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Foreword

Since the precise shape of the earth was recognized in the 18th
century to be an ellipsoid of revolution, classical geodetic positioning
has been done using measurements on the surface of the earth that were
ideally reduced (o the ellipsoid for additional -analysis through data
adjustment. It is therefore important to understand the basic properties
of the ellipsoid and curves on its surface that are pertinent to geodetic
computations. It is the purpose of the material in this text to provide
such information.

The information given here is primarily intended as a basis for
a forty lecture hour course in Geometric Geodesy. In doing such a
course not all the material given here can be covered except perhaps
by reference. In many cases I have tried to give detailed derivations
leading to the final result. Although this takes space and time, it
is through the study of these derivations that the reader will obtain
a deeper insight to the mathematics of the problem.

The development of the mathematical tools for analyzing the geometry
of the ellipsoid for geodetic purposes has been carried out for several
centuries.  This book takes advantage of much previously derived
material. Although one might believe that everything that needs to
be derived, has been, this belief is false. Today, new techniques
continue to be published to improve computational efficiency and
accuracy. Such information has been included in this text where appro-
priate.

These notes have been developed from lectures given by the author
at The Ohio State University over a number of years. Early versions
of lecture notes were started in 1975 with minor revisions in succeeding
years. These pages represent a substantial revision of the earlier
sets of Tlecture notes. Comments from the students and the results
of their computational efforts have been incorporated into this new
version.

As indicated in the title, this work is Part I of a two part volume.
Part II covers new topics in & depth similar to this text. Specifically,
Part Il discusses the following topics: Computations with Very Long
Distances on the Ellipsoid; The Theory and Development of Geodetic
Datums; Transformation Between Geodetic Datums; The DJetermination- of
the Size and Shape of the Earth; and Three-Dimensional Geodesy.

The author thanks Professor D.P. Hajela and M. Hanafy for providing
the corrections to a draft version of this book. Ms. Laura Brumfield
carried out the excellent typing of this volume.
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1.  HISTORICAL PERSPECTIVE

The search for the size and shape of the earth has a long and
- interesting history. Although today we have no problem in viewing
the earth as an approximately spherical body, this situation did not
always exist.

Early recorded thoughts indicated (e.g. Homer gth century B.C.)
that the earth was a flat disk supporting a hemispherical sky. With
this view there would be only one horizon with the time and length
of day being independent of location.

In the sixth century B.C. Pythagoras suggested that the earth
was spherical in shape. This suggestion was made on the basis that
a sphere was considered a perfect form, and not by deduction from
observations.

Finally in the fourth century B.C. Aristotle gave arguments that
would support the hypothesis that the earth must be spherical in shape.
Some specific reasons that were mentioned include: a) the changing
horizon as one travels in various directions; b) the round shadow
of the earth that was observed in lunar eclipses; c) the observation
of a ship at sea where more (or less) of the ship is seen as the ship
approaches (or goes away).

The next developments are now related to the determination of
the size of the spherical earth. Although some determinations may
have been made before, the first attempt at a precise determination
(for the time) is ascribed to Eratosthenes of Egypt. The developments
in Egypt were a natural follow up to the developments made in surveying
for the purpose of property location.

In 230 B.C. Eratosthenes carried out his famous experiment to
determine the size of the spherical earth. To do this he made
observations at two cities in Egypt, Alexandria and Syene (now Aswan),
that were located almost on the same meridian. At the southern city
of Syene, the sun shone directly into a deep well at summer solstice,
implying that the sun was directly overhead. In Alexandria, the length
of a shadow cast by the gnomon on a sun dial was measured at noon.
- This Tlength was 1/50 of 360° (7°12') and was the angle subtended at
the center of the earth between Syene and Alexandria, as shown in
Figure 1.1.

ALEXANDRIA
RAYS
FROM SUN
R s s
6 1 SYENE
WELL

Figure 1.1
The Geometry of the Eratosthenes Measurement
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If the distance, s, between the two cities could be determined, the
circumference of the earth would be s/6 if 6 were expressed as a fraction
of a circle. Alternately the radius of the earth would be s/o
if 6 were now in radians.

The determination of the distance between the two cities was a
difficult matter. The most quoted distance as used by Eratosthenes
is the rounded value of 5000 stadia. This distance most probably was
determined by Egyptian step counters "who determined distances for
Egyptian maps". With this value the circumference of the earth was
250,000 stadia. Other estimates gave the circumference as determined
by Eratosthenes to be 252,000 stadia which may have been based on a

more specific distance.

‘ In order to compare the Eratosthenes result with current estimates
we need to convert the stadia length unit to meters. A number of
different conversion factors have been used. One widely used conversion
is that 1 stadium equals 157.5 meters. This would imply a radius of
6317 km which is 1% smaller than the actual average radius. We thus
conclude that the Eratosthenes results were very accurate for the day,
and remained the most accurate estimate for many centuries.

The method used by Eratosthenes was subject to a number of errors
however. For example, Alexandria and Syene were not actually on the
same meridian, nor was the sun actually directly overhead at the time
of the measurement. Nevertheless, the result obtained demonstrated
the method quite well.

The Eratosthenes type experiment was repeated by Posidonius in
the first century B.C. In this computation an arc along a meridian
was measured from Rhodes to Alexandria. The angular separation was
determined by using the star Canopus. When the star was on the horizon
at Rhodes, it was at an angle of 1/48 of a full circle at Alexandria.
Therefore the angular separation between the two cities was 7.5°. The
distance between the cities was determined to be 5000 stadia from sailing
ship measurements. This implied a radius 11% less than today's estimate.
It turned out that both the angular measurement and the distance
measurement were improved but in a proportional way so that the result
- was approximately correct. On the other hand there is some discussion
that Posidonius did not actually make the measurement described above,
but perhaps just gave a talk describing the method in a simple way.

