - (1.150)
Continuing through the equations we find equation (1.56) may be written in the form:
2
(ML) =k + kgx o+ kg - (1.151)

where k7, kg, and kg are complicated expressions. Now we note that from (1.145) A -L =x or
using (1.151):

2
(A-L)=x =k, + kgx + kgx (1.152)
Equation (1.152) may then be solved for x to yield:

2
X=k7(1+k8+k8+k7k9) (1.153)

Since we know expressions for k7, and kg, and kg it is possible to develop an algebraic
expression for x or (A-L) without recourse to iteration. Before we give this expression we may
note that it is also possible to modify the distance expression, equation (1.40), by using the series
expressions for G, or sinc and its multiples, that are a function of the parameter x. This expression
will be a function of the ellipsoidal longitude difference as opposed to equation (1.40), which is
basically a function of the longitude difference on the auxiliary sphere. In this case we could write:

2
S=b(k10+k11"+k12x +") (1.154)

It is also possible to develop expressions for the azimuths that will be a function of the ellipsoidal
longitude difference and the parameter x. Although these expressions have been developed by
Sodano, they are not specifically required as previously derived expressions may be used since we
will have the value of l))» using the x value found from equation (1.153).

Once the value of (A-L) has been established through equation (1.153) we may go back and
find ¢ from equation (1.57) or (1.58), proceed to find the azimuths as in (1.59) and (1.60), and
finally the distance from equation (1.40). In the latter case, however, an alternative is to use
equation (1.154) for s. This is accomplished by algebraically substituting the expression for x
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found from equation (1.153) into equation (1.154). Although algebraically complex, the result is a
fairly patterned equation.

Sodano (1965) published the following recommended working equations for his non-iterative
solution. These equations, given to the order of f3, are as follows for the inverse solution:

a=sinf, sinB,
b=cospP, cosB, (1.155)

cos® =a+ b cosL

172
2 2
sin® = (sinL cosBz) + (sinB2 cosf, - sinB, cosf, cosL)
(1.156)

These equations should be compared with (1.57) and (1.58) where the only difference is seen to be
the replacement of A by L to obtain (1.156).

Next define:

c= bsinL
sin®.

m=1-c2 (1.157)
Then the following equations for s as taken from Sodano and Robinson (1963) are
S 2, .3
B—6=(1 +f+f +f )d)
+a [(f+f2+f3) sin® + (- % 2. f3) 2 cscd + % Bd° csed cotd

+m[(-lf-—21—f2-%f3)(b+(--é—f

2 1 3\
1 f 2f)s1n<Dcos(D+

-1
2
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1.2 13,3133
(2f +f)<I> cotCI)-gf i} -if d cot <D]

3
+a2|:-—;—f2-f3)sind>cosd>+%ts<l> csczd)+%f3<1>:|
(1 2 1

3 1 1.3} .
+m (ﬁf +§f)d>+(ﬁf2+§f)smd)cos(b

f2-—t3)d> cotd>+(-lf2-lf3) sin® cossd)

EEN |

B =

8 4

3 3
+-}4-f3<1> cos D + %f3d) + %f3<b cot2d)]

. 2
sin® cos @

12 73 12 3
[(2f +4f)<I> csc<I>+(2f +f

33 3 3
-z-f D cos® - 2f” @ csc® cotd

[ 3
+a’ml|- % £ - % £2 sin® cos® - %f3 @ csc’D+f sino® coscb]

N
1

2
+ am -%tjcb cscCD+%f3sind)cosz®+%—f3(bcostb

L

2
+ % f3 D cscdcotd - %— f3 sin® + % f3 sinsd)]

3] 1 3
+m [ 32f <I>+4f (I) cot®d - 3—2f sm<Dcos<D]

3 3
+11—613sin®cos3d>-4lf3<bcosz¢-%t3d> —-f3<I> cot2<D

+ L 13 sin 3<I> cos3<I>
12
3(1 .3

2
2f smcb-gf sin <I>

(1.158)

34



In addition:

Q‘CL [le+6%45 ) o]+ a[

2
* f2-f3) sin® + (- £2- 46 @ cscd

(1.159)
3
+%f3d> csc¢c0t®]+m[-%f2 3f3 (I>+(i 2 ltj)smcbcosd)
2 3

+(a) 0 corw -1 £ @ -%f3(1> cot <I>]

2131 3 7 .3 . 13,3 13.3
+m 16f @—Tgf smd>cosd)+§-f D ——8—f sin @cos@}
950 co@+ L Dok + 2 £ 0 cot’d

2 2 2

9 3 3 7 £

+ am ff <D csc(D-if (Dcosd)—if CD csc(DcotCD-Tsm(I)cos d>+f sin®

[ 8]

2

] 3
+a f3(I>+1—f3 sin® cos® + f3<1) csczd)]

Finding the value of A from (1.159) we may use equation (1.70) and (1.71) to find the required
azimuths.

In the development of the Sodano non-iterative equations a problem arose in numerically
checking the iterative inverse problems with lines whose ¢ value was nearly 180°. Such lines are
called anti-podal lines, or near anti-podal lines. The discrepancies that arose were caused by the
increase of some terms in equations similar to (1.158) and (1.159). This may be seen from these
equations in the terms involving csc® and cot®. As @ approaches 180° these terms become quite
large, and in the limit go to infinity. Examination of equations (1.151) and (1.154) would show
that the rapid increase in certain terms does not occur in the constant coefficients (e.g. k7 or k),
but in the coefficients of x. Thus it was reasoned that if x could be made sufficiently small the
increase previously noted would be balanced out. These problems do not occur when @
approaches zero because the terms @ and sin® will approach zero.

To this end, equation (1.145) may be reformulated to read:

=L, +2 (1.160)




where Ly, is a value closer to A than L, and z is a value smaller than x. We could take the value of
L, to be that value of A calculated using equation (1.145). Thus, we could write:

A=(L+x)+z (1.161)

Using equation (1.161) the complete procedure deriving the non-iterative procedure may be
repeated, this time with the equations being a function of L, instead of L. Thus considering
equation (1.56):

(X-L)=fsina (A00+---)=Ln+ z-L X (1.162)
so that
(L - Lp) + fsino (Ago + -—-) =z (1.163)

Expressing the series terms in the manner of developing equation (1.151), we will have (A-L) as a
function of L, and z. In fact the series expressions will be the same as previously except that the
coefficients will be a function of L instead of L, and of z instead of x. We have:

fsinat (Ao + ) =F Ly, 2) (1.164)

A solution directly for z may be obtained in a manner similar to that expressed in (1.153).
Carrying these computations out, Sodano found the following:

16 {L-L,) +|16e” Ne® - e’hed - e ’hesin®cos® + 2e e “cPsin“®|
7=
16(1 —echz—ezNP(D)n (1.165)
where
N=—©
(e’ + e)
h= e’ m
2
P=(1-c )cotCD-acscCD (1.166)

where the subscript n signifies that all evaluations must be made with the value of L, instead of L.

The procedure in applying the non-iterative inverse problem of Sodano for near anti-podal
lines is to first find the value of x using the right side of (1.157). This will give a value of L,=A
which is then used in (1.165) to find z and consequently the better value of A through equation
(1.161).

The value of z primarily depends on the length of the line. For lines under 170° in arc length z
can be on the order of 0."001. However for lines whose length is a degree or so less than 180°, z
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can reach 4 or 5" depending on aximuth, starting latitude, etc. The Sodano procedure fails for
lines in the antipodal region that is described later on.

Sodano has also applied his reduction process to the direct problem. Equations for this
computation given to O(fg) are described in Sodano (1965). Extension of the equations to terms of
£3 may be found in Sodano (1963). The application of these equations could be compared with
those of McCaw and Singh. The critical development of the Sodano was in the area of the non-
iterative inverse problem.

1.4 A Numerical Integration Approach to the Solution of the Direct and Inverse Problem.

In previous sections we were concerned with solutions obtained by the integration, through
series expansions of equations (1.28) and (1.53). An alternate procedure has been described by
Saito (1970) where the needed integrations are carried out numerically. To develop this procedure
we re-write equation (1.46) in the following form:

1/2
(1 ezcoszﬁ) -1

cos 2[3

do

dL - dA = cosP,
(1.167)

We next multiply the numerator and denominator on the right hand side of (1.167) by
(1- €2 cos2B)1”2 + 1 to obtain:

2
e” cosB,do
)1/2

dA-dL =

(1 —62c052[3 +1 (1.168)

We now let x=0} + 0 so that dx=do. Using (1.26), (1.168) becomes:

2
e cosP,dx
di - dL = b 172
1+2(14k%6in%)  +1
a (1.169)
where k2 is defined in equation (1.26). Integrating (1.169) we have:
o0
l-L=ezcosB0ﬁ dx
o b 1/2
! 1 +—(1+k sin x)
a (1.170)

In order to normalize the interval of integration we define a quantity z so that:
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x =0, + Gpz with dx = 6dz (1.171)

with 0<z<1. Then we can write equations (1.28) and (1.170):

1
s=bor [| YV 1+k%sin?(o, + 0-2) dz
le (01+ 0] (1.172)

K—L:ezcos[ioo-[fl 5 dz
0 1424 14k sin2(0'1+ oTz)
a (1.173)

The integrals in (1.172) and (1.173) are in a form that can be numerically integrated using any
appropriate numerical integration method of sufficient accuracy.

Saito (1979) has also discussed a specific numerical integration procedure to use for
evaluation of equations such as (1.170), (1.172) or (1.173) considering Gaussian quadrature
formulas. To do this we introduce a new quantity z” so that:

xX=0 +GZ
m-2 (1.174)

where Op, is given in (1.37). Equations (1.28) and (1.170) can then be written as:

1 ()
s=%oTII V1+kzsin2(cm+fz') dz’
ezcosB c 1 dz’
A-L= 0 Tf
1

2 A >
1+ —,\/ 14k sin2(6 +——Tz')
a m 2
(1.176)

Now the Gaussian quadrature procedure applied to f(x) can be written:

(1.175)

f tax= wi £ xy
-1 k=1

(1.177)

where wy are the weights and the x are the corresponding nodes. The accuracy of the evaluation
will depend on n. With this formulation equation (1.175) and (1.176) can be written as:
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b
==01G

$=201 (1.178)

with
X 2 .2 c
G =2Wi 1+k” sin Oty Zi
i=1
F 2
X-L-Ee orcosf, (1.179)
F=Y o
i=1 b 2.2 c
1+ —f\/1+k sin (csm+— ZJ
a 2 (1.180)

For the case of n=8 we have the following weights and nodes (Saito, 1979):

i zi wi

1 96028 98564 97536 23168 10122 85362 90376 25915

2 79666 64774 13626 73959 22238 10344 53374 47054

3 52553 24099 16328 98582 31370 66458 77887 28734

4 18343 46424 95649 80494 36268 37833 78361 98297

5 -4 W4

6 -3 w3

7 -23 w2

8 -Z] w1

We conclude this section by giving a step by step procedure for the solution of the direct and

inverse

For the

problem using this integration procedure.

inverse problem: Given: ¢, ¢2,L1,L2

Steps

LWOoO~ION N BN —

—t
—_O

L=1s-14
Compute By, B2 from (1.9)
Assume A =L
Compute ot using (1.57) or (1.58)
Compute (cosBp = sina) from (1.61)
Compute k2 from (1.26)
Compute o7 using (1.23) with c=oTand B=
Evaluate (1.173) or (1.179) to find (A - L)
Using the result in 8, update A to A=(A-L)+L. Repeat solution from step 4 until
convergence.
. After convergence evaluate (1.172) or (1.178).
. Compute azimuths using (1.70) and (1.71).
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For the direct problem: Given ¢1, s, 012, L1

4

Compute B; from (1.9).

Compute BQ from cosPq = sina; cosPi.

Compute k< from (1.26).

Compute 61 from (1.21).

Compute the first approximation to o as s/b.

Evaluate (1.172) or (1.178) for ot using the value of o from step 5 as the values needed
in the integral.

Repeat 6 until convergence.

Compute B2 (and then ¢) from (1.23).

9. Compute A from (1.59).

10. Evaluate (1.173) or (1.179) to find (A-L). ThenLy =L - (A-L).
11. Compute azimuths using (1.70) and (1.71).

00 AN W —

Tests described by Saito (ibid) show that this procedure gives results equivalent to the usual series
solution of the problem.

A completely different numerical integration approach was given by Kivioja (1971). He uses
as a starting premise the following equations taken from (1.3) and Clairaut's equation:

ds cosa; = M, do (1.181)
N, cosd, sina, = constant = ¢ : (1.183)

For the direct problem a suitable ds increment is chosen, the initial azimuth is used as the
starting azimuth and increments of ¢ and L computed using (1.181) and (1.182) with (1.183)
being used to compute a new azimuth. Analogous procedures are used for the inverse problem.
Jank and Kivioja (1980) have discussed additional application of this procedure but the significant
amount of computer time needed for the technique and other concerns may limit the application of
this method. Meade (1981) discusses some of these limitations.

1.5 Geodesic Behavior for Near Anti-Podal Lines

Two points on the ellipsoid are defined to be anti-podal when L=180° and ¢3 = - ¢1. Near
anti-podal points will have these conditions approximately met in a sense to be clarified later.
When the inverse solutions previously discussed are applied to anti-podal lines they fail to
converge. It is thus important to understand the general behavior of these anti-podal lines. The
general case of two points located at an arbitrary ¢ is discussed by Fichot and Gerson (1937). A
special case of the general problem occurs when the two points lie on the equator. This situation is
discussed in the next section which is followed by a discussion of the general case.



1.51 Anti-Podal Behavior for Two Points on the Equator

Consider two points located on the equator not too far apart. The geodesic will be the equator
itself with the forward azimuth at the first point 90° and the distance between the two points on the
equator is simply the arc of the equatorial circle given by:

S=alL (1.184)

Now consider the two points exactly 180° apart. The aximuth from the first point will be 0°, and
the geodesic distance will be twice the quadrant arc. Note that the geodesic is not along the equator
as it is not the shortest distance between the two points.

There, thus, must be a region in which the azimuth changes from 90° to 0° and a formulation
of the distance problem to regard the above two situations. Helmert (1896) discussed some of
these problems as well as Lambert (1942), and Lewis (1963). Thien (1967) has shown the
formulation of this problem to a high degree of accuracy.