For the next few centuries little work was done in studies related
to the figure of the earth. In the ninth century Caliph al-Mamum had
a new measurement made near Bagdad, Iraq in the plain of the Euphrates
River. In this application wooden rods were used to measure the length
of a degree of Tlatitude. After considering the customary units
conversion problem, the measurements yielded a radius too large by
10%.

In the 17th century, Snellius carried out measurements along a
meridian in the Netherlands. For the first time for these purposes
he used a triangulation procedure measuring angles with one-minute
precision. Combining this measurement with astronomic latitudes made
at the endpoints of the meridian arc, Snellius determined the size
of the spherical earth using the basic method of Eratosthenes. A second
determination of the radius (or actually the quadrant of the meridian)
gave a vresult too small by 3.4%. Additional work was done by
Musschenbrock (Snellius' successor) who obtained an improved earth
radius.



It was in this time period that the era of spherical geodesy started
te fall. This actually started in 1666 when the Académe Royale des
- Sciences was established to carry out measurements for the preparation
of an accurate map of France and the determination of the size of the
earth. 1In 1669 Picard started the measurements of a meridian arc near
Paris. Between 1683-1716 the arc was extended to the south to Collioure
and to Dunkirk to the north by a team led by Lahire and Dominique and
Jacque Cassini. The computations made from these measurements indicated
that the length of the meridian arc was smaller towards the poles.
This tentative conclusion conflicted with the notion that the earth
was spherical in shape. In fact it implied that the earth was pointed
towards the poles as shown in Figure 1.2. :

Figure 1.2
The Shape of the Earth from the Early French Measurements

~

r

These measurements also conflicted with the theories being proposed
by Isaac Newton of England. Newton, in considering his attraction
theory, postulated that the rotating earth should be flattened in the
polar areas. This would imply that as one travels towards the equator
we go farther from the center of the earth. The effect of this was
actually observed by Richer (in 1672) on pendulum clocks that kept
good time in Paris, but lost 2% minutes per day when brought to Cayene,
Guiana, near the equator in South America. This time lost was consistent
with Newton's theory because of the decrease of gravity in going from
Paris to Cayene. ~ .

In order to resolve this conflict, the Académie Royale des Sciences
established two geodetic survey missions. One expedition (1734-1741)
was sent to Peru (now Ecuador) at a latitude of about -1.5° under the
direction of Godin, La Condamine and Bouguer. The second expedition
(1736-1737) was sent to Lapland (at a latitude of about 66.3°) under
the direction of Maupertuis and Clairaut. The results of these
measurements indicated that the length of a 1° meridian was greater
in the polar regions than in the equatorial regions. This agreed with

-3-



the theories of Newton and implied that the earth's figure could
-be represented by an ellipsoid slightly flattened at the poles as shown
in Figure 1.3.

Figure 1.3
An Ellipse Flattened at the Poles

A current estimate of the equatorial radius (a) of the earth is
6378137 meters. The flattening (f = (a-b)/a) is approximately 1/298.257
which implies a difference of 21.7 km between the equatorial radius
and the polar radius.

Measurements were made by others (e.g. Svanberg, (1805) in Sweden,
Lacaille (1751) in South Africa, Gauss (1821-1823), Bessel (1831-1838))
to verify and improve the knowledge of the size and now, the shape
of the earth. Studies have continued today to better refine this
knowledge. As improved measuring techniques became available it became
more important to define more exactly what we mean by the Figure of
the Earth.

In order to do this we consider the actual topographic surface
of the earth, and a surface closely associated with the ocean surface.
We recognize that the oceans comprise approximately 70% of the surface
area of the earth. It is therefore appropriate to visualize the figure
of the earth as that of the ocean surface. In 1872/3 Listing introduced
the concept of the geoid as the surface of the undisturbed sea and
its continuation into the continents. The ellipsoid of previous studies
now became an approximation to the geoid.

In 1884 Helmert defined more precisely the geoid identifying it
with an ocean with no disturbances such as would be caused by tides,
winds, waves, temperature, pressure, and salinity differences, etc.
This geoid was considered to be an equipotential surface of the earth's
gravity field. The geoid in the continental areas was to be visualized
by the water level in infinitely small canals in the land.

-4~



Unfortunately the definition of the geoid given above is not fully
realizable. This is so because the ocean surface is a dynamic surface
constantly changing due to many currents etc. However these effects
are generally at the one meter level so that for many purposes we can
identify mean sea level with the geoid.

We again point out that the ellipsoid is used now to approximate
the geoid. Although there are a number of different kinds of ellipsoids,
the one most commonly dealt with in geodesy is an ellipsoid of revolution
(about the minor axis) that is symmetric with respect to the equator.
Another ellipsoid is a tri-axial ellipsoid 1in which the equator is
an ellipse. However, computations on a tri-axial ellipsoid =zre quite
complicated with respect to those of the bi-axial symmetric rotational
ellipsoid. Consequently in this discussion of Geometric Geodesy we
will concentrate on the geometry and geodetic importance of the
ellipsoid. .

The various surfaces that we have discussed are shown in the
meridian section of the earth represented in Figure 1.4.