We first consider the form that the Rainsford formulations take when the two points are on the
equator. Since ¢ = ¢p =0, we have B; = Bp =0 and equation (1.57) reduces to:

COSG = COSA or o=A (1.185)

From equation (1.59):

sinA

sinot; = ——
sinG (1.186)

which gives sinay =1 or a1 = 90°, provided A (or ©) is not 0° or 180° at which time o] is
indeterminate. In order to determine 26y, needed both in equation (1.39) and (1.56), we recall
from (1.37) and preceeding, that:

26,,=20,+0q (1.187)

However, 61=0 and we have let 0T=0, so we conclude 20mh=0. Since cosa=0, sina=1 we may
write (1.56) as:

(A-L)=fo=f (1.188)
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L

A=
1-f (1.189)

L=A(1-1) (1.190)

If we let L=180° in (1.189) we obtain a value of A greater than 180°. This cannot be correct as
there would then be a geodesic of length smaller than 180° on the sphere. This would imply an
inconsistency in the method. This inconsistency is resolved by noting that the maximum value of
A is 180°. When A reaches this value L may be computed from:

L=180°(1-1) (1.191)

Although we know L can be greater than 180° (1-f), we cannot formulate the behavior of the
geodesic after L = 180° (1-f) as we meet with the inconsistencies in the value of A previously
mentioned. The longitude given by (1.191) is the maximum longitude that can be reached with the
assumption that a;=90° or that equation (1.186) is determinate. At the point given by (1.191) this
assumption is no longer valid and other steps must be taken for the solution.

To do this we go back to equation (1.56) and consider it for the case A=180°. Now we cannot
consider a=90°. However, we still have 26, = 6 =180° so that we now write (1.56) as:

(180° - L) = fsino A, 180°
or

L= 180°(1 - fsinct Ao) (1.192)

When a=90° equation (1.192) reduces to (1.191). Thus, equation (1.192) shows how L will be a
function of the azimuth of the geodesic, after the longitude indicated by (1.191) is reached.

At this point we may summarize the behavior of the geodesic for our special case. For
longitudes on the ellipsoid less than a certain amount, the azimuth from the first point is 90°
(assuming the second point is east of the first) and the relationship between L and A is given by
equation (1.190). In this region the path is equatorial. At the longitude given by (1.191) (i.e.
A=180°) the critical point of "lift off" is reached. That is, beyond this point the path is no longer
equatorial, but rises from the equator with the azimuth of the geodesic such that equation (1.192) is
maintained.

We may also be interested in the difference in length between the geodesic and the equatorial
arc for the special case. Up to the lift off point, the geodesic coincides with the equatorial arc and
thus there is no distance difference. We now consider what happens beyond the lift off point.
Using the fact that for this special case beyond lift off A = o = 180°, we write equation (1.40) as:

s:an0=1ta(1 'ﬂBO (1.193)

where By is given in equation (1.41). By substituting equation (1.192) into (1.184) we may write:
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S =ma(l - fsinaAg) (1.194)

Subtracting (1.193) from (1.194) we have:

S-s =7ca(l - fsinoA ;- By (1 ‘ﬂ)

(1.195)
Neglecting higher order terms we can write:
f 2
Apg=1- zcos @
By=1 +—1—e 2 cos’o =1 +£cos o
4 2 (1.196)
Substituting (1.196) into (1.195) we find approximately:
2
S-s=xnaf(1- sina)
2 (1.197)

When a=90°, S-s=0, and when a=0° we have the maximum difference, maf/2, approximately.

It is of interest to apply some of the equations previously derived in this section. For this
purpose we take the parameters a = 6378388 m, f = 1/297. From equation (1.191) the lift off
longitude is 179° 23’ 38.18182. Beyond this point the geodesic rises off the equator. If we desire
to compute the azimuth of the geodesic beyond this critical point by specifying L, we use equation
(1.192). This equation can be solved by iteration as follows: Noting that Agis approximatelly
one, we may write from (1.192):

. 0 180°-L
Sino =

180° f (1.198)

where a(0) is the initial approximation to the desired azimuth. After this is obtained, the more
precise value may be obtained by iteration of (1.192), written in the form:
180° -

sinot = ——
180° fA

(1.199)

Alternately we may specify the value of o and compute from (1.192) the value of L at which the
geodesic will intersect the equator.

An alternate solution to (1.192) has been carried out by Vincenty (1975) and Bowring (1983)
who gives the following direct solution for sina.:

. 3 5 7
sina =b;Q+b3Q” +bsQ" +b;Q (1.200)
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sino =b;Q+ b3Q3 + b5Q5 + by Q7

where

o- =)
nf
b1=1+£+%2+138 £
2
-
bs=ragt
by=-pagt

With the ellipsoid parameters above some compatible values of & and L are the following:

04

o 179°23 3818182
70 179°25 49796405
5P 179°32 09.21295
3P 179°41" 4978063
10° 179°53  41'44083

A sketch of this variation is shown in Figure 1.6:

(1.200)

(1.201)
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I Lifr-ofr
179°28'38"

Figure 1.6
Azimuth vs Longitude Difference For Two Points on the Equator.

We note from this figure that the fastest change of o with L takes place at the lift off point.
This could be verified by differentiating (1.198) or (1.199).

For the same case the values of S-s have been computed from (1.195) with the values plotted
in Figure 1.7.
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Figure 1.7
Difference in Length Between a Geodesic and an Equatorial Arc for Two Points on the Equator.
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One final property of the geodesic which is of some theoretical interest lies in the fact that as a
geodesic is extended around the ellipsoid it, in general, will not close back on itself. To
demonstrate this, consider the Figure 1.8 (taken from Lewis (1963)) which is a view from above
the pole (designated N) of the ellipsoid where a geodesic crosses the equator at point P1 and
continues until it intersects the equator again at P, which does not coincide with the point A which
is 180° apart from P;. The geodesic then continues around the back of the ellipsoid until it reaches
the equator again at point B which does not coincide with the starting point P;. The shift between
P; and B may be computed using the equations previously discussed.

[

Figure 1.8
A Geodesic Extended as a Continuous Curve.

To compute P1B we first use (1.192) to express the longitude difference between A and P;. We
have

AP,=L,- L, = 180° - 180° (1 - fsinoA )
— © fo1
AP, = 180° fsinaA (1.202)
Now, the angular distance BP3, by the same procedures will be

BP, = 180° fsin (180° - o) A, (1.203)

where 180°- o is the azimuth of the geodesic at P2. Adding (1.202) and (1.203) yields the distance
BP; by which the geodesic does not close back upon itself. Thus:



In terms of distance:

BP, = 2ra fsinoA (1.205)

We should finally note that unless the distance BP;/2m is a rational number the geodesic will never
close on itself but will continue to creep around the ellipsoid. It should be clear that the curve we
are discussing here is not the shortest distance geodesic. Instead it is a curve that has all the
properties of a geodesic except for the shortest distance property.

1.52 Geodesic Behavior for Near Anti-Podal Points - General Case

The discussion in the previous section has addressed a special case of a geodesic when the
two points involved are on the equator. A similar problem must occur when two points on the
ellipsoid are approximately opposite each other. By exactly opposite we mean ¢1 = - ¢2 and L is
equal to 180°.

If two points are nearly opposite (antipodal) the standard iterative inverse procedqure described
in sections 1.21 and 1.23 will fail to converge. Such a case can be detected when |A| is greater
than 1 as computed from equation (1.67) with (1.56) or from (1.101) at the first iteration. This is
because the maximum allowable value of A is . If we consider P; fixed and P; exactly antipodal,
then there will be a region on the ellipsoid about P in which the iterative solution will fail to
converge for the line between Pj and an arbitrary point in the region. This region will depend on
the equations (e.g., 1.67 or 1.101) being used to calculate A.

Since the standard procedure fails to work an alternate procedure must be used (Vincenty,

1975). To do this we first assume as first appromxation that A is 180°. At this point equation
(1.57) can be written as:

COSG = - (COSBl cosP, - sinB, sinf, (1.206)

This formula is consistent with:

c=180°-|B, +B,) (1.207)

Note that in the near antipodal case ¢ is approximately 180°. At this point we need to find the
azimuth and length of the line between the two near antipodal points. This procedure will be an
iterative procedure.

We first rewrite equation (1.56):

A-L

sing =

f (A G + A, sinc cos20__ + ———)
’ : " (1.208)
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where the coefficients are function of f and cos2a; cos20y, can be computed from (1.62).
Knowing L, and taking A = (sign L), an approximate value of o can be found from (1.208). We
next solve (1.61) to find an updated value of A:

sing sinc

sinA = ———
cosf, cosP, (1.209)

This A value can then be used to determine an improved value of ¢ from equation (1.58) for
example. The process is then iterated back through (1.208) until the change in sina from the
previous value is less than a specified amount.

At the completion of the iteration the following values would be known: ©, A, B1, B2 and a.
We then can use (1.61) to determine 01:

sino

sinal =
cosp, (1.210)

Then:

cosoy = (1 - sin? oy)!/?

when the minus sign is chosen if:

cosP, sinf, - sinB, cosB, cosA <0

Equation (1.73) in conjunction with (1.69) can be used to determine oy while the distance is
determined using equation (1.40).

A special case of these equations occurs when ¢ = - ¢2 and we are interested in the behavior
of a1 and L in the antipodal region. In this region A = 7 so that for this case (1.207) yields
0=180°. Then (1.56) becomes the same as (1.192). Thus (1.192) holds not only for two points
on the equator but for two points of opposite latitude provided the points are within the antipodal
region. The geodesic distance is then found from equation (1.193). Vincenty notes that in this
special antipodal case the value of o and s do not depend on latitude but only on the longitude
difference of the two points which must be within the antipodal region.

As an example, consider two cases with L=179°54’ for both cases. Case one has ¢1=80° =-¢2
and case two has ¢1=1° = - ¢2. If one solves (1.192 or 1.200) and (1.193) we find (for the
International Ellipsoid):

o =9°30" 1834717
s = 20003657.4122 m

Note that only the azimuth at the equator is the same in this example.
Let's now return to the discussion of the more general antipodal problem. Again consider Py

fixed and P exactly antipodal. About P there is a locus of points inside of which the standard
iterative solution will fail. If (1.67) with (1.56) is used, the points form an approximate circle
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about P;. If the Newton-Raphson procedure (e.g. eq. (1.101)) is used the region corresponds to
the geodesic envelope described by Fichot and Gerson (1937).

Geodesic Z

Figure 1.9
The Geodesic Envelope about Ps.

To define this latter region we can construct the envelope of the tangents to the geodesic that passes
throught the same parallel on which P; lies. Such an envelope is called the geodesic evolute by
Thomas (1970). Let sy and sy be the axis lengths shown in Figure 1.9. Then Bowring (1976)
shows that:

sy = maf 1—%f)cosz[31 (1.211)
s, =maf(l 1fsin2[3 0052[3

x= vy 1 1

(1.212)
The ratio of these two lengths is:

S
=1 -lfcoszB1

S 4 (1.213)

which shows the envelope is not exactly symmetric. If 31=30° we find that sy = 50559 m and
sx=50591 m. As the latitude increases the radius of this region decreases.

The equation of the envelope would be (Bowring, 1976, p. 100, Fichot and Gerson, 1937, p.66):

2/3 2/3 2/3

X y =

l-l fsinz[i1 (l-%f)

2
nafcos [,

4 (1.214)

Here x and y are local plane coordinates whose origin is at the antipodal point. The x and y
coordinates are (Fichot and Gerson, ibid, p.65):
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2
= - afncos B, (1 - % sin” [31)(1 - ?;—fcosz B, coszal) sin’ o,
(1.215)
2 2f2
y = - afTicos ]31(1 - 901 + %ECOS2 B, sinzm1 cos” o, - an2 sinB, c053B1 .
(1 ;3cos20c )
1 (1.216)

Given the starting latitude and azimuth the coordinates of the envelope may be computed. Figure
1.10 shows a part of the anti-podal envelope for the case of ¢$1=30°, and Ly=0°.

1.521 A Convergence Problem

One problem noted by Vincenty (1975, private communication) was the slow convergence of

the standard iterative procedure when Py is just outside the antipodal region. A similar problem
was encountered with the antipodal solution when Py was just inside the antipodal circle. In each
case the problem was caused by the oscillation of A or o respectively during the iteration.
Vincenty has suggested that in carrying out a calculation that a test for oscillation be made during
the iteration. If such is the case, faster convergence can be obtained by computing a weighted
mean values of A or o as follows:

Ao (24;+3A:,+Ai)
i+1 6

(1.217)

1.6 The Behavior of "Backside lines"

To this point we have been investigating the single shortest line between two points. We
could clearly imagine another path from P1 to P2 that goes around the "backside" of the ellipsoid.
This line is not a geodesic since it is not the shortest distance, but it has all the other properties of
the geodesic.

In order to compute a backside line the usual inverse broccdure can be used with some
minor changes. Vincenty suggests the following: Compute the usual ¢ from (1.57) and/or (1.58).
Then compute a backside o:

-1( . )
Ops= 2n + tan {-sinc, COSC (1.218)

Now change the two azimuths by + 7 which is easily done by changing the sign on the numerator
and denominator in equations (1.70) and (1.71).

Several special cases arise in the backside solution. If the second point lies within the antipodal
envelope there are four distinct "geodetic connections” between the two points (Fichot and Gerson,
1937, p. 47). And if the two points are very close, there can also be three backside lines. One can
always check a backside inverse by performing a direct solution with the computed distance and
azimuth.

3/18/93
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The Anti-Podal Envelope when ¢ = 30°.
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1.7 Test Lines

When programs have been written to solve the so called long line problems it is convenient to have
test lines for which previously computed results are available. This section gives such results for
three types of cases on the International Ellipsoid (i.e. a=6378388 m, f=1/297).

1.71 Standard Test Lines

The first set of lines are rather standard not involving anti-podal or backside cases. The first four
lines have been previously used by Rainsford (1955). The fourth line was designed to be a short
line while the fifth line was one where G was forced to be close to 90°. The seventh line is one
where o112 was chosen greater than 180°. Table 1.1 gives the latitudes of the end points and the
longitude difference. Table 1.2 gives the geodesic distance and azimuths.