Topographic
Surface

Geoid

Ellipsoid of
Revolution

Figure 1.4 ‘
The Relationship Between the Ellipsoid, the Terrain, and the Geoid

v

We should put into perspective the magnitudes of the various
quantities of interest. Recall that the equatorial radius of the earth
is approximately 6378137 meters. With respect to an ellipsoid whose
center is at the center of the earth the root mean square geoid
undulation (N) is 30 m with the extreme value of approximately -110 m.
And finally the terrain, which has a maximum elevation with respect
to mean sea level of about 9 km.

The historical information described in this section has been
based on two papers by Irene Fischer (1975a, 1975b).
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2. USEFUL MATHEMATICAL PROCEDURES

In the development of certain equations in the text to follow,
it will be useful to call on certain standard mathematical procedures
involving series expansions and trigonometric identities. The most
widely used are now discussed.

2.1 Taylor and Maclaurin Series

A function f(x) can be expanded about a point x_ using a Taylor
series: 0

FOx) = F(x)) + (xexg) £ (x ) + L5000 ) o LXad3pmny ) 4 (2.1)

where f'(xp) is the first derivative of f(x) evaluated at x, and
so forth for the other prime terms. In principle one must check for
the convergence of this series, but for most geometric geodesy
applications convergence will be rapid.

In some cases it is convenient to let x-x; = h and x=x, so that
(2.1) becomes;

fF(x+h) = £(x) + hf'(x) +%f—f"(x) +g—ff"' (x) + ... (2.2)

As an example consider f(x) = sin x. Applying (2.2) we have:

2 3
sin(x+h) =sinx + h cos x - h751’nx - h6 cos x + 2.4 sinx + ---  (2.3)

A special case of the Tay1or series is the Maclaurin found from
(2.1) by letting x, = 0 so that we have:

2 3 e
f(x) = £(0) + xf'(0) + 3 £(0) + 37 £ (0) + --- (2.4)
As an example again let f(x) = sinx. Then (2.4) becomes:

3 5 7
sin x = x "%T +-§T --;T + --- (2.5)



2.2 The Binomial Series

Another useful series is the binomial series which can be written
as: .

(1 + X)n =1+nx+ ngg-'-l! x2 + n(n'13' n-2 x3 + eee (2.6)

The coefficients of x, x2, x3, etc. are called binomial coefficients.
The binomial series exists for integral or fractional positive or
negative exponents and always converges if x < 1. Useful expressions
following from the binomial series are:

T}? =1+x+x+xP+xt+ L

Tex " 1-x x2 - x3 e xt - L,
=1 - 2x + 3x% - 4x3 + 5x% - ...

7
L o 1w 2x + 3x2 4 ax3 4 Bxt 4.
ll-xi2

(2.7)
SCEESEE EF SRS s * 2% - Tom * Zo18* -
X =1 g- g - g - g -
s 1o ':f%x3 75 - 755 * oo e
;%%i =1 +-%a +-§x2-+ f%x3+ ;g;x + ...
Vi-xZ =1 - %xZ - %x“ - f%xe - igﬁxs - ?%3*10 - ...
/%&7 =1 +-%x2 +%x‘* + 156"6 + 132%x +§53—6x 0+ ...



2.3 Series Inversion
Another important series relates to series inversion. One type
relates to the inversion of convergent algebraic series, while another

relates to the inversion of trigonometric series. Consider first the
following power series:

Yy = apx +a,x2 + azx3 +axt+ ... (2.8)

The inversion of this yields the general form:

X = Ay + Apy2 + Agy3 + Ayt + ... (2.9)
where:
1
Al = ;;
- a
AZ = 'a_%';
i
Ay = 5 (22 - ajay); (2.10)
1
_ 1 2 3y.
Aq = 3'7' (salaza3 = alaq - 532),
1
1

Consider next an expansion written in the following form (Ganshin,
1967, p. 9):

tan y = p tan x (2.11)
Then:
y - x=gq sin 2x +-% g2sin 4x + %»q3sin 6x + ... (2.12)
where:
= p-1
q p+1



Another importiant formula is the following:

Y = x + P,y8in2x + P,sindx + Pgsinbx + --

The inversion of this equation is:

X =y + stinZy + P.sin4y + P6sin6y + —

where (Ganshin, 1967, p.32):

: 1 1 1 1

P, = -P, - PP, +§P3 ~ P¢Py + PP} _§P§P6 +§P§P.4 _']'_Epg 2 —
P. = -P, + P} - 2P,P, + 4P2P, - % P§ &+ —-

: _—_
P6 = —PG + 3P2P4 - -g' Pg - 3P3P5 + 'g Pzpi + ngPQ - %‘7- PgP4 + 8— Pg
Po = Py + 2P + 4P,P, — 8P3P, + & Pg + ——

3

Pro = ~Pyo + 5PePq + 5Py - 22 P3P, ~ 22 p,p3 + 128 pgp, _ 125 p;

-8a-

$ ——



2.4 Summary of Trigonometric Expansions

Using the Maclaurin

series

2.5

- expansions can be derived where x
3 5 7
sinx=x-%+g,-%+---
2 4 6
cosx=1-—§—!+%—!--’é—!— -—-
. X3, 2x5  17x7
1;anx—x+3+—15—+315
. 3
x=s1n1y=y+16—+
X:tan‘ly: .\L

Multiple Angle Formulas

For a number of apphcatmns

relating powers of the sin x or cos x to multiple angle formulas.

formulas are as follows:

. 1 1
2y=2 o 1
sinZ x 5 = 5COS 2X

. 3 . 1 .
3y=2 -2
sin3 x 4s1nx 4s1n3x

sin4 x =

ool w

. 5 .
s1n5x=§s1

: 5
6 ¥ = o
s$In® X 16

35

—%cos 2X +%cos 4x

nx--l%sin 3x+—1%si'n 5x

15 ’ 3

previously discussed the
is an angle in radians:

+
HF<’1
)
N
+

3 7
Y5y .
Y-F*tg -5+t

following

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

it is convenient to have formulas

—3—cos 2x +Rcos 4x-%cos 6x

21 7

sin’ x—msm X - 7 sin 3X+64 sin 5x - 614 sin7x

35

7 7 1

: - A L 1
sin8 X =758 = 1g €08 2x+32 cos 4x 6 cos 6x + 128 COS 8x

63

21 9

- in Bx - =2 sin 7x + L si
sindx = 128 sin x - 64s1n3x+64s1n5x-25651n7x+25651n9x

- 63
10 T c—
SIn¥X 56

—

05

15

tg COS 2x+64cos 4x - —415—cos 6x+zgscos 8x -

-9-
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+

cos2 x = cos 2X

Nof 1=s
~of s

cos3 x =%cos X +%cos 3x

3.1 1.
Ly =944 4
cos™ x 8+2c052x+8cos4x

€0S° X =-§cosx+-1%cos 3x+1i6cos 5x
5 15 3 1
6y =2 449 =2 2
cos® x 16+32cos2x+16cps4x+32c056x
. (2.19)
35 21 7 1
7y =29 £1 L i
cos’ x 64cosx+64cos3x+64c055x+64cos7x
cos8 x =1—32%+%cos 2x+—37—2cos4x+—1%c056x+W18c058x
63 21 9 9 1
9, =299 £i = 2 2
cos? x 128c05x+64cos3x+64cos5x+256cos7x+256c059x
63 , 105 15 45 5 1
0y =93 L 2Ud 49 39 =2 —_
cosi¥x 56+ 56cos 2x+64cos 4x+512cos 6x+256c058x+ 512cos 10x
sin 2x = 2 sinx cos x
sin 3x = 3 sinx coszx - sind3x
sin 4x = 4 sinx cos3x - 4 sin3 x cos x
sin 5x = 5 sinx cos%*x - 10 sin3x cos2x + sin5>x
(2.20)

sin 6x = 6 sinx cos>x - 20 sin3x cos3x + 6 sinSx cos x
sin 7x = 7 sinx cos®x - 35 sin3x cosx + 21sin® x cos2x - sin? x

sinx cos’ x - 56 sin3 x cosS>x + 56 sin5x cos3x - 8 sin7 x ¢os X

i
oo

sin 8x

sinx cos8x - 84 sin3 x cos6x + 126 sin5x cos“x - 36 sin7 x cos2 x

L]
(Vo)

sin 9x
+ sin?9 x

sinl0Ox = 10 sinx cos®x - 120 sin3x cos” x + 252 sin5 x cos® x
-120 sin7 x cos3 x + 10 sin® x cos X
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cos 2x = cos2 x° = sin2 x

cos 3x = cos3x - 3 cos x sin2 x

cos 4x = cos“*x - 6 cos?2 x sin2 x + sin“x
cos 5x = cosSx - 10 cos3x sin2x + 5 cos x sin% x
(2.21)
cos 6x = cos®x - 15 cos“x sin2x + 15 cos2 x sin“ x - sinf x
cos 7x_ = cos7x - 21 cos5x sin2x + 35 cos3 x sin4x - 7 cos x sin® x

cos 8x = cos8x - 28 cosb x sin2x + 70 cos“ x sin*x - 28 cos2 x siné x
+ sin8 x

cos 9x = cos9x - 36 cos?x sin2x + 126 cos5x sin“x - 84 cos3x siné x
+ 9 cosx sin8'x

cosl0x = cosl0x - 45 cos8 x sin2 x + 210 cos6 x sin“x - 210 cos“ x sin6 x
+ 45 cos2 x sin8 x - sinl0x,

Another wuseful identity is the ‘fo"llowing for the two angles X

and Y:
s1'nnX-s1’nnY=2cos-02—(X+Y) sin%(X-Y) (2.22)
cosnX-cosny=-2 sin% (X +Y) sin%(x -Y) (2.23)

2.6 Numerical Conversion Constants

For computations it is necessary to have certain conversion factors.
Selected values are as follows:

m | 3.14159 26535 €979 32384 62643
1 radian 5722957 79513 08232 08767 98155
1 radian 20626480624 70963 55156

=11=



3. PROPERTIES OF THE ELLIPSOID
3.1 Introduction

As discussed in section 1 for many computations in geometric geodesy
we deal with the geometry of an ellipsoid of revolution. This ellipsoid
is formed by taking an ellipse and rotating it about its minor axis.
Let this ellipse be as shown in Figure 3.1.

Pz'

Figure 3.1
The Basic Ellipse

In this figure we have:

F,» F,; foci of the ellipse AP,BP, ;

0 = center of the ellipse;
OA = 0B = a = semi-major axis of the ellipse;
OP, = 0P, = b = semi-minor axis of the ellipse;

PP, is the minor axis of this ellipse while P
is an arbitrary point on the ellipse.

From the definition of an ellipse as a locus of a point which moves
so that the sum of its distances from two fixed points is a constant
we have:

F,P + F,P = a constant (3.1)

If we let P go to B, and then to A, we can find that:
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F,P+FP=2a (3.2)

If we now let P go to P,, and note that F,P, = F;P; we must have
from equation (3.2) that F,P, = F,P; = a, the semi-major axis. This
information is shown in the following figure:

Az

Figure 3.2
Notation for the Ellipse

We are now in a position to define some of the fundamental
parameters of this ellipse. We have the following:

1) the polar flattening, f:

f:z2 ; b (3.3)
2) the first eccentricity, e:
3) the second eccentricity, e';

el = OEI - JEZ—E_EZ; 022 82 g b2 (3.5)
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4) the angular eccentricity, o (see Figure 3.2); o ‘is the angle
at P between the minor axis and a line drawn from P, to
either F, or F, . We have:

cos o =-§ =1-f (3.6)
sina = QEL =e (3.7)
tan o = le = ¢ (3.8)

5) the linear eccentricity, E;
E = ae (3.9)

Two other quantities often used are:

2 _ R
n= 22 (3.10)
- a-=->b
nzdid (3.11)

In some books the quantity m 1is designated as e"?

The basic parameters, a, b, f, e, e', o, m, n are interrelated
through equations that can be fairly readily derived. For example,
consider the relationship between f and e'. From (3.4) we have:

02 =1 - %é_ (3.12)
From (3.3):

ben- (3.13)
Which is substituted into (3.12) to find:

e? = 2f - f2 (3.14)

Other relationships of interest are as follows (Gan'shin, 1967):
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2
T 142 T T2 T Tm
- e2
e’L =__:-Z

l1-e

2-0-f) /T =& - L - LN,

JTee 2 I#n
Lot 1-/TeT
- 1+/T-eZ
2f-f2 2n

"= T+I-F)Z T Ten?

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

In addition it is sometimes convenient to have some series expressions
relating certain quantities. For example, we have the following

(Gan'shin, 1967):

n =
n=(1/4)e2 + (1/8)e"* + (5/64)eb + (7/128)e8 + (21/512)el0 +
n=(1/2)m + (1/8)m3 + (1/16)m> +

m=f+ (1/2)f2 - (1/4)f" - (1/4)F5 +

m= (1/2)e? + (1/4)e" * (1/8)e® + (1/16)e8 + (1/32)el +

m=2n - 2n3 + 2n° +

e'2= 2f + 3f2 + 4f3 + Bf4 + 65 +

+

e'2= 4n + 8n2 + 12n3 + 16n“ + 20n5 + .

e'2= 2m + 2m2 + 2m3 + 2m4 + 2m5 +

-15-
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The numerical values for these quantities depend on the fundamental
definition of a size (a) and shape (usually f) parameter. Many different
ellipsoids have been used in the past. Currently the system of constants
" recommended by the International Association of Geodesy is the Geodetic
Reference System 1980 (Moritz, 1980). For this system, quantities
of geometric interest are the following:

6378137 m (exact)

[+1}
i

b = 6356752.3141 m
E = 521854.0097 m
c = 6399593.6259 m
e2 = 0.00669438002290
e'2= 0.00673949677548
f = 0.00335281068118
f-1= 298.257222101
n = 0.001679220395
m = 0.003358431319
Q = 10001965.7293 m
R, = 6371008.7714 m
R, = 6371007.1810 m
R; = 6371000.7900 m
In the above constants Q is the length of a meridian quadrant, R;
is the mean radius (2atb)/3, R, the radius of a sphere having the same
surface area as the ellipsoid, and Rgj is the radius of a sphere having
the same volume as the ellipsoid. The derivation of the equations
for these quantities will be discussed in later sections.
3.2 Geodetic Coordinates
We first consider a rotational ellipsoid whose center is at O.
We define the 0Z axis to be the rotational axis of the ellipsoid. The

0X axis lies in the equatorial plane and intersects the meridian PEP,
which is taken as the prime or initial meridian from which longitudes
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will be measured. The QY axis is in the equatorial plane, perpendicular
to the O0X axis such that 0X, 0Y, 0Z form a right handed coordinate
~ system as seen in Figure 3.3:

X

Figure 3.3
Coordinate Systems for the Ellipsoid

An arbitrary point Q or Q' (on or off the surface of the ellipsoid)
may then be defined by its X, Y, Z coordinates.

We should note that on a given meridian such as PQP; or PEP,,
the Tlongitude is a constant, for any point located on this meridian
plane. The geodetic longitude of a point is defined to be the dihedral
angle between the planes of the prime meridian (PEP;) and a meridian
(e.g. PQ P1) passing through a given point. Longitudes in this book
and for most cases are measured positive eastwards, although there
are some cases (e.g. in the United States) where some references consider
longitudes measured positive westward.

The geodetic latitude, ¢ , of a point located on the surface
of the ellipsoid is defined as the angle between the normal to the
ellipsoid at the point and the equatorial plane. For a point located
above the surface of the ellipsoid, there are a number of different
definitions possible. The simplest one is that it is the angle between
the normal to the ellipsoid, passing through this point, and the equatorial
plane. This system of coordinates (i.e. ¢, ) are called geodetic
coordinates. (In some books some references may be found to geographic
coordinates which are the same as geodetic coordinates). ¢ and p form
a set of curvilinear coordinates on the surface of the ellipsoid. They
allow the description of many properties involved with the surface
and curves on the surface.

3.3 The Meridian Ellipse

The meridian ellipse passing through point Q is shown in
Figure 3.4 with coordinates axes z and x.
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Figure 3.4
The Meridian Ellipse

In addition to geodetic latitude we may also define the reduced latitude
B and the geocentric latitude v . The reduced latitude (sometimes
called the parametric latitude) is the angle at the center of a sphere
that is tangent to the ellipsoid along the equator, between the plane
of the equator and the radius to the point intersected along the sphere
by a straight line perpendicular to the plane of the equator and passing
through the point on the ellipsoid whose reduced latitude is being
defined. The reduced latitude is shown in Figure 3.5.