Table 1.1
Standard Test Lines - Position Definition

o1 /) L
Line 1 | 37° 197 54.95367 26° 077 42.83946 41° 28" 35.50729
2 | 35° 16 11.24862 67° 22" 14.77638 137° 47" 2831435
3 1° 00" 00.00000 0 59 53783076 | 179° 17" 48.02997
4 1° 00" 00.00000 P 01" 1518952 179° 46’ 17.84244
5 | 41° 41" 4588000 | 41° 41’  46.20000 ¢ 0 0.,56000
6 | 30° 00 0000000 | 37° 53 32:46584 | 116° 19° 16.68843
7 | 37° 00 00.00000 | 28 15" 36.69535 2° 37" 39.52918

Table 1.2
Standard Test Lines - Distance and Azimuths

N aj2 0.5
Line 1 4085966.7026 95° 27" 59.630888 [ 118 05’ 58.961608
2 8084823.8383 15° 44’ 231748498 | 144° 55’ 39.921473
3 19959999.9998 88° 59° 59.998970 | 91° 00' 06.118357
4 19780006.5588 £ 59 59.999953 | 174° 59" 59.884804
5 16.2839751 52° 40" 39.390667 | 52° 40" 39.763168
6 10002499.9999 45° 00" 00000004 [ 129° 8 12326010
7 1000000.0000 195° 00’ 00.000000 [ 193° 34’ 43:74060

In this computation the iteration on A-L was stopped when this value changes less than 0.5x10-14
radians or 0.000000001. The number of iterations needed averaged 5 but line 4 needs 23
iterations. A fluctuation of a single digit in the last place of the results could be expected.

Checks of a direct problem program may be made by using the results of the inverse problem
and comparing them with the original starting values.

1.72 Anti-Podal Lines

We now consider six test lines for which the second point is near the antipodal region. Table
1.3 gives the information on the point coordinates while Table 1.4 gives the azimuths and distances
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between the points. Also given is the longitude difference A and the number of iterations to
converge the solution when the Newton-Raphson procedure is used for iterations on A (non-
antipodal) and simple iteration when the sin o iteration is used.

Table 1.3
Anti-Podal Lines and Near Anti-Podal (*) Lines - Position Definition and ¢

Line 01 d2 L o

A 41° 417 45.88 | 41° 417 46.20 | 179° 59” 59.44 179° 59 59.68013
B 0 ¢ 179° 41 49778063 | 180°

c | 3 -30° 179° 40’ 180° )

D 60° -59° 597 179° 50’ 179° 5%’ 51'.’15676
E 30° 29° 507 179° 48’ 179° 49" 36.79418
F 30° -29° 55 179° 48’ 179° 54" 43.94956

Table 1.4
Anti-Podal Lines and Near Anti-Podal (*) Lines - o1, ¢, A, and s

Line | oY o A . s{(m) iteration
A [179° 58 4971625 | (° 01710.8376 | 179° 59" 59.99985 |20004566.7228 3
B 29° 59’ 599999 [ 150° ) 180° 19996147.4168 21
C | 39° 24 51.8058 | 140° 35’08‘.'1942 180° ' 19994364.6069 21
D | 20° 11’ 51,0700 | 150° 49’ 06'.'8680 179° 58’ 53:.03674 20000433.9629 14
E* | 16° 2’ 283389 | 163°59°10.3369 |179° 56' 41.64754 |19983420.1536 6
F | 18° 38 1205568 | 161° 22" 45.4373 | 179° 58’ 3.57082 | 19992241.7634 22

Lines A, B, C, and D are the anti-podal lines described by Vincenty (1975, Table 1). LineEis a
point just outside the anti-podal envelope (see Figure 1.10) and line F is a point just inside the
envelope.

1.73 Backside Lines
Backside lines have been discussed in section 1.6. The four examples given in Table 1.5 are

taken from Vincenty (ibid):

Table 1.5
Backside Geodesic Lines

Ling A B C D

o1 | 41° 417 45:88000 [ 00° 00’ 00.00000 [ 30° 00" 00.00000[ €0° 00" 00.00000
¢ | 41° 41’ 46,20000 | (P 00" 0000000 [ 30° 00’ 00.00000{ 59° 59’ 00.00000
L ® 00" 56.000 ¢° 18’ 10.21937 | ¢ 20’ 00.00000; ¢ 10° 00.00000
o | 180° 007 35423 | 194° 28’ 47.448 1198° 30’ 47.488 |[344° 56 31.727
op |180° 00" 357423 | 194° 28’ 47.448 | 198° 30’ 47488 [344° 56" 59.622

s ] 40 009 143.3208 | 40004 9382722 | 40004 046.7114 | 40 006 087.0024

3/18/93



As noted in section 1.6 it is possible to have four geodetic connections between two points
provided the second point lies within the antipodal envelope. Vincenty has constructed a test case
for this situation. The first point has a latitude of 40° and a longitude of 0°. The second point has a
latitude of -40° 1 5.75932 and a longitude of 179° 55’ 15.59578. The azimuths and distances
between the two points are shown in Table 1.6.

Table 1.6
Four Geodetic Connections
Method o172 o1 s (m)
1 170° 417 42.49809 | 189° 18" 26.51095 20002002.7295
2 272° 407 42701097 | 87° 407 15.32624 20031200.7134
3 86° 207 38715306 | 273° 24° 31722084 20017727.6841
4 10° 2070 377186 | 349° 39’ 46.25456 20005999.9995°

Method 1 is the usual anti-podal solution. Method 2 is the backside solution described in
section 1.6. Method 3 uses the initial value of A as -L and reverses the sign of the tan on the ©
backside determination. Method 4 carries out a backside solution but iterating for sinc and
specifying sinc < 0. All values have been computed on the International Ellipsoid.

3/18/93
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2. Transformation of Geodetic Data Between Reference Datums

2.1 Introduction

The history of Geodesy must include a discussion of positioning for one of the
fundamental goals of geodesy is to precisely define positions of points on the surface of the
Earth. In order to do this it was necessary to define some starting point and reference
ellipsoid. With this information and with the measured angles and distances, the usual
computation of the geodetic positions took place. In Europe, individual countries started in
the 18th century the development of national triangulation networks. These national
networks were subsequently extended over Europe in the 19th century with connections
between various countries. After World War II, extensive efforts were made to combine
the national networks into a consistent system which became known as the European
Datum (1950). The development of an improved, consistent network, incorporating
precise distance and angle observations, as well as VLBI, Doppler and SLR derived
positions, continues. New networks such as ED79 and ED87 have been developed.

In the United States the development of the geodetic network started in 1815 when F.
Hassler started geodetic measurements near New York City (Dracup, 1976). During the
remaining part of the 19th century, a number of major areas were developed including the
Eastern Oblique Arc from Calais, Maine to New Orleans and the first Transcontinental Arc
along the 39th Parallel. In 1879 the New England Datum was adopted for triangulation in
the northeast and eastern United States. The origin was chosen at station Principio in
Maryland. In 1901 the New England Datum was adopted as the United States Standard
Datum with the origin point moved, by definition, to Meades Ranch, Kansas. In 1913 the
Standard Datum was adopted for use by Mexico and Canada, and its name changed to the
North American Datum. In 1927 a readjustment took place fixing the coordinates of
Meades Ranch. This led to the North American Datum 1927 which served for almost sixty
years as a reference system for the United States Improvement in measuring techniques,
and errors in the NAD?27 led to the development of NAD83 which was completed in 1987
(Bossler, 1987). Additional discussion on this system will be found in Section 3.

The two examples described above will be typical of various countries and areas.
Clearly, each system will have its own coordinate system and reference ellipsoid. One easy
task to visualize is the conversion of coordinates from one geodetic system to another.
However we now have a number of fundamental reference systems or, in practice, a
conventional reference system. This system can be associated with a particular satellite
(Doppler or laser, for example) system. Consequently, we will be interested in the
transformation between geodetic systems and some externally defined system.

However, we must recognize that most geodetic systems are essentially horizontal in
nature. We have been speaking of horizontal datums where latitude and longitude are
determined. Vertical datums have historically been treated separately. The conversion of a
horizontal system and a vertical system into a consistent three dimensional system is
difficult because of the role of the geoid or the height reference surface. The development
of horizontal networks was hindered because of the lack of knowledge of the separation
between the ellipsoid and the geoid. This lack of knowledge made it impossible to reduce
angles and, most importantly, distances down to the ellipsoid which was the actual
computational surface. Instead, the measurements were reduced to the geoid with
computations taking place as if they were on the ellipsoid. This method of reduction to the
geoid was called the development method where the observations are "developed” on the
geoid. Because the geoid undulations can vary substantially in a large country, the neglect
of geoid undulations can cause systematic errors in the computed positions.
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An alternate method of triangulation and triliteration computation is known as the
projective method. In this procedure the observations are rigorously reduced to the
ellipsoid taking into account deflections of the vertical and the separation between the geoid
and ellipsoid. This projective method has not been widely used because of the lack of
knowledge of geoid undulations as historical networks were determined. Today the
situation is much easier, but this does not help the problems of the past.

We should also note that there are several methods in which the projective method can
be implemented. In the Pizzetti method, a point is reduce from the surface along a curved
vertical to the geoid and from there to the ellipsoid on a perpendicular to the ellipsoid. The
Helmert procedure projects the surface point to the ellipsoid along the ellipsoidal normal.
The two projection methods are shown in Figure 2.1 which represents a section in an
arbitrary direction.

P GEOP

TT Y T T rrryrey SURFACE

/\ GEOID

1
— @ Q, — ELUPSOD

Figure 2.1 Two Projective Techniques

A discussion of the projection of point P to the ellipsoid may be found in Heiskanen
and Moritz (1967, p. 180). A discussion of the projection method and the development
method may be found in Wilcox (1963).

With this section as a background we now turn to transformation procedures. In
principle we should define whether we are working with a development or projective
geodetic network. We should also distinguish between horizontal or vertical network
transformations. In practice this is rarely done and we simply form three dimensional
systems although such systems may have never been computed in three dimensions
originally.

2.2 Similarity Transformations

We are given a set of rectangular coordinates, (x,y,z), in an "old" system and we
want to transform these coordinates into the "new" system to obtain (X,Y,Z) (X). We can
first postulate a general linear (affine) transformation of the form (Leick and van Gelder,
1975):

X=Ax+Ao (2.1)

where A is a 3x3 matrix while Ao is a 3x1 vector. There are a total of 12 parameters
describing this linear transformation as can be seen from the component form of (2.1):
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X a1 a2 a3 X ap
Y |=| a1 a2 axz y([+] ax
VA a3y azy asg z azp (2.2)

The 12 parameters can be interpreted as follows (ibid): six for the orthogonality
transformation (three parameters for translation and three parameters for rotation) and 6
parameters describing the scaling transformation (three scale parameters along three
perpendicular axes whose orientation is defined by the remaining three parameters).

A special case of the general affine transformation is the orthogonal transformation.
Such a transformation preserves lengths and an orthogonal system of axes. The
coefficients in A must meet the following conditions (Leick and van Gelder, 1975, p. 15).

ajjayp +agazy + a3jazy =0
ajjaj3+agaz+azass=0
ay9813 + 89893 + 839233 =0 (2.3)
a%l + a%l + a§1 =1
2 2 2
312 + a22 + 8.32-— 1

2 2 2
a13+asx3+ 833=1

Under these six conditions, the number of parameters of the general transformation is
reduced to 6: three in Ag and three in A. The latter three are rotations about each of the
"old" axes. We will designate these rotations as wx, Wy, and @z so that this orthogonal
transformation can be written in the form:

X =R(wy, 0y, 0)x + Ao (2.4)

where R is a 3x3 orthogonal matrix that will be derived shortly. An alternate form of (2.4)
can be written if the rotations are applied to the translated axes. We then would have:

X=R(x +Aop) (2.4A)

We may now introduce a single scaling parameter, s, into the process, which yields a
seven parameter similarity transformation. Leick and van Gelder point out that two
versions of this type of transformation given by (2.4) can be written:

X=sRx+Ao (2.5)

X =s(Rx + Ao) (2.6)
Similarly two versions of the (2.4A) form can be written:

X =sRx + Ao) 2.7)

X =R(sx + Ao) (2.8)

The easiest form to interpret is (2.5) where A, represents the three translations
between the origins of the two systems; R represents the rotation from the old to the new
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system and s is the scale between the two systems. If there is no scale difference, s = 1. If
there are no rotations between the systems, R is an identity matrix, and if there are no
translations, Ag is zero.

In the next sections we will examine in detail a number of similarity transformations.

2.21 The Bursa - Wolf Transformation Model

We now consider the seven parameter similarity transformation discussed by Bursa
(1962) and by Wolf (1963). The general geometry of the transformation is shown in
Figure 2.2.

Figure 2.2. A Translated and Rotated Coordinate System

In Figure 2.2, we have indicated the translation parameters Ax, Ay, Az which will be
designated T in vector form. We have also shown the three rotation angles y, Wy, and
;. A positive rotation is a counterclockwise rotation about an axis when viewed from the

end of the positive axis in right-handed coordinate systems. Equation (2.5) can now be
written as:
X = sRz(wz)Ry(wy)Rx(x)x + T (2.9)

where Ry, Ry, R; are the following rotation angles (also see Rapp, 1984, p. 69).

1 0 0
Ry(w) = 0 COs® sin ®
. 0 -sin® cos® | (2.10)
I cos ® 0 -sin @ ]
Ry(m) = 0 1 0
L sih @ 0 cos @ | (2.11)
cCoOs® sin 0
R(®)=| sinw cosw 0O
0 0 1 (2.12)
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The product of the three rotation matrices yields the following:

RzRny =

COSWy COSW, COSWy Sinw, + sinwy sinMy COS®W,  sinWy sinw, - COSWy Sinwy COSW,
-COSMy Sin®, COSWy COSM; - SiNWy Sinwy Sinw,  sinwWy COsSMW, + COsWy SinWy sinw,
sinwy -sin@y cosqy COSWx COSWy

(2.13)

Equation (2.13) can be evaluated assuming the rotation angles are small (a few seconds of
arc) as they are in the cases we are concerned with. Under these circumstances (2.13)
becomes:

1 o -y
R:RyRy = | -, 1 o
Wy -y 1 (2.14)

Malys (1988) has studied the numerical impact of the small angle approximation in
obtaining (2.14). He found that the disagreement between an element of (2.13) and (2.14)
was at the level of 0.5 x 10-11 when the rotation angles were on the order of 1"; on the
order of 0.5 x 10-10 when the angles were on the order of 3"; and on the order of 0.5 x 10
9 when the angles were on the order of 9". An error of 0.5 x 10-9 propagates into a
coordinate error on the order of 3mm. We should note that the order of rotation is not
important when the angles are small, as (2.14) is independent of the order of rotation.