P

Figure 3.5
The Reduced Latitude
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The geocentric latitude is the angle at the center of the ellipse
_between the plane of the equator and a line to the point whose geocentric
latitude is being defined. Note that this definition allows a simple
means to define this latitude even though the point may not be located
on the surface of the ellipsoid. The geocentric latitude is shown
in Figure 3.6. b

r
Zz

|
[
|
A
X - ¥

Figure 3.6
The Geocentric Latitude

The z and x coordinates may be computed knowing either ¢, B ,
or y and the parameters of the ellipsoid. These relationships are
useful in deriving expressions that relate the various latitudes.

We first consider the determination of x and z using the reduced
- latitude g8 . From Figure 3.5 we write:

2 Y o= a2
(P ;2 + (PP} =a (3.22)

The equation of this ellipse may be written:

|><
N

2

N

a

or with x = 0P, and z = P,P we have:

L(;_PZ;.LZ + L%;’li =1 (3.24)

Combining (3.22) and (3.24) we have:

(0P)2 + (PP)2 22 = a2 = (0P )2 + (PP )> (3.25)

-19-



Solving for P,P we find:

PP =2 p,p, | (3.26)
We have from Figure 3.5 that:

P,P, = a sin g (3.27)

so that the x and 2z coordinates are:

a cos B (3.28)

x
"

0P,

z=P,P=b sing (3.29)

To determine x and z using geodetic latitude we note, considering
Figure 3.4 that the slope of the tangent line is the tangent of the
angle with the positive axis;

dz _ = - = Z€0S ¢
o - tan (90 + 4) cot ¢ =50 " (3.30)
dz

where E;—is the slope of the tangent line. To determine the derivative
we rewrite equation (3.23) as follows:

b2x2 + a2z2 = a2%p2 (3.31)
and differentiate to get

b2xdx + a2zdz = 0 (3.32)
or rearranging we have:

dz _ =b2 | x _ -cosy
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Using equation (3.26) and (3.33)\we have:

b2xsin¢ = a2z cos ¢

Squaring both sides we have:

b4x2sin2 ¢ - akz? cos?¢ =0

(3.34)

(3.35)

We then multiply equation (3.31) by -b2sin2 ¢, add the result to equation
(3.35) and multiply through by -1, and then solve for z to find:

b2 sin ¢

z = - ,
(a2 cos?2 ¢ + b2 sin2 ¢)=

(3.36)

In a similar elimination procedure we find for x:

3% coS ¢

X " TaZ cosZ 4 + b2 sinZ §)%

Using e2 from equation (3.4)
and (3.37) become a(l-e2? sin2 ¢)%
« = a cos ¢
(1-e2 sin? ¢)%
, = a(l-e?) sin ¢
(1-e2 sin%¢)2

At this point it is convenient to

W2 =1 -
VZ =1+
w2 =1-
vZ =1+

(3.37)

the denominators of equation (3.36)
so that x and 2z may be written:

(3.38)

(3.39)

introduce and define four new quantities:

e2 sin? ¢
e'2 cos? ¢

(3.40)
e2 cos? g

e'2 sin2 g

Starting from these designations,various other relations may be derived.
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W = 1

1+e'2 sin2 8

(3.41)
2 = 1
v 1-eZ cos? B
Using W and V 1in equations (3.38) and (3.39) we can write:
x =258 (3.42)
-p2 i
; = a(l ew) sin ¢ (3.43)
_C
X = cos ¢ (3.44)
. ¢ sin ¢ _
2y Ti+e q) (3.45)
where ¢ = az/b; A geometric interpretation for c¢ will be given later.

A geometric meaning may be attached to W and V by considering
elements in Figure 3.7. ‘

Z

Figure 3.7
A Geometric Interpretation to W and V

In this figure q 1is a distance measured from the origin to the
plane at P (whose geodetic latitude is ¢) such that the line from
the origin is perpendicular to the tangent plane. We have:
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q=Xxcos ¢ +2zsing : (3.46)

- Substituting from equations (3.42) and (3.43) we have:

q = al (3.47)

From (3.44) and (3.45) we have:

q = bV (3.48)

We can equate (3.47) and (3.48) to finally write:

oo

Vv (3.49)

We next turn to the determination of x and =z  using the
geocentric latitude. From Figure 3.6 we write: '

>
1]

r cos y ‘ (3.50)

N
it

r siny (3.51)

where r is the geocentric radijus.

Clearly we have:
r =/xZ ¥ z2 (3.52)

Substituting equation (3.50) and (3.51) into equation (3.23), and solving
for r we find:

a(1-e2)s b
v1-e< cosc ¢y ¥ 1-e4 cos¢ y

(3.53)

Substituting this value of r back into equations (3.50) and (3.51) we
have:

a(1-e2)% cos y
v1-eZ cos?Z y

. = (3.54)
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_ a(1-e2)% sin y
v 1-e4 cos?y

(3.55)

We could also obtain expression for the radius vector in terms of
geodetic latitude if we substitute equations (3.38) and (3.39) into
equation (3.52). We find: ,

r=—%(1+e2 €2 - 2) sin2 ¢)% (3.56)

Since the second term on the right hand side of (3. 56) is on the order
of e2 it is convenient to obtain a series express1on for the radius
vector. We first expand the square root term using the binomial series
(equation (2.7)) so that:

%-ez (e2 - 2) sin2¢ - %—e“ sint ¢ + ...) (3.57)
Now compute a Maclaurin series expansion (equation (2.4)) for 1/M:

1. e . 3 b cinn '
W 1+ > sinZ¢ + et sint g + ... (3.58)

Multiplying (3.57) and (3.58) we find a series expression for r in
terms of geodetic latitude:

3

- _8 i et o5 hiiuy 436 cink
r = a(l 7 $In° ¢ + 55 sin“¢ - g e* sinto + 7 € sint ¢
13 (3.59)
e65in®
T sinfy + ...)