We can now write (2.9), with (2.14), as

1 o - |
X=s| -0, 1 oy [x+T

wy -ox 1 (2.15)
We now introduce a scale difference quantity, As, defined such that:
s=(1+As) (2.16)
We can introduce this into (2.15) to write:
X Ax 1 o -0y |[X
Y |=| Ay |[+(1+A4s)| -@, 1 y
z] | Az @ -ox 1 J[z (2.17)
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Multiplying out and neglecting higher order terms such as @ As we have
X =X + Ax + XAs + 0z - WyZ
Y =y + Ay + yAs - X + Wz (2.18)

Z =7+ Az + zZAs + yX - Oy

Equation (2.17) may be written in an alternate form which is convenient for some modeling
problems:

X Ax Wy X
Y|=| Ay |[+U|0y|+(1+As)| Yy
7z Az W, z (2.19)
where
0 z(1+A4s) y(1+As)
U=| z(1+As) 0 x(1 + As)
-y(1+A4s) x (1+ AS) 0 (2.20)

The above form (i.e., 2.19) has been used by Vincenty (1982) who neglected the As terms
in (2.20) which is a reasonable assumption.

From (2.18) we can identify specific changes in the rectangular coordinates due to
scale and due to rotation effects. We define the following quantities:

Axg = xAs

Ayg = yAs (2.21)
Azg = zAs

AXI' = (Dzy - O)yz

Ayr = -(zX - OZ (2.22)
Azp = -@yX - Wy

With these symbols, our seven parameter similarity transformation can be written in the
form:

X X Ax Axg Ax,
Y (=| Y|+ Ay [+| Ays [t| Ay:
z] Lz Az Az, Az (2.23)
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We see that each effect takes on the form of a translation that will depend on scale change
or rotation effects.

Some physical significance can be given to the rotation parameters if we recognize
that the diagonal elements of the rotation matrix, R, (in 2.4) represent the direction cosines
between the new and old like axes. We can write, for example, from (2.13):

cos (x, X) = cos Wy Cos W (2.24)
cos (y, Y) = COs Wx COS Wz - sin 0 Sin Wy sin (2.25)
cos (z, Z) = cos Wy COS Wy (2.26)

These angles can be expressed in the following form:

cos (x, X) = cos J,,

2.27)
cos [y, Y)=cos 9, (2.28)
cos (z,Z)=cos B, (2.29)
We then have:
15
Oy = ((0,2 + (012) (2.30)
1h
& = (03%'*'(0%) (2.31)
1
5,= (w2 +w3) (2.32)

The 8, angle is the angle between the directions fo the z and Z axes. The 8)' and 8} angles
will represent the angle between the initial meridian of the two systems only when wy and
Wy are zero. Figure 2.3 shows a geometric interpretation of the three rotations.
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Figure 2.3 Angular Rotations in Going from x,y,z to X,Y,Z

A major problem in transformation work is the estimate of the seven (or less)
parameters given estimates of the coordinates in the new and old system along with, in
principle, the error variance matrix of these coordinates. This problem has been studied in
several reports including those by Kumar (1972), Leick and van Gelder (1975), Adam
(1982) and Malys (1988). To formulate our observation equation, we consider from
(2.19) the observables as X,Y,Z,x,y,z while the parameters to be determined are:
Ax,Ay,Az,0x,0y,0z, and As. We formulate the mathematical model for adjustment
purposes as:

Ax Wy X X
F=| Ay [+Ujoy|+(1+As)| Yy |-|Y
Az @, z Z (2.33)
The linearized observation equation is:
BV+Ax*+w=0 (2.34)

where V is the observation residuals and x* are the parameters, which may be corrections
to assumed values.

We have:
L [Ax ]
X Ay
v
y Az
V; = 2l x*= W,
v
X @,
Vy
(OZ
| VZ A
| AS (2.35)



where i is the ith station. The elements of the B matrix are (for a given station):

1001 0 0
B,=[0 1 0i0 -1 0

The elements of A would be (again for a given station and neglecting the As term in (2.20):

1 0 0:0 -z y:ix
01 0z 0 =—xiy
0 0 li-y x O0:z (2.37)

A normal adjustment can be carried out to estimate the parameters under the least squares
principle. A complication arrises when dealing with geodetic systems as the x,y,z
coordinates are not generally derived. Usually given is information on the ¢,A,h triplet
where h represents the height above the ellipsoid of the given datum. The ellipsoidal height
is the sum of the orthometeric elevation and the astrogeodetic undulation (Rapp, 1984,
Chapter 7). Since the astro geodetic undulations are determined from information including
the geodetic coordinates, the h value is intrinsically correlated with both ¢ and A.
Therefore the error correlation matrix of ¢,A,h is a 3x3 full matrix which could be
represented as:

C¢o Oor Ooh
Z¢,x,h= Oxp Oar Oan

Oh¢ Ohh Ohh (2.38)

This matrix can be propagated into the error correlation matrix for x,y,z, (or X,Y,Z). We
can write:

2, y.2=GZy 2 nG’ (2.39)

where G is a matrix representing the partial derivatives of the transformation from ¢, A, h
to X, Y, Z.

Specifically we have:

-(M+h) sing cos A -(N+h) cos¢ sinA cos¢ cosA
G =| -(M+h) sing sinA (N+h) cos¢ cosA cos¢ sink
(M+h) cosd 0 sing (2.40)

We can see that, even if 2y, is a diagonal matrix Z y ; will not be.

65



In most geodetic networks the Z¢ 3 h is not rigorously available. Instead, various
rules have been suggested that represent the proportional accuracy of a given network. One
such rule was developed by Simmons (1950) based on the analysis of triangulation loop
closures in NAD 1927. This rule states that the 20 (standard deviation) proportional
accuracy between two points in NAD27 can be given by:

20 =1partin 20,0003\/ﬁ (2.41)

where M is in miles. An equivalent statement is that the standard error in meters between
two points separated by a distance of K (km):

%
E = 0.029 K /3 (m) (2.42)

Other accuracy estimates determine the accuracy of the distance (r) from the initial (origin)
point to an arbitrary point in the network. Wells and Vanicek (1975) have used the
following form:

V2
Cy= 0y =T, 3k (meters) (2.43)

where they suggest k = 0.0004 m1/3 for the NAD27 and Australian datum, and k = 0.0008
m!/3 for ED50 and the South American datum.

Other procedures for estimating triangulation accuracy have been discussed by
Bomford (1980, p.172). He expressed the standard error of position as of function of the
length of the chain, scale errors, and angular errors in the networks.

We finally turn to height accuracy. Estimates on the accuracy of the orthometric
height can be derived from the levelling process. The accuracy of astro-geodetic
undulations can also be estimated from rules (Rapp, ibid, Chapter 7). The magnitude of
error correlations between the ¢, A quantities and h would be small.

The above guidelines are only approximations that enable some estimate of Xy y ; to
be made. For proper weighting in the adjustment leading to proper statistical results, it is
important that reliable statistical information on the accuracy of the geodetic networks be
part of the solution process.

We should note here that the accuracy of the parameters being determined is sensitive
to the geometry of the given points. Ideally, a global distribution of points is needed for
good (i.e., low correlations between parameters), parameter determinations. If stations in a
small area are analyzed, it may not be possible to effectively find all seven parameters since
some will be highly correlated. For example, in some areas there will be insufficient
information to determine wy and wy.

Malys (1988) has studied various station configurations to learn what parameters are
best estimated with different station geometry. He did this by carrying out an adjustment
with the simulated station positions and examining the error covariance matrix of the
estimated parameters as a function, not only of station geometry, but of the error covariance
matrix (specifically cross covariance terms) of the gbserved coordinates. One test carried
out postulated 28 stations in the United States area (20°< ¢ < 50°; 240°< A < 300°) at 10°
increments in latitude and longitude. Malys (ibid) then examined the correlations between
various parameters. He found that the scale parameter was never significantly correlated
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with a rotation angle and that the rotation angles are only slightly correlated with each other.
He found that the dominant correlations are between the translation parameters of one axis
and the rotation parameters of another axis. For example, a correlation of 0.8 was found
between Ax and @z, and -0.9 between Az and wy. Malys pointed out on the basis of these
results that x translation can be disguised as a rotation about a distant axis.

The previous discussion has outlined a method where the seven parameters can be
simultaneously estimated. Alternate procedures have been developed that can determine As
and the rotation angles independently of the other parameters. The scale difference can be
estimated by comparing the chord distance between two points in the new and old system.
For a single line, we can write:

¢ (2.44)

where C is the chord distance between two points in the new system and c is the
corresponding distance in the old. Note that this determination is independent of translation
and rotation effects. A best estimate of As could be obtained by combining individual
estimates of As from independent lines. Special care must be taken to recognize the various
error correlations between station coordinates.

A procedure suggested by Bursa (1966, sec.5.28) enables the determination of the
rotation angles independently of the scale and translation parameters. One version of this
procedure derives the direction cosines of a line between two points in the old and the new
system. In the old system, we can write for the line between stations i and k:

- x.
cos(x,)=a= xl; -

ik
cos(y,)=b= ____ch' Yi

ik (2.45)
cos(zh)=c= Zl: Zi

ik

where | indicates the direction of the line between i and k. The direction cosines in the new
system would be designated A,B,C. We now can substitute the relationships given in
(2.18) into the expressions for A,B,C to find:

A=a+wzb-wyc

B=b-ma+ wx (2.46)

C=c+wya-wxb
Given the station information, the values of a,b,c,A,B,C along with their rigorously
determined error covariance matrix are to be computed. A least squares adjustment is then
carried out to determine the three rotation angles. However this adjustment does not

rezcoggize the implicit condition between the direction cosines (i.e., A2+ B2+ C2=1, a2 +
bs+ ¢4 =1).
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An alternate procedure that could reduce the effect of neglected error correlations is to
calculate two quantities (o and 8) from the direction cosines .and to fpmqlate two
observation equations in these variables. We first define the following quantities in the old
system.

1b
Tog=-tan —

(2.47)
c

1
(a2+b2)/2

1
8,,4= tan

with similar expressions for the new system. The three direction cosine equations now
become two equations in the two new variables:

0 - 0 cosT tand + @y sinT tand + (To1d - Tpew) = V(1) 2.48)
@y SinT + @y cosT + (Soid - Bnew) = v(B) '

Again a rigorous least squares adjustment can take place to estimate the rotation parameters
independently of the other parameters.

These methods involving As, oy, Wy, ®; are attempts to solve the transformation
problem using quantities that are invariant with respect to one or more other quantities. For
example scale is invariant to translations and rotations; rotations are invariant with respect
to scale and translations. At issue is the value of splitting up the adjustment into the various
components. Leick and van Gelder (1975) have carried out tests with the same given data.
They show that the results from either approach must be identical provided all assumptions
made are the same. They recommend that the simultaneous adjustment process should be
the preferred procedures since all seven transformation parameters and the corresponding
error covariances are obtained at the same time.

The discussion concerning the seven parameter adjustment has used the usual least
squares technique. Alternate adjustment procedures are possible. For example, Somogyi
(1988) suggests the application of the robust estimation method for the parameter
determination. In this method the weights for the observations are made dependent on the
magnitude of the residuals in various ways that are specified.

2.22 The Veis Transformation Model

This similarity transformation model was proposed by Veis (1960). This form was
an attempt to introduce rotations that could be associated with some process that took place
at the datum origin point when the geodetic datum was originally defined. We first define a
local right handed coordinate system at the datum origin point which is defined by ¢o, Ao
in the old (datum) system. The local axes are u (tangent to the geodetic meridian, positive
south); v (perpendicular to the geodetic meridian passing through the datum origin, positive
east); and w (in the direction of the (old) ellipsoid normal at the datum origin, positive up).
This system, along with the new (X,Y,Z) and old (x,y,z) rectangular coordinate system are
shown in Figure 2.4.
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Figure 2.4
The Veis Transformation Method

The vector from the datum origin to an arbitrary point (i) in the datum would be x; - xo.
Now the original alignment of the datum can be changed by considering small rotations
about the local origin axes; o about w, & about v, 1 about u. The a rotation, for example,
could be due to an azimuth error in the original azimuth definition. We want to apply these
rotations to the vector from the origin to the ith point. To do this we rotate x; - X, into the
local system, apply the rotations, then rotate back into the rectangular system. This
rotation can be accomplished using the following (see Rapp (1984, section 4.19)):

M=R; (L) Ry (90° = 69 R, (n) Ry (§) R (o) R, (90° — 0 R, (9 (2.49)

The rotated vector is then scaled by a factor (1 + Asy) where Asy is the scale change
parameter associated with the Veis transformation. The complete transformation follows,
somewhat, from the inspection of Figure 2.4. Actually we define the Veis transformation
as follows:
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xv=:r’v+xo+(l +ASV)M(%M%§’“)(X' Xo (2.50)

where Ty is the translation vector measured in the pew x frame. Multiplying out (2.49) we
have:

osing, .
-0COS Qo Sin
1 -NcosPo —E,.::P(())s),o Ao
—NsinQ, sink,
M= -asingo : 0LCOSPoCOSAo
+McosPo ~Esinko
+Msin@ocosio
0COSPoSinAg  -0LCOSPCOSAo
+Ecosho +Esinko 1
+nsin@osink,  -Msin@ocosio 2.51)

Equation (2.50) can be modified such that a linear adjustment model can be established to
estimate the seven (Ax, Ay, Az, Asy, a, &, 1) parameters of this model.

We can compare new coordinate difference computed with the Bursa-Wolf system
with those computed by the Veis system. From the origin to the ith point, in the new
system, we have, from (2.18):

AX o= (1+ Asp) Ry (0,0,,0,) (x;X) (2.52)

This difference in the Veis model would be, from (2.50):

AXio(V)= (1 + As v) M (¢O,Xo,a,§,’ﬂ) (xi'x()) (2.53)

Since AX must be the same from both equations, and (x; - xg) is the same, the equality of
(2.52) and (2.53) implies the following:

Asp = Asy 2.54)
Rp (wx, Wy, ©z) = M (¢, Ao, o, &, M) (2.55)

The scale factor in the Veis and Bursa-Wolf system are the same. The implications of
(2.55) is found by equating (2.14) to (2.51). We have:
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®x = 0 cosg cosrg — & sinkg + M sindg cosg

©y = o cosdy sinkg + § coshg +1 sindg sindg (2.56)
®, = o sind, — y cosQ,

We can invert (2.56) to write:

£ |= 0 coshg -sin)g @y

ul -cosdo singp sinkg  singp coshp |\ Px

[ o J sin ¢g cosdp sinkg  cosdp cosAg (“)Z)
2.57)

It is clear that the rotations of one system have a complete analogy with the rotations in the
other system through (2.57).

A special case of (2.51) and (2.55) occur if we assume & and 1 are zero. That such
quantities should be zero has been discussed by Wells and Vanicek (1975) and Vanicek and
Carrera (1985). In essence the authors argue that if the parallel conditions involving
astronomic coordinates, geodetic coordinates and deflections of the vertical are maintained
(Rapp, 1984, Chapter 7) at the datum origin point, § and i} (i.e., the corrections to the
assumed deflections) should be zero. This would leave only a rotation, ¢, about the
geodetic normal, as the remaining rotation. Under these circumstances equation (2.51)
becomes.

1 o sindg -0l cosdyg sinAg
Mgy = -a sindyg 1 o cosdg CosAg
o cosdg sinkg -0 cosdg cosrg 1 (2.58)

In addition the rotations about the x, y, z axes would be given by (2.56) with £ and 1} zero:

W, o, = O COsQ, COsA

w, = O cosd, sink,

y (2.59)

W, = o sing,

Equation (2.59) is also equation (3.16) in Vincenty (1985) and equation (1) in Vanicek and
Carrera (1985).

We next compare equation (2.9) (Bursa/Wolf) and (2.50) (Veis) for the transformed
coordinates recognizing the equality given in (2.54) and (2.55). We have:
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T = xo — (1+45) R(0,,0,,0,) xo +T, (2.60)

It is clear from (2.60) that the translation vectors of the two models are generally different.
This occurs because of the manner in which the Veis transformation is defined by equation
(2.50). Such a definition leads to a translation vector without geometric meaning.

2.23 The Molodensky Transformation Model

A set of differential formulas for transformation to a new coordinate system is
described in Molodensky et al., (1962, Section 3). The discussion in this book relates to
the calculation of latitude, longitude, and height changes considering eight parameter
changes. These are three rotations, three translations, and two ellipsoid parameter changes.
Our previous discussion has excluded ellipsoid parameter changes and we will modify the
Molodensky discussion, for now, to continue this exclusion. We also note that
Molodensky allowed a change to the geodetic coordinates in the old system. Our prior
discussion has not introduced such a change and therefore, in this discussion, we will set
such changes (dB, dL, dH in Molodensky's notation) to zero. Various interpretations
and/or application of the Molodensky transformation have been given in Badekas (1969) ,
Leick and van Gelder (1975) Soler (1975) and others. Our discussion will follow that of
Soler (ibid).

The Molodensky transformation is designed to consider a translation and the rotation
of a vector from the datum origin point to a arbitrary point in the system. The rotations are
about the old (x, y, z) axes. We have from Molodensky (ibid, eq. (I-3.2)) and Soler
(1976, equations (4.3-2), (4.4-5) or (A.1-5)):

X X dxo 0 o, -wy|| XX
Y |=|Y dyo |+| —®, 0 w4 || Y-Yo
Z z oz o, -0, 0 z-Z

where X, Y0, zg are the coordinates of the datum origin point. The 8xg, dyg, dz¢ are
quantities that require careful interpretation.

(2.61)

Let the rectangular shifts between the datum point, in the new system, and the old
system be dX, dY, dZ. We have:

dX Xo {(_0
dy = Y() - Y()
dz Llx |=
X Zolx (2.62)

where Xg, Y0, Zp are the new coordinates based on the new origin, and X, Yo, Zg are the
coordinates of the datum origin based on the old coordinate origin but with the new axis
alignment as seen in Figure 2.5. Note that dX, dY, dZ correspond to dx, dy, dz given in
Molodensky (ibid, eq. (1.3.4)).
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Datum Origin Point

Figure 2.5
Geometry of the Molodensky Transformation Model

Now the (f , Y, Z), vector can be obtained by rotating the (x, y, z), vector from the old
system to the new system. From eq. (2.17) we can write (letting Ax=Ay=Az=As=0):

Xo Xo 0 o -oy |[%
Y, |=|Yo |+ -0, 0 Yo
= Z - 0 Z
Z, Dy (2.63)
Then eq. (2.62) becomes:
dXx Xo Xo 0 o -o |[%
dy = Y, | Yo [-] -, O @ Yo
dz I Z, k L% W -ax 0 JlZo) (764



We now write equation (I.3.4) in Molodensky in our notation:

dX Ox, 0 o -wy ||X%
dY = Syo - -0, 0 Wy Yo
dZ v 8z, o -0, 0 ||% (2.65)

Comparing (2.64) and (2.65) we can see that

0x, Xol | %o
5yo =1Yo|-| Yo
oz, Z, Z, (2.66)

Note that (2.65) does not strictly give a translation vector as the coordinates used are
defined in different coordinate systems. Now solve (2.65) for (8x¢ , 8yo , dz¢) and
substitute into (2.61):

L5523

We can compare this equation with the Bursa/Wolf model given by equation (2.17)
(setting As = 0). We see that the equations are the same so that the Molodensky
transformation model is, in reality, the same as the Bursa/Wolf similarity transformation.

X
Y
Z

(2.67)

2.24 The VanicCek-Wells Transformation Models

A transformation described by Wells and Vanicek (1975) introduces several
coordinate systems in dealing with a network (datum) coordinate system, a coordinate
frame defined by a particular satellite observation system, and an ideal system such as the
Conventional Terrestrial System (CTS) (or its successor, the IERS Reference Frame).
Vanicek and Wells postulate station positions given in the network system is assumed
properly aligned with the exception of a single azimuth rotation about the ellipsoidal normal
at the datum origin. The space system axes (X, Y, Z) are considered rotated by amounts
(o, Wy, 0;) with respect to the CTS (X, Y, Z). Thls information is portraycd in Figure
2.6 where the datum origin is at O, and an arbltrary point in the system is i.
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Figure 2.6
The Wells-Vanicek Transformation Method

The following quantities are three component vectors: pj, T, Ig, Isg, To, Ti. From the
figure we can see that there are two ways in which the vector to tl%c arbitrary point can be
represented in the CTS. We have:

Xi =15 + R(0x, Wy, 02); (2.68)

Xj=1g+(1+ As) R(®) (10 +Ioi) (2.69)
Equation (2.68) assumes the scale of the satellite system and CTS are the same. In (2.69)
the scale difference between the CTS and network is As as dealt with earlier. In (2.69) the
As is applied to the vector from the center of the datum to the point after this vector is
rotated about the ellipsoid normal at the datum origin.

The elements of R(wy, Wy, ®;) are given by (2.14) while the elements of R(a) are
given by (2.57). If we let R(0x, Wy, ;) =1+ Q, and R(a) =1 + A(a) we can equate
(2.68) and (2.69):

Is + Pi + Q(wy, Wy, 0)P; =Ig+Io +Loi + A(Q) (To + Ioi) + As(fo + Ioi) (2.70)

With sufficient accuracy we can let 1 + o = pj in the last two terms in (2.70). We then
can write:

[Q(wx, Wy, ) - A(®) - 1As] i - (tg - Is) =Io+ Li - Pi (2.71)
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In this equation we have the right hand side known while there are a set of parameters to be
determined. These values are y, (uty, ®;, O, As, and three translation difference terms of
(1g - 1s) for a total of 8 parameters if only one datum is being considered. If we consider
data from several different systems we will have an additional five parameters per datum.
Since Q(wx, Wy, ®z) and A(a) enter in the same way on pj, it will not be possible to
separate ¢ from @y, Wy, W, if only one datum is being considered. We also conclude that
we must have a minimum of two stations per datum to achieve a solution.

Wells and Vanicek (ibid) applied this transformation model to data given on several
geodetic datums. Since the data available at that time was sparse, their results would be
regarded as encouraging rather than definitive. Additional computations are now warranted
with the improved satellite derived station coordinate that are available.

2.3 Geodetic Coordinate Transformation

The discussion in the previous section has been directed to the conversion of
rectangular coordinates in an "old" system to coordinates in a "new" system. We
recognized that the "old" coordinates would be determined by combining horizontal and
vertical datum information together. Now that such transformations have been developed it
is time to consider going back to a latitude, longitude, and ellipsoid height. Assume that
we have the transformed rectangular coordinates X, Y, Z. We want to obtain the ¢, A, h
with respect to.some ellipsoid whose parameters (a,f) are defined. The procedure for doing
this has been discussed via several techniques in Rapp (1984, Section 6.8) and presents no
special problems.

An alternate method is to develop a differential procedure. We can write (2.23) in the

following form:
X Ax
Y| = Ay
Z Az Jr 2.72)

where [Ax, Ay, Az]T represent the sum of the translation, scale, and rotation effects shown
on the right hand side of (2.23). An analogous equation in geodetic coordinates would be:

+

X
y
z

MK Ad
Al=S{A+HT AL
i h Ah

(2.73)
In both (2.72) and (2.73) we regard the quantities as differential in nature. Our next task is

to calculate A, AA, Ah as a function of [Ax, Ay, Az}t and ellipsoid change (old to new)
parameters.

2.31 A Differential Projective Transformation Procedure

We first repeat the standard equations relating rectangular and geodetic coordinates:

x = (N + h) cosdcosA
y = (N + h) cosd sinA
z=(N(1-e?) + h) sin¢ (2.74)
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We differentiate each of these equations with respect to five variables: ¢, A, h, a, f. For
example:

dx=§id¢+2¥—dk+a—xdh+a—xda+a—xdf

8¢ dA oh da of (2.75)

with similar equations for dy and dz. The dx, dy, dz quantities can be associated with the
total changes [Ax, Ay, Az]T or with any of the specific changes associated with
translation, scale, or rotation.

The derivatives needed for (2.75) and the other expressions are as follows:

9 =— (M + h)sing cosA, o =— (N + h)cos¢ sinA,
o
0
Y (M + h)sing sinA, Do (N + h)cos cosA,
0@ oA
0
9z _ (M+h)cose, Z o,
oQ oA
0x _ cos@ cosh 9x__ asin’p cosp cosA 5
da w7 de? 2wW3 ox - cosd cos A
dy _ cosg sinA dy _ asin’p cosg sink E;h
da w o’ De2 W3 a—y= cosd sin A
h
1 — e2)si
% _{(zeksing, % L Msintg-2Nysing 2
da oe? 2 oh (2.76)
where:
W2 =1 - e2sin2¢
2
M = 3_(122 N =2
3 W
W (2.77)
To find changes with respect to the flattening, we note that:
2
9_290 %
o6 2 o
¢ (2.78)
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Since e2 = 2f - f2 we have:

2
& _2a-p

of (2.79)
Using the derivatives in equations (2.76) and (2.79), we can write the three equations
implied in equation (2.75) as follows: ‘
dx = -(M + h) sin ¢ cos Ad¢ - (N+h) cos ¢ sinAdA + cos ¢ cos Adh
- ) sin?
+cosq)coskda +a(1 f) sin (1)(:05(1)cos7»df
W w3 (2.80)

dy = -(M +h)sin¢ sin Ad¢ + (N+h) cos ¢ cos AdA + cos ¢ sin Adh

. . 2 .
cosq)smlda +a(l-f)sm (bcosq)smkdf
W w3 (2.81)
dz = M+ h) cos ¢dd + sin ¢dh

2. .
+(1_e\3vsm¢da + Msin’g-2N) (1-£) sin ¢df (2.82)

Various approximations may be made to equations (2.80), (2.81), and (2.82) to simplify
them . For some computations this may be desirable, but when calculations are done on a
computer no reduction appears called for. As an example of a simplification, we write the
equations assuming the coefficients of the differential changes refer to a spherical earth of
radius a, and that h = 0. We find:

dx = -a sin@ cosAd¢ - a cos¢ sinAdA + cos@ cosA (dh + da + a sin?¢df) (2.83)
dy = -a sing sinAd¢ + a cosd coshdA + cos® sinA (dh + da + a sin2¢df) (2.84)
dz = a cosd@ + sing (da + dh) + a sing (sinZ@ - 2)df (2.85)

These equations may also be found in Heiskanen and Moritz (1967, p. 206, eq. 5-
54). A better approximation to equations (2.80), (2.81) and (2.82) may be found in
Vincenty (1966, eq. 5). It should be noted, however, that the equations (2.80), (2.81) and
(2.82) are the exact differential equations. The accuracy of these equations will depend on
the magnitude of the changes since, implicitly, the terms are first terms in a Taylor's series,
with terms in A@2, AA2, Ah2, Aa2, Af2 and higher powers neglected.

Given dx, dy, and dz as well as da and df, we must now develop equations to give us
do, dA, and dh. We may note that solution 2 obtained by regarding (2.80), (2.81) and
(2.82) as three equations in three unknowns. If we were to rewrite these equations, we
could put them in the matrix form shown symbolically as follows:

78



A1 A Az de Dy
B; B; B3 dr| = | D,
C G G dk Ds (2.86)

where the terms A, B, C, and D are known quantities. Consequently, d¢, dA, and dh may
be found by inverting the coefficient matrix and multiplying by the D vector. This
procedure is inconvenient if we need to consider only a single change, and consequently,
we proceed to find separate expressions for d¢, dA and dh.

To find d¢, multiply (2.80) by -sin@ cosA; (2.81) by -sing sinA; and (2.82) by
cos®. Add the resulting equations to find d¢ separately. To find dA, multiply (2.80) by -
sinA; (2.81) by cosA; and (2.82) by zero, and then add as before. To find dh, multiply
(2.80) by cos® cosA; (2.81) by cos® sink; and (2.82) by sin ¢. We find:

. oo ezsin(p cos®
(M + h)d = -sin@ cosA dx - sin@ sinA dy + cos¢ dz + —w da

+ sing cosd (2N + €2 M sin? @) (1 - f) df 2.87)
(N + h)cos@dA = -sinAdx + cosAdy (2.88)

_ : : a(l-1) . 2
dh = cos¢ cosAdx + cos@ sinAdy + singdz - Wda + W sin‘odf (2.89)

Equations (2.87), (2.88), and (2.89) represent working formulas for converting geodetic
coordinates referred to an old system to a new system. We must specify the shifts by Axr,
AyT, Azt (which are dx, dy, and dz) and the parameters of the new ellipsoid. Note that
dx, dy, dz will only be constants if there is no orientation and scale effects. If this is not
the case, dx, dy, dz will be position dependent. Spherical approximations to (2.87),
(2.88), (2.89) are given in Heiskanen and Moritz (1967, p. 207, equation (5-55) with a
more accurate approximation being given by Vincenty (1966, equation (10)).

2.31.1 The Molodensky Geodetic Coordinate Transformation

Section 2.23 discussed the rectangular coordinate transformation using a method
described in Molodensky, et al.,, (1962). Equations (I.3.5, 1.3.6., and 1.3.7) in
Molodensky, et al., can be used to calculate changes in latitude, longitude and height as
(2.87), (2.88), and (2.89) do. As the Molodensky formulas are used by a number of
different groups (e.g., see DMA WGS84 report, 1987), they are repeated here in a form
similiar to our previously derived values. We have:

2.
€ sin ¢ cos ¢

(M + h)dd = -sin¢ cosAdx - sin sinAdy + cos¢ dz + W

+ sin cosq{Mf + N%)df (2.90)

(N + h) cos ¢ dA = -sinAdx + cosAdy (2.91)

dh = cos¢ cosA dx + cosd sinA dy + sing dz - W da + a (1&; D sin2¢ df (2.92)
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We see that (2.91) is identical to (2.88); (2.92) is identical to (2.89) and (2.90) differs from
(2.87) only in the coefficient of df.