The number of terms to retain in such an expression depends on
the accuracy desired. Reca111ng that for the Geodetic Reference System
1980, a = 6378137 m, 0.00669... the Tlast two terms in equation
(3.59) have a maximum value of 0. 0008 meters.

3.4 Relationships Between the Various Latitudes
We may use some of the equations previously derived to obtain

relationships between the various latitudes described. From Figure 3.6
we write: :

tan y = (3.60)

> [N
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Substituting for 2z and x from equations (3.28), (3.29) and (3.38),
(3.39) we have:

tan y =-g tan 8 = (1 - e2) tan ¢ " (3.61)

Thus we have:

tan y = (1-e2)*% tan g = (1 - e2) tan ¢ (3.62)
tan g = (1-e2)* tan ¢ ' (3.63)
tan ¢ = (1 + e'2)% tan g (3.64)

Although these relationships are sufficient to determine one type of
latitude given any other, certain procedures are simplified if other
relationships are also found. For example, we equate the z coordinate
as given in equations (3.29) and (3.43) to obtain:

. ({ ]
sin g = W ' =y (3.65)
Equating equations (3.28) and (3.42) dealing with the x coordinate we have

cos g = Ezﬁiil (3.66)

Other relations of interest include the following:

coS ¢ = __.__COVS B = (1 - e2)1/2 ————-Cows 8 (3.67)
sing = SIE - (14 ¢2)5810 8 (3.68)

Next we turn to the determination of expressions for the
determination of the difference between two types of latitude. We
first consider closed expressions and then series expressions. We
now consider the difference between the geodetic and reduced latitude
by writing:

sin (¢ - B) = sin ¢ cos B - cos ¢ sin 8 (3.69)

We then substitute values of sin g and cos g from equations (3.65)
and (3.66) to obtain after some reductions:
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f sin 2.¢

W (3.71)

sin (¢ - B) =

nother closed expression may be written starting from the following
identity:

. - - tan¢ - tang
tan (¢ -8 ) T+tans ~tang (3.72)

Substituting for tan g8 as a function of tan ¢ we find:

_ . _hsin 2¢
tan (¢ - B) Tfn cos 24 (3.73)

Closed expressions giving a function of (¢ -y ) as a function
of either ¢ or ¢ can be derived in closed or series form. To derive
a closed expression we write:

tan ¢ - tan ¢

tan (¢ - v) = 1+tan ¢- tan ¢ (3.74)
Substituting (3.61) for tan y we can write:
2 @
tan (¢ - v) = 2(91 _S1enz 251¢n4¢') (3.75)

The derivation of series expressions for the differences of two
latitudes can be done using equations (2.11) and (2.12). For example,
we may apply this technique to equation (3.63) where y=8, p =(1-e2)%
and x=¢ . We find:

. n2 5 n3 .
6 - B = ns1n2¢-7r,mn 4¢+—§ sin 66 + ... (3.76)
This difference, as a function of B8, may be written:

2 3
6 -8 =n sin 28 +1‘2— sin 43‘“"7 sin 68 + ... (3.77)

Using a similar approach the difference between the geodetic and
geocentric latitude as a function of ¢ may be written:

2 3.
6 -y =msin 2¢-'—"2— sin 4¢+'"T sin 6o+ ... (3.78)
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This difference as a function of y is:

2 3 ’
-y =msin 2y + 2 sin 4y+ 8 sin 6y+ ... (3.79)
¢ 2 3

For the Clarke 1866 e]]ipsoia (f = 1/294.978698) we have (Adams, 1949):

35072202 sin 26 - 0v2973 sin 4¢ + 0Y0003 sin 6¢ +...
(3.80)
700Y4385 sin 26 - 1"1893 sin 4¢ + 070027 sin 6¢ +...

¢ -8B

¢ =9

For the ellipsoid of the Geodetic Reference system 1980 we have:

¢ - B = 346V3640 sin 2¢ - 0¥2908 sin 4¢ + 0V0003 sin 6¢

(3.81)

¢ - v = 69217262 sin 2¢ - 1'1632 sin 4¢ + 0Y0026 sin 6¢

We can see that the maximum difference of ¢ -g 1is approximately
6' while the maximum difference of ¢ -y is 12'. This difference occurs
close to latitude 45°.

3.5 Radii of Curvature on the Ellipsoid

Consider first a normal to the surface of the ellipsoid at some
point. Now take a plane that contains this normal and thus is
perpendicular to the tangent plane. This particular plane will cut
the surface of the ellipsoid forming a curve which is known as a normal
section. The radii of curvature of a normal section will depend on
the azimuth of the 1line. At each point there exist two mutually
perpendicular normal sections whose curvatures are maximum and minimum.
Such normal sections are called principal normal sections.

On the ellipsoid these two normal sections are:

1. the meridional .section, a plane passing through the given
point and the two poles;

2. the prime vertical section, which is a section through the
point and perpendicular to the meridional section at the point.

The radius of curvature in the meridian is designated M and

the radius of curvature in the prime vertical direction is designated
N. _

-27-



In order to find the radius of curvature in an arbitrary direction

we may utilize Euler's formula:

2 in2
1 _ cos?p . sin2p (3.82)
P N P,
where o is the arbitrary radius of curvature;

0 is the angle measured from the principal section with

the largest radius of curvature
direction; and

G “in a principle normal

e, is the radius of curvature in the direction of the other

principal normal direction

After examining the N and M values we shall apply equation (3.82)

to the ellipsoid case.