A set of "Abridged Molodensky Formulas” can be obtained by setting h equal to zero
and simplifying the coefficients of da and df. These formulas are:

Md¢ = -sin¢ cosA dx - sin¢ sinA dy + cos¢ dz + (adf + fda) sin2¢ (2.93)
NdA = —sinA dx + cosA dy (2.94)
dh = cos¢ cosA dx + cos¢ sink dy + sind dz + (adf + fda) sin’ - da (2.95)

2.31.2 Geodetic Coordinate Changes Caused by Changes at the Datum Origin Point Due
to Shift and Ellipsoid Changes.

Equations (2.87), (2.88) and (2.89) are convenient if the values of dx, dy, and dz are
given. In some cases we desire to know the changes in coordinates at any point in our
system if the coordinate changes at the origin, and ellipsoid changes are given. This, of
course, may be done as a two-step problem, first computing dx, dy, dz from (2.80), (2.81)
and (2.82) and then applying these values in (2.87), (2.88) and (2.89). However, we seek
a set of equations that eliminates the two-step procedure. First we assume in the following
discussion that the changes being considered are due solely to the origin shifts (dx, dy, dz)
and ellipsoid parameter changes. The effects due to the other quantities will be considered
later.

Now, evaluate (2.80), (2.81), (2.82) at the origin point designated by subscript 0.
We then have:

dx = -(M + h)gsin ¢y cos A (doy— (N + h)gcos @, sin A (A, + cos @gcosA gdhy,

cosP, sin A, g a (l—f)sinz(pO cos P cos A

+
W, a S df

(2.96)

dy = -(M + h) sin @ sin A [d,+ (N + h), cos@, cos A dA,+ cos @, sin A, dh

cos ¢, sin A d a(l-f) sinl)(pO cos @, sin A

+ af
W, a Wy’

(2.97)
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2, .
(1-¢7) sing,

dz = (M + h)gcos ¢, dp,+ sin Adh o+ W
0

+ (M sin’@ - 2N sin @) (1 - f) df

(2.98)
Now substitute these equations in (2.87), (2.88), (2.89) to find:
M +h) dp = M + h)( (cos¢ cos@, + sin @, sin @ cos AL) dg,
-(N + h) sin ¢ cos @ sin AAdA,,
+ (sin @, cos @ - cos @ sin @ cos AX) dhy
2
+ [Vill—a (sin @, cos @ (1-c2) - €os @, sin @ cos AL) "SW_ sin ¢ cos @] da
+ (sin @y cos @ (Msin” ¢-2N) (1 - f) - K¢ sin @ cos AL
+ sin @ cos ¢ (1-D) (2N + ' Msing)) df (2.99)
(N + h) cos @dA = (M + h) sin@p sin AAd@g
+ (N + h)g cos @g cos AL dAy
- cos@p sin AAdhg
_COs Qg _.
W sin AAda
- Ko sin Adf (2.100)
dh = (M + h), (cos@y sin@ - sin@,, cos cosAL) dg,
+ (N + h) cos @ cos @, sin AL dA,,
+ (sin @, sin @ + cos @, cos @ cos AA) dhy
+ o= (sin @y sin @ (1 - €) + cos ¢ cos ¢ cos AL - WW,) da
0
. .3 . a .
+ (cos @ cos ALK+ sin ¢ (1 - f) ((Msin 2NsinQ)g + = sin @)) df
¢ 0 ¢ - Do+ SIn @ 2.101)
where:
AL=2X-%,
a(1-f) sin’ @ COSP,
0 =

Wo
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The spherical form of equations (2.99), (2.100), and (2.101) may be found in Heiskanen
and Moritz (1967, p. 207, equation (5-57)).

Vening-Meinesz (1950) derived equations similar to (2.99), (2.100), and (2.101).
Although in terms of the deflection of the vertical they may easily be converted to the form
of the above equations. His derivation makes use of some series expansions that generally
retain terms including £2.

Examination of equations (2.99), (2.100) and (2.101) shows that they may be written
in the general form as follows:

d¢=E do,+ E[dAy+ Egdhg+ Eda + E4if
dA = Fd@,+ FdA ,+ Fqho+ F da + F(df

dh = G doy+ GAAy+ Ggho+ G da + GAf (2.102)

where E;, Fj, and G, are coefficients determined by comparison of (2.102) with (2.99),
(2.100) and (2.101).

Again we should note that the d¢, dA and dh terms in (2.102) are due only to origin shifts

and ellipsoid changes. We have implicitly assumed that the axes of the two systems are
parallel and the scale difference is zero.

2.31.3 Differential Change Formulas in Terms of Deflections of the Vertical and Geoid
Undulations (or Height anomalies) .

From previous discussion we know that we can write, with sufficient accuracy for
this differential purpose:

E=0-0¢
N = (A - A)os ¢ (2.103)

If we let H be the orthometric height of a point P and N the geoid undulation at the point we
have:

h=H+N ' (2.104)

To find the change in these quantities we differentiate them, noting the @ , A and H are
independent of the geodetic datum coordinate system. Thus we have:

d¢ = d
dn dx cosQ
dh = dN

(2.105)

At the datum origin we write from (2.105):
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dgo =-d&o

-d
Do = Zoso6
dh =dNg (2.106)

with similar expressions holding for the arbitrary point in the system. Then we may write
(2.102) in the form:

d§ =E,’d§,+ E;’dny+ E3’dN+ E;'da + Es5’df
dn="F;’dg+ F,'dny+ F3'dN+ F,'da + F5'df
dN =G; ‘d§o + G2 ‘dng + G3 ‘dNo + G4 "da + Gs “df (2.107)

Thus we interpret d€o, and dno as changes of the deflections of the vertical at the origin.
dno may be considered as the change from an adopted geoid height to a better or absolute
value.

We can also express (2.87), (2.88) and (2.89) in a form where the changes computed
are of deflections and undulations. We have:

da = El 7dx + E2”dy + E3”dZ + E4”da + Es”df
dn=F,”dx + F,"dy + F3"dz + F,"da + F5"df
dN = G, "dx + G “dy + G3 "dz + G4 "da + Gs “df (2.108)

In equations (2.103) and (2.104) the E, F, and G coefficients (single and double
prime) can be found by simple substitution and comparison with the original equations.

2.31.4 Special Cases of Transformation Involving Origin Shifts and Ellipsoid Parameter
Changes.

There are certain cases where the general cases derived here reduce to a simpler form.
Suppose we consider the case when the rectangular coordinates change due to changes of
0, K, and h with no change of the reference ellipsoid parameters. Thus, da = df =0 so that
equations (2.80), (2.81) and (2.82) become:

dx = -(M+h)sing cosAd¢ -(N+h)cos@ sinAdA +cos¢ cosAdh (2.109)
dy = -(M+h)sing sinAd@ +(N-+h)cos® cosAdA +cos¢ sinidh (2.110)
dz = (M+h)cos@ do+ sin @dh (2.111)

Under the specification that da = df = 0, equations (2.87), (2.88) and (2.89) become:

(M+h)do = -sin@ cosAdx - sin@ sinAdy + cos¢pdz (2.112)
(N+H)cos@dA = -sinAdx +cosAdy (2.113)
dh = cos¢ cosAdx +cos@ sinAdy + sin@dz (2.114)
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Both cases could be represented in matrix form as:

dx -(M+h)sing cosA  -(N+h)cos@ sinA cos¢ cosA do
dy | = | -(M+h)sing sinA  (N+h)cos® cosA cos¢ sinA dr
dz M+h 0 i
(M+h)cose sing dh (2.115)
and
(M+h)de -sin@ cosA -sing sinA cosg }( dx
(N+h)cos@dA |= -sinA COsA 0 dy
dh i i dz
cos@ cosA cosQ sinA sin@ 2.116)

Equations (2.115) and (2.116) are only valid when no ellipsoid parameters are changed.

A similar procedure could be adopted if no change is made in the coordinates at one
point in the geodetic network, but the ellipsoid parameters are changed. From (2.80),
(2.81) and (2.82) we find:

_ COSQ cosA a(1-f)sinZ@ cos@ cosA
. x l_ . 2 . A'
dy = cosc%vsm da + a(1-f)sin“p cos@ sinA . (2.118)
-e)2si
dz = LI gz + (MsinZg - 2N) (1-Bysing df (2.119)

The change produced at any other point in the system would be given by substituting these
equations into (2.87), (2.88) and (2.89). A similar procedure may be applied directly
through equations (2.99), (2.100) and (2.101) where in this special case d¢g, dAg and dhg
are zero.

Another special case occurs when we define the centers of the two ellipsoids to be
coincident. We then set dx = dy = dz =0 in equations (2.87), (2.88) and (2.89) to obtain:

2 .
(M+h)dg =222 da + sing cosg (2N + e2Msin2g) (1 -f) df (2.120)
(N+h)cos@dA =0 (2.121)
dh =-Wda + é(vlv;f) sin2@df (2.122)

Note that the change in latitude due to changes in a are small (they depend on €2); there is
no change in A (due to symmetry reasons), and the change in height is essentially the
negative change in the equatorial radius.
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2.31.5 Geodetic Coordinate Changes Due to the Scale Change

We are now interested in the changes of ¢,A, and h due to the scale change As. We
take the rectangular coordinate changes from (2.21) and substitute them into (2.116) where
x,y and z are given by (2.74) we find:

Ne2 sin2
doAs = - _qu—) As (2.123)
dAAs =0 (2.124)
dhAs = (aW+h) As (2.125)

We see that the latitude change is zero, in a spherical approximation, indicating the
insensitivity of the latitude to scale. The longitude change is zero due to symmetry reasons.
The dominant effect of the scale change is on height. If As = 106, dh is approximately 6.4
m.

2.31.6 Geodetic Coordinate Changes Due to the Three Rotation Angles
The rectangular coordinate changes introduced by the wy, Wy, @, rotations in the

Bursa/Wolf model are given by equations (2.22). We can substitute these equations into
(2.112) using (2.74) for x,y and z. The results are Soler (1976, p.70):

_ aW+h| . aW+h
dop=- o, [_—M+h ] sind + @, SV cosA (2.126)
2 2
Ne Ne .
dig=-w,+ O)x[l- m] tandcosA + (oy[l— N—Hl] tangsinA @.127)
dhgr = -wxNeZsindcospsini + myNezsin¢cos¢cosl (2.128)

An alternate form for (2.126) and (2.127) has been given in Bursa (1965, eq. (18)):
dor = -0x(1 + €2 cos2¢)sinA + wy(1 + €2 cos2¢)cosA (2.129)
dAR = -, + wx(1-€2) tandcosA + wy(1-€2) tandsin) (2.130)
We see that the latitude change is primarily a function of wy, ®y and the longitude. The
longitude change is a function of the three rotation angles, latitude and longitude. Note that

at low latitudes (tan¢ is small) the longitude change will be primarily -w,. The change in
height does not depend on ®,. For a 1” rotation the maximum effect on height is 21 cm.

2.31.7 The Total Change in Geodetic Coordinates From the Sum of the Individual
Components
In our previous discussion we identified 9 change parameters (3 rotations, 3

translations, one scale, 2 ellipsoid). We have now isolated these changes with the total
change being the sum of the individual changes. In brief summary we have:
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Translations Equation (2.116)

Ellipsoid Parameters Equations (2.120, 2.121, 2.122)
Scale Equations (2.123, 2.124, 2.125)
Rotations Equations (2.126, 2.127, 2.128)

If one is not interested in the individual component changes the direct approach as
discussed in Section (2.3, eq. (2.72)) can be used. A similar form of these equations may
be found in Vincenty (1985, p. 191).

2.31.8 Azimuth Changes Due to Rotation Parameters

As the coordinates change in going form an old to a new system, so must the geodetic
and astronomic change. We first examine the geodetic azimuth change by expressing the
normal section azimuth between two points in the following form Rapp (1984, eq. (4.71));
Vincenty (1985, eq. (4.2)):

-Axsi
tancL = — xsink + A.ycosk 2.131)
-sin¢(AxcosA + Aysind) + Azcosd

Also of interest here is the Laplace equation (Rapp, 1984, eq. (7.29)). We write:

o = A - (sind - cosd cosatanV)(A - A) - sina. tan V(D - ¢) (2.132)
where the @ and A designate astronomic quantities and V is the vertical angle from the
observing point to the observed point. In evaluating (2.132) we first consider corrections
to the astronomic coordinates associated with changes in the astronomic system reflected in

oy, Oy and ®,. In analogy with (2.129) and (2.130) (and with Rapp (1984, eq. (7.1) and
(7.2)) we have:

d® = -sinAwyx + cosAmy (2.133)

dA = tand (cosA wyx + sinAwy) -, (2.134)

The change in the astronomic azimuth follows from Rapp (ibid, eq. (7.3) or Vincenty
(1982, eq. (4.9)):

dA = (coslcox + sinl(oy) /cosd (2.135)

These changes implicitly reflect a rotation about a pivot point at the center of mass of the
system.

The changes in the geodetic Laplace azimuth caused by change in the astronomic
system would be (from (2.132)):

do, = -sinatanVdd - (sind - cos cosatanV) dA +dA (2.136)
Using (2.133), (2.134), and (2.135) this becomes (Vincenty, 1885 eq. (4.8)):
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dog = (cosdcosA + tanV(sinpcosA coso+sinAsina)) wx +
(cosdsinA + tanV(sindsinAcosc - cosAsina))wy + (sing - cos cosatanV) w, (2.137)

We next consider the change in the geodetic azimuth due to change in the geodetic
coordinates. Differentiating (2.132) we have:

dog = sinatanddo + (sing - cosdcosatanV) di (2.138)

We now must consider the appropriate procedure for the calculation of d¢ and dA.
Vincenty (ibid) used the Molodensky approach (see section 2.23) where the rotations take
place about the datum origin point. The rectangular coordinates changes would be given by
the third term on the right hand side of (2.61). Following Vincenty we write:

dx] [dx] [dx
dy |=|dy] -{dy
dz dz |y [dz | (2.139)

where:

dX (0)(

dy =U(x,y,z) Wy

dz | (0% (2.140)
and:

dx ®x

dy | = U(x0y0.20) | @y

dz | 07 (2.141)

where U is given by equation (2.20) where As can be neglected. The "r" subscript in
(2.140) indicates the rotation effect while the "t" indicates the translation of the center of the
coordinate system.

The value of d$ and dA in (2.138) is now considered to be made up of 2 components:
one due to the rotation and one due to the translation caused by the rotation about the datum
origin point. We write in analogy to (2.139):

d¢ = dor - dot
d\ = dA, - dAy (2.142)

Using (2.129) and (2.130) as d¢; and dA;, and substituting (2.142) into (2.138) we have
(Vincenty, 1985, eq. (4.01)):

dog = (sindtanfcosA - tanV(sinpcosAcoso + sinAsina)mx +
(sinptangsinA -tanV(singsinAcosca - cosAsina))wy + (-sing +
cospcosatanV)wz - sinatanVddt - (sind - cosdcosotanV)dAs (2.143)
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We now add (2.137) (for doa) and (2.143) (for dog) together to obtain the total change in
a geodetic azimuth computed through the Laplace azimuth (Vincenty, ibid, eq. (4.11):

do = (cosAwx + sinAWy)/cosd - sinaitanVddt - (sing -cospcosatanVydAr  (2.144)

The d¢¢ and dA¢ terms are found by substituting (2.141) into (2.116) (See Vincenty, ibid,
2.16, 2.17 for dq)t, d;\.t)

Special cases of these transformations are discussed in Vincenty (ibid). The general

equations can be used in the adjustment of terrestrial networks with space defined positions
as will be discussed in a later section.

2.32 A Differential Development Transformation Procedure

The equations of the previous section have been used assuming the projective method
has been used in the calculation of our geodetic network. If the development method has
been used, there is an argument that an alternate procedure—a development based

procedure—should be used. In establishing this method we consider the following change
possible:

dég, dAg, coordinate changes at the datum origin point;

doy, a change in the azimuth of an initial line although it is an idealism to believe an
actual network is oriented by a single azimuth;

ds, the effect on ¢ and A of the lack of a reduction of distances from the geoid
to the ellipsoid;

da, df, the usual ellipsoid parameter changes.
We may represent the above changes in the following form:
d¢ = F1(d¢o, dAo, dap, ds, da, df)
dA = Fao(ddg, dAg, day, ds, da, df) (2.145)

If we determine the geodetic azimuth at the origin point such that the Laplace equation is
fulfilled we have:

ag = Ag - (Ag - Ag)sindg (2.146)

If we consider that both the astronomic azimuth and geodetic longitude are subject to
change at the origin, we have

dag = dA + dAgsingy (2.147)

On the other hand, assuming an astronomic azimuth is fixed, the value dogis simply
dAgsindyg so that such change may be combined with the dAg indicated in equation (2.141).

Equation (2.141) expresses changes previously discussed as differential formulas of

the first and second kind (Zakatov, 1962, Chapter II, or Rapp (1984)). Formulas of the
first kind define the effect at an arbitrary point of dgg, dAg, doy, and a ds change while
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formulas of the second kind consider ellipsoid parameter changes (i.e., da and df). Of the
various formulas available, the earliest and most comprehensive are probably due to
Helmert (1880, Chapter 12, Section 15). We now give these equations as taken from Bursa
(1957) for an arbitrary point in the development computed geodetic network:

da
ddi = p1d@o + p2cos@odAg + pads; + padog + ps - + pedf (2.148)
cos@idAi = q1d@p + qacosPodA + q3dsi + g4dop +qs % + qedf (2.149)
The p and q coefficents are given below:

_M My .
p1= WOSAl q = %)sm(posmlﬂ.
p2=0 Q2 = SECOOCOSP;

_ 2C0s%io _ -Singio
p3= M q3 N;

_Ro. Sigoo ~Ro. S o
P4 =}y, Sin g, Sinctio G4 =7 S Ry 080

_ 5{C0S00 _ Sisinaio

T M =N
pe= [AQ(2 - W-3—;2n sin2@Qm) + q = -Aksin2@qcos@g _W_d-()ce

AN2 . 3 1
+77 sin PmCcOoSPm] _\/ﬁ

®m = 12 (@g + @) , AL = A; - A, (positive east), Rg = VMyNp (2.150)

In these equations i indicates an arbitrary point in the system while the subscript zero
refers to the origin at which the changes are originated. ojg indicates the azimuth from
point 1 to the origin. -

ds; represents the desired change in the length of the line between the origin and i
caused by the reduction from the geoid to the ellipsoid. Recalling the formula for base line
reductions we may estimate ds; as follows:

dsi=-¢ N (2.151)

where N is the average astro geodetic geoid undulation from the origin to point i with
respect to the old ellipsoid, and R is a mean radius of curvature along the line.

It should be clear now that we do not consider in (2.144) and (2.145) quantities
considered in the projective system such as orientation changes, scale changes, etc. Such
changes do not play a direct role in the development method transformation formulas. In
addition (2.148) and (2.149) are generally considered to have a working radius of 600-
800km (Zakatov, 1962, p.113).
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Equations (2.144) and (2.145) may also be written in terms of deflections of the
vertical using equation (2.105) applied at the origin and at the arbitrary point in the system.
Then we write:

, , o , da,
d€;=p’1 o +p ANy + P 3ds; + P'gdong + s -+ Pdf (2.152)

, , , , , da
dn;=q’; 8o +q',dNg + q'3ds; + 4" dog + q's —— + @' df (2.153)

For consistency purpose all coefficients, p and q in (2.152) and (2.153) have been primed,
even if they do not change in going from (2.148) and (2.149) to (2.152) and (2.153).

If we assume that dA of equation (2.147) is zero, we note that:
dog = dAgsingp = -dnotan@g (2.154)

which may be substituted into (2.152) and (2.153) to yield:

’ ’ ’ ’ ,da /
d&,= py'dE +{py - p4tangy) dng + pds; +ps 2 TPedl (2.155)

, o , ,da .,
dn, =q; d§0+(q2 -qy tan(Po) dn +q3'ds; +q5" -+ q¢'df (2.156)

Equations (2.148) and (2.149) or (2.152) and (2.153) may be used to implement
system changes in development computed triangulation. Notice that they are not written in
terms of dx, dy and dz as the corresponding projective method equations. In addition the
development transformation considers an azimuth change and a distance change which is
not found, or required, in the projective system transformations, except when network
scale and orientation is being considered. The derivation of the development equations is
not as concise as the projective transformation. It obviously involves some assumptions
not required in the projective system.

2.32.1 Comparison of Certain Projective and Development Change Formulas

We are now in a position to compare changes in ¢ and A due to changes at the origin
form either the projective method as expressed through equation (2.99), and (2.100) or by
the development method as expressed through (2.148) and (2.149). Comparisons can be
made analytically and/or numerically to determine the differences between the two methods
of computing the differential change. Such a study has been carried out for all change
expected by Rais (1969). His results show that for small arc distances away form the
origin the results form the projective and development methods (with ds = Q) are very
close. However, as the arc distance increases so does the difference between the methods.
For example, out to 20° from the origin the differences are on the order of 0."05. This is
to be expected as (2.148) and (2.149) have a limited distance over which they are to be
considered highly accurate. In addition the inclusion of a ds term not equal to zero in the
development formulas causes a greater difference with the projective method results that
when ds was set to zero.
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2.33 Non-Conventional Transformation of Geodetic Coordinates

The methods discussed in the previous sections assume that there is some relationship
that can be simply established between a new and old coordinate system. This relationship
is modeled by a selected number of parameters which is usually nine. In reality the actual
parameterization is not as simple as implied by our models. The coordinates in a typical
geodetic datum, that has been built up over a period of time, do not have a uniform
accuracy. Distortions can exist as new (and more precise) data are fitted to an older
geodetic frame. That such distortions exist was used as one argument for the development
of the North American Datum 83 to replace the North American Datum 1927. Because of
the complex nature of these distortions, it is not possible to use the simple models
described so far in this report.

An alternate method has been used in converting NAD27 coordinates to WGS84
(DMA, 1987). In this method the differences between the geodetic coordinates of both
systems are modelled by a polynomial of sufficient terms to represent the differences over
the network, to a given degree of accuracy. In the specific case of the NAD27 to WGS84
the transformation equations took the following form:

AY” = Ag +A1U + AV + A3U2 + A4U3 + AsU2V + AgU2V + A7V3 + AgU3V + AgUV3
+A10V4 + A11U5 + AppUAV + A13U2V3 + A1a V3 +A15V0 + A16U7 + A17V7 + A1gU8 +

A19V8 + ApgU9 + Ar1USV3 + AppU3V9 + Ap3U4VI (2.157)
where:
U=K(@-37)
V =K(A - 265) (2.158)

K =0.05235988
¢ = latitude in degrees
A = longitude (positive east) in degrees

Similar, but not identical equations were used for AA and AH. The number of terms to be
retained can be determined by usual significance tests.

An empirical transformation between NAD 1927 and NAD 1983 coordinates (the
datums will be discussed in the next chapter) has been developed by Dewhurst (1990).
This procedure interpolates datum position differences at known points using a procedure
that minimizes "the total curvature associated with surfaces defining the differences
between the datums" (Dewhurst, ibid.).
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3. The Determination of Geodetic Datums and Ellipsoid Parameters
3.1 Introduction

The discussion in Section 2 has assumed that we have been given geodetic information
on a defined geodetic datum. The horizontal coordinates (usually ¢ and A) were combined
with vertical coordinate information (orthometric height and astro-geodetic undulation) to
defined a three dimensional position with respect to the ellipsoid associated with the datum.
Given the ellipsoid parameters we can then calculate the three rectangular coordinates.

In Rapp (1984, Chapter 9) we have discussed the adjustment of a
triangulation/trilateration network on the ellipsoid through the development of observation
equations for direction measurements, distances, astronomic azimuths, and Laplace
azimuths. In these discussions we assumed that a geodetic datum was defined so that there
would be no rank defect in the normal equation matrix of the adjustment process.

In this section we examine various definitions of geodetic datums based on our
experience with the transformation process discussed in Chapter 2. In addition we will
examine various ways in which the parameters of the reference ellipsoid can be estimated
by classical (triangulation/trilateration) and non-classical (e.g., sea surface heights from
satellite altimeter data) data types.

3.2 Horizontal Geodetic Datums—Theory

Discussions of the manner in which horizontal datums are defined have often been
carried out in the literature (e.g., Hotine (1969), Jones (1973), Vanicek and Wells (1974),
Mueller (1974), Moritz (1978), Bomford (1980, Section 2), Vanicek and Carrera (1985),
Vincenty (1985) etc.). In the discussions one needs to distinguish between the ideal
situation and a situation that may have existed a number of years ago when the horizontal
geodetic datum was being established.

We might start from an ideal definition of the coordinate frame, its center, and an
ellipsoid to be associated with this system. We will argue here (but with counter arguments
to come later) that the ideal system should be one whose center is at the center of mass of
the earth. The alignment of the axes of this system should coincide with an internationally
adopted Conventional Terrestrial System (CTS). In practice there may be several candidate
CTS. International agreement does exist on the establishment of the ideal CTS from 1988
onwards (Mueller, 1985, 1988). Before the establishment of the new system various
estimates of such a system have been made. A widely used one is the Bureau International
De L'Heure, (BIH) Terrestrial System (BTS). Various BTS systems have been defined.
For example, the definition and estimation of BTS (1987) is described by Boucher and
Altamimi (1988). In the future the ideal frame will be defined by the International Earth
Rotation Service (Mueller, ibid).

The ideal reference system has only become a near reality due to the rapid progress
made in the development of space related observation systems. In the development of
geodetic datums in the early 20th century access to the ideal system was not available. In
practice astronomic observations were used to obtain access to some reference system and
an ellipsoid, derived using existing geodetic data, was used as the reference surface.
Before we consider some specific details we need to consider a very simple definition of a
horizontal datum.

A simple definition of a horizontal datum involves the definition of the latitude (¢q)
and longitude (Ap) of the datum origin point; the azimuth from the origin point to an
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arbitrary point in the datum; the equatorial radius (a) and the flattening (f). These five
parameters (¢g, Ao, 00, a, f) constitute a minimal definition of a horizontal datum. Itis a
minimal definition as nothing is said about the alignment of the axes of the geodetic system
or about the location of the ellipsoid with respect to the origin of the datum (or its location
with respect to the center of mass of the earth.)

This simple definition does not take into account the realities of the observational
procedures used in the development of geodetic networks in the first half of this century.
For example, we know that in practice Laplace (geodetic) azimuths are derived for various
lines in a network. Such azimuths provide the orientation to the network and thus the
azimuth at the datum origin is not, in reality, needed.

In order to be more complete we must now extend our simple datum definition so that
it's realization in terms of a reference system can be obtained. We start by specifying that
the minor axis of the reference ellipsoid should be parallel to the Z axis of a specified
reference system (such as the CTS). We also wish to have the initial meridian of the datum
system to be parallel to the XZ plane defined by some recognized reference system (again
such as the CTS). In order to implement such requirements we must consider the
measurements that are possible in order that we can gain access to our ideal coordinate
axes. We can measure astronomic latitude, @, astronomic longitude Ag, and astronomic
azimuth Ag. In addition, for the most general case we may observe a zenith distance z)
from the origin point to another point in the system. We can also have access to coordinate
systems implied by satellite positioning and VLBI measurements.

Now assume that we have the deflections of the vertical g and Mg in the meridian and
prime vertical respectively. (§o and no may be initially set to zero, or computed
gravimetrically, or estimated from adjustment techniques to be discussed later). We can
then connect the astronomic and geodetic latitudes and longitudes using the following
equations (Heiskanen and Moritz, 1967, equation (5-17), Rapp (1984, Section 7.2)

(P():(Do_go? Eo =Dy — Po (3.1
Ao=Ag—Tosec Qg Mo = (Ao - M) c’s @

These equations are valid if the axes of the astronomic and geodetic coordinate systems are
parallel and higher order terms are negligible. Higher order terms may be found in Pick et
al. (1973, Chapter XV, Section 4). For the case when the axes of the two systems are
rotated, equations corresponding to (1) are given in (ibid, Chapter XV, Section 6), in
Grafarend and Richter (1977) and in Vincenty (1985). Next we relate the astronomic and
geodetic azimuths through the extended Laplace equation (Heiskanen and Moritz, 1967,
equation (5-13), Rapp (ibid, eq. 7.25)):

a=A-ntan(p-(‘E_,sinoc-ncosa)cotz (3.2)
where z is the zenith distance. Substitution from (3.1) we have:

a=A-(A—l)sin (p—[(d)—(p)sina—(A—?L)coscpcosa]cotz (3.3)

An extended form of Laplace's equations when the axes are not parallel is given in Pick et
al. (1973, Chapter XV, Section 6).

An equation relating the astronomic and geodetic zenith distance is given in Hotine
(1969, equation 19.29) or Rapp (ibid, eq. 7.32):
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z=z'+cos(psina(A—7»)+cosa(<I)—-(p) (3.4)
or

z=z'+nsina+§cosa (3.5)

where 7’ is the astronomic zenith distance. Although equations (3.2), (3.3) and (3.4) hold
at any point in our network we are specifically interested in them at the origin point.

Using equation (3.1) at the datum origin and other points in the geodetic system will
impose two orientation conditions because of the assumptions made in their derivation.
The third condition (now involving a rotation about the ellipsoid normal) is introduced by
using the Laplace azimuth equation, (3.2) or (3.3). Hotine (1969) argues that the vertical
angle equation (3.5) must be fulfilled through separate observations but Vanicek and Wells
(1974) point out that (3.5) will be fulfilled if € and 1 are computed through (3.1). Since
the conditions are imposed through astronomic observations a parallelism attempt is not
exact being subject to observational errors. Using the needed equations at many points in a
geodetic network, and not just at a datum origin point, will reduce the effect of
observational errors in our alignment attempt.

At this point we have seen how we can relate the axes of our ellipsoid to a measurable
system. Specifically the rotation axis of the ellipsoid will be parallel to the "z" axis of the
astronomic system. The initial geodetic meridian will be parallel to the initial meridian of
the "astronomic” system. We now have to locate the center of the ellipsoid with respect to
a point located (typically) on the surface of the earth. If we consider the origin point as a
monument in the field we require the distance between the ellipsoid of the datum and the
monument measured along the normal to the ellipsoid through the origin point. This could
be specified as hg = Hp + Ng where Hy is the orthometric height of the origin and Ny is the
separation between the ellipsoid and geoid at the origin. If we consider the origin to be
defined as a point on the geoid then we need only specify Ng to determine the geoid
ellipsoid separation at the origin. In the case of the origin point on the geoid it is of course
necessary to reduce all astronomic observations from the height at which they were made
down to corresponding values on the geoid.

Now let us review the information in the past few paragraphs. We first list the
quantities needed at an origin point to determine a datum in the classical sense. These are:
D, A,A,H, &, 1, N, a, f and two equations (3.1 and 3.3) relating the astronomic
measurements to the geodetic coordinates. In choosing these parameters various
approximations can be made. For example, by specifying that the ellipsoid and the geoid
coincide at the origin point (on the geoid) we would have Ng = 0. We could also make the
deflections of the vertical zero so that the ellipsoid would be tangent (if Ng = 0) to the geoid
at the origin. Clearly if this is done the center of the ellipsoid and the center of mass of the
earth could be far apart, and the separation between the ellipsoid and the geoid could
rapidly increase as we get away from the datum origin. This is demonstrated in Figure 3.1.
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A Datum with the Ellipsoid Tangent at the Datum Origin Point

Now a somewhat different view of a horizontal geodetic datum can be taken if we
regard the datum as a system defined by an origin near the center of mass of the earth with
rectangular coordinates axes aligned parallel to the Conventional Terrestrial System (or
other suitable reference system). In this case we might specify an ideal datum as one such
that the shifts (Ax, Ay, Az) between the center of mass of the earth and the datum
(ellipsoid) center be zero, and that the three rotation angles wx, wy and ©; also be zero. If
these quantities are not zero then we would want to define our datum through specified
values of Ax, Ay, Az and @y, Wy and wz, which constitute 6 parameters needed to locate
the center of the ellipsoid of our datum and to orient the axes of the ellipsoid (Pick et al.
1973).

In practice it clearly is unrealistic to base the determination of a continental network on
measurements made at a single point (the origin). Consequently the procedure used for the
determination of a horizontal datum is one of adopting preliminary origin coordinates and
pertinent parameters sufficient to compute a geodetic network. This preliminary network is
then examined to determine better origin parameters and ellipsoid parameters determined
such that certain quantities may be minimized in a least squares adjustment. Such
procedures will be discussed in a later section. Clearly if the initial data is not the 'best’,
we would expect to see errors in our geodetic network as it is expanded from the origin.
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3.3 Datum Definition and Horizontal Networks Through the Use of Positions Derived
from Space Observations

3.3.1 Introduction

Space techniques enable us to determine rectangular coordinates (X, y, z) or coordinate
differences (Ax, Ay, Az) in some defined reference system. Given the x, y, z coordinates
and a set of ellipsoid parameters we can determine the latitude, longitude, and height of
points that are connected to our usual horizontal network. These coordinates refer to a
datum that is implied by the space system. Specifically we have axes orientation, scale,
and the origin (center) implied by the specific system we are clearly with. These
coordinates could, in a simple sense, be used as fixed points (or more correctly as
information with an error variance - covariance matrix) that can be incorporated into a
horizontal network. We can thus let the space system provided the ultimate datum origin
and no specific datum origin point, in the classical sense is involved.

The actual procedures to be used are not so simple. In practice we have a number of
different procedures that can be used for incorporating space positions in our horizontal
networks. In one procedure the space positions are first transformed into the datum system
using some or all of the transformation parameters treated in Chapter 2. The transformed
coordinates are then used in a two dimensional adjustment to combine the space and
terrestrial data. Such procedures have been used in the U.S. (Dracup, 1975); in Great
Britain (Ashkenazi, Crane, and Williams, 1981, Ashkenazi and Crane, 1985), in Australia
(Allman, 1981 Allman and Veenstra, 1984); in some aspects of the readjustment of the
European Datum, and most probably in other areas. Various assumptions are made with
these procedures depending on how the transformation is performed and what reference
system (scale and orientation) is implied by the terrestrial observations.

A somewhat different point of view can be taken that eliminates any reference to the
original geodetic datum. In this case various space positioning systems are used to define
the orientation, scale, and origin of the final system. This data is merged with the terrestrial
observations with due regard to the possible inconsistencies of the reference system
(orientation and scale) of the terrestrial observations. This general procedure has been used
in the definition of NADS83 (Bossler, 1987). Vincenty (1982) and Steeves (1984)
describes the various forms of observation equations that may be used on this type of data
merging.

It is important to note that the merger of space and terrestrial data is a merger of data
that yields different information. With space observations we deal almost exclusively with
three-dimensional observations. In our horizontal networks, we are dealing with two
dimensions. Various techniques have been described (e.g., Wolf, 1980, 1982a) to carry
these procedures out.

In the following two sections we will examine one specific merger procedure for each
type of combination procedure.

3.3.2 Space Positions to Horizontal Datum System

The method to be discussed here was proposed by Wolf (1981, 1982b) and has been
used in the new adjustments of the European triangulation (Ehrnsperger, 1985, Kelm,
1987).

As a first step assume that an adjustment has been made of the classical network type
where the usual geodetic datum has been defined. This adjustment is done with the
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projective method where the terrestrial observations are reduced to a defined ellipsoid. This
adjustment can be carried out with different scale factors for different distant measuring
equipment, or for distance measurements from different geographic areas or countries.
Orientation unknows for the azimuth (e.g., one per region or country) can also be
introduced to reflect different observational procedures. One such adjustment was ED79
(Hornik and Reinhart, 1980). Another adjustment holding the ED50 coordinates of station
D 7835 Miinchen fixed was carried out in 1985 (Ehrnsperger, 1985). The reference
ellipsoid was retained as the International Ellipsoid.

Now consider a set of stations whose rectangular coordinates are defined in a space
system (e.g., Doppler or laser positioning). Let the geodetic positions, in the local datum,
be 0g, Ag, hg where hg is the sum of the orthometric height plus the astrogeodetic geoid
undulation. From this data calculate the rectangular coordinates in the local datum. These
coordinates are compared to the coordinates of the points in the satellite system to estimate
one scale and three translation parameters. An adjustment procedure has been described
starting with equation (2.33). However we now set the rotation angles to zero and
establish the transformation parameters going from the space system to the local system. In
doing this one must decide if the space systems needs any scale or orientation corrections
of its own. (Such corrections were needed for the Doppler coordinate systems used prior
to WGS84). Using the notation of Wolf (1982a) we write:

where:

rg is the vector of x, y, z coordinates in the local datum;
T is the vector of X, y, z coordinates in the satellite system;

As is the scale parameter;

8ro is the shift vector (Ax, Ays, Az)T
d is the vector of the residuals;
BTis [1, 1, ... I], I = the identity matrix;

One forms the normal equations and solves for 1) and As.

We next turn to the "fusion” of the terrestrial data (actually reduced normal equations
from the local datum adjustment) with the satellite system normal equations. We start by
the comparison of the datum positions derived from the terrestrial network with the
corresponding positions from the satellite system. In doing this comparison we consider as
known As and 8rg determined previously, and we introduce three rotation angles that
represent bias between the satellite system and the terrestrial system. At a given station we
let the corrections (in a rectangular coordinate system) to the terrestrial network values be
dTg. The final coordinates of the station must be the same in the terrestrial side and from
the satellite system. The observation equation takes the form (Wolf, 1982e, eq. 9 and 10):

e, = 10 +8r, ~ (r, —~ ASe — B8L ~ 1As) (3.7)

=81, +1As + ASe +BS1§ + (10 - 1) (3.8)

Note that Ls is the position vector in the satellite system and As and &r) are known from the
previous adjustment. We then introduce the quasi-parameter vector drg as follows:

Or, =dr, +gAs+A§§+B8r8 (3.9)
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where € are the Wy, Wy, @, values as used in Chapter 2 and as given by (2.20). If we
introduce the rotations about the rectangular axes at an average location (Pg) in the system
the coordinate values in the U matrix of (2.20) are replaced by coordinate differences: Xj -
Xo. The normal equations from the satellite and common terrestrial stations stations are
now written as:

Nor, +C, =0 (3.10)

where Cg are the constant terms and N represents the reduced normals after any nuissance
parameters are eliminated.

We now introduce corrections to the geodetic coordinates of the terrestrial points: (80,

A, dh). The corresponding linear corrections will be designated 8ty where for a given
point:

SOM
Ot & =|8AN cosd
i

oh 3.11)
These values can be related to drg through (2.115). Formally we write:
—_Ccw-l
or, =CK™ 8¢, (3.12)

where the elements of C and K are clear from (2.115).

We now introduce rotations in a local coordinate system about axes passing through Pg
(60, A0). Such rotations were used in the Veis transformation method. Wolf (1982b, eq.
IL.5) represents this form as follows:

B = [SXO /Ro,8yq / RO’SAO] (3.13)
where Rg is a mean earth radius, and the three values in (3.13) represent rotations
analagous to &, 1, o used in the Veis procedure. Wolf designates 8%p and 850 as the
horizontal shift components at Pp and the azimuthal rotation angle at Pg. This was done to
reduce the correlations of the estimated rotation parameters. Values of 88 are related to 3¢
using (2.56). Specifically we have:

8¢ = 5, (3.14)
where:
—sinAg sin ¢gcosg cosdqy cosAg
S=|cosAg singgsinhg  cosdgsinig
0 —cosdg sindg (3.15)
We now substitue (3.9), (3.12), and (3.14) into (3.10) to obtain:
ES(QK-ISEg+ASSEO)+ES=O .16
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where:

~ i 0
C =C + XN (zAs+Bdr)) 3.17)
This system contains three unknowns per point plus the 3 rotation unknowns per satellite
system. Since we are dealing with a two dimensional terrestrial network we eliminate all
height parameters from 8ty. The resultant normal equations take the form:

M ot w’
un 1B g t =0
\M M ]\:8@ j]_{_w’]_
Bt Bp 0 B (3.18)

where the 8t” contains only latitude and longitude corrections.

We next consider the normal equations of the terrestrial data where a reduced set of
normal equations have been formed containing only the corrections to the positions at the
satellite stations. We write these equations as follows:

Ngdrg+Cy=0 (3.19)

We now add the two sets (3.18 and 3.19) of normal equations to find (Wolf, ibid, II, 10):

Mn + ﬁ’g M[B ‘:61 g:\_'_ Wf + Q,g =0

Mg, Mgg 8B,

W

(3.20)

This system is solved for §_té and 8Bp. These values are then used in the full set of normal
equations for the terrestrial system. The solution then yields the adjusted horizontal
coordinates for the stations at which no satellite positions are available.

This method of adjustment effectively uses a seven parameter transformation model
between the terrestrial and satellite system. However it does it in two steps. The first step
calculates four parameters while the second calculates three. We must realize that the
results are dependent on height information in the terrestrial system. But the sensitivity to
the heights (or actually geoid undulations) should be low. Preliminary results using this
combination procedure are given in Ehrnsperger (1985).

3.3.3 Horizontal Positions to Space Positions

We next consider the case in which terrestrial observations (directions, distances,
astronomic azimuths, etc.) are to be placed in a frame to be defined by a particular space
system, or a combination of several space systems. Such a procedure would be followed if
we wanted to define a geodetic system to have the attributes (e.g., a center of mass origin)
of the space system(s). We follow Vincenty (1982) in this section.

Let x, y, z be the coordinates in the ideal system and X, Y, Z be the "observed"
coordinates defined in a space system. The connection between these two systems is
represented by eq. (2.33). We now postulate residuals (v, vy, vz) on the "observed"
coordinates and corrections dx, dy, dz to the assumed approximate coordinates (xq, yo,
zp). We then write:
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X0 dx X Vx Wx dX X0
yo|+|dy|=| Y |+| Vy|+Uj®y|+| dY |+As]| Yo
Zo dz 7z Vg (OF) dz Zp (3.21)

Re-arranging this equation we have

Vx dx dX Wy X0 xgX
Vy|=|dy|-| dY |- U|®Qy|-As|Yo|+ | yoY
Vz dz dZ 1073 70 o2 (3.22)

This equation corresponds to (2.3) in Vincenty (ibid).

We now introduce a local coordinate system (u, v, h) at the point. The change in u
and v will depend on d¢ and dA.:

du=(M+h)do (3.23)

dv=(N+h)cospdr

We can write, using (2.115):

dx| |-sin¢ cosA -sinA cos¢ cosA||du
dy|=| -sin¢ sinA cosA cos¢ sinA ||dv
dz

cos ¢ 0 sin ¢ dh (3.24)
We introduce the R matrix in the following form:
dX du
dy | =RT| gy
dz dh (3.25)
Where RT follows directly from (3.24). We now substitute (3.25) into (3.22):
Vx du dX Wy X0 xo- X
vy|=RT|dv|-| dy [-U|@y|-As|yo|+| yoY
' dh dz , z9 z20Z (3.26)
Multiplying fr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>