3.51 The Radius of Curvature in the Meridian

We first consider the determination of
if we have a plane curve specified as
curvature at a point on the curve is:

[1+ (%)2 1%/2

d?z
dx?

g =

From equation (3.30) we have:
dz _ _
aIx cot ¢

Then we differentiate this:

d?z _ _ 1 d¢ ___1
dx2  sin2¢ dx sin2y

0o
-e-|><|'"‘
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z = F(x), the radius of

(3.83)

(3.84)



From equation (3.38) we have:

¥ = a _cos ¢
(1-e4sin<¢ )k

which is differentiated with respect to ¢ to obtain:

dx _ -a(l-e3sin ¢
d

o (l-e2sinZg)3/z (3.85)

Using (3.85) in (3.84) we have:

d2z _ -(1-e2sin2¢)>/2
dxZ ~ "a sin3g(1-e?) (3.86)

Substituting the values of (3.86) and of dz/dx into (3.82) when p is now
M we find: \

-p2
- TSR 387

where the minus sign has been dropped by convention. Recalling the
definitions of W, V, and c, alternate expressions for M are:

-0l
v alle?) | (3.88)

We now consider an alternate derivation for M considering Figure
3.8: :

zh

i 4

Figure 3.8
A Portion of a Meridian Arc
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We have ds a differential distance along a meridian arc; d¢ is

- the angular separation.

of the meridian arc so that:

ds = Mdo =7 dxZ + dz 2 = dz/l + (8%)2

M

dé

dz
€0So

or

1 dz
cos¢ d¢

dz

Using equation (3.39) for z we find:

d

d

Z:

a(l1-ée2)cos o

¢

W3

which yields from (3.90)

. a(l-e2)

M

W3

which is the same as (3.88)

At the equatcor ¢ =0 so that:

M

¢=0

= a(l-e2) = a(1-f)2
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At the poles ¢ = *90° so that:

. _a(l-e?) _ a __a _a% _
M¢ =90° (1-e2)3/2 (1-e2) Y2 1+ b ¢ (3.93)

In this expression, ¢, as introduced earlier, is seen to be the radius
of curvature at the pole.

We could take the ratio:

Mgn=a. 1=1
Mo 1-f  a(l-f)< (1-f)°

or

TS ' (3.94)

Mgg

If values of M were tabulated, they .could be plotted with?respect
to an origin at the surface of the reference ellipsoid. The end point
of the various M values would fall on a curve as shown in the following

diagram.
A . :

Figure 3.9
Equatorial and Polar Meridian Radii of Curvature

Let us define 4A; and A, as shown in the diagram:
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Then:
Ay = a-a(l-f)? = a(2f-f2) = ae?

Ay = ae? , (3.95)

In addition:

§2
A = ae2 - Al '
27 T-F) T (3.96)

For the Geodetic Reference System 1980 we have the following values
for 4, and 4 .

by = 42,697.67 m

Ay = 42,841.31 m

3;52 Radius of Curvature in the Prime Vertical

o%

There are several procedures to derive N. One approach is to
use the theorem of Maismer that the radius of the curvature of an inclined
section is equal to the curvature radius of a normal section multiplied
by the cosine of the angle between these sections. In our case we
want to find the radius of curvature of the normal section knowing
the radius of curvature of the inclined section. We have:

normal section in
prime vertical

radius of curvature
of the prime vertical

Figure 3.10
Prime Vertical Radius of Curvature



radius of curvature of the parallel
Parallel of <_ -
Latitude
Section
Figure 3.11

Geometry for the Use of Meusnier's Theorem
In the above figure N 1is the length of the normal line from the surface
of the ellipsoid to the intersection of this line with the minor axis.

The radius of curvature of the para]]el'is p. From the figure:
p=Nsin (90 - ¢) = N cos ¢ (3.97)

The angle between the prime vertical section and the inclined section
is ¢ . Then:

p = (prime vertical radius of curvature) x cos ¢ (3.98)
In equations (3.97) and (3.98) we see that the radius of curvature
in the prime vertical direction is N.

An alternate approach is from a geometric argument. To do this

we consider the following figure where a prime vertical section has
been drawn.



Parallel of Latitude

\ Prime Vertical Section

Y

Normal at A I
intersecting
rotation axis atH

Py

Figure 3.12
Geometric Derivation for N(A)

In this figure, PAP, represents the meridian through A. AH is
the normal at A, intersecting the rotation axis. B 1is an arbitrary
point on the same parallel as A, while BH 1is the normal at B inter-
secting the rotation axis at H. C 1is a point on the prime vertical
section through A and that also lies on the meridian passing through
B.

We construct a normal at C that will intersect (at K) the normal
from A since AC 1is a plane curve. We can say that K is the approx-
imate center of curvation of the arc AC. Now let the point B approach
point A, so that C will approach A. The intersection of the normals
will approach the true center of curvature and CK will approach the
true radius of curvature of the arc. Now as C approaches A, C also
approaches B so that K will approach H. Thus the radius of curvature
of the prime vertical section at A must be the distance from H to
A or AH. To compute this radius we consider the meridian ellipse
in the following figure.

Figure 3.13
Geometric Derivation of N(B)
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From the figure we have:
x =N cos ¢

Using the expression for x derived previously we can solve for N
to find:

= a -
N = (1-e2sin2p)1/2 "W ~ V (3.99)

At the equator the prime vertical radius of curvature is:

N¢=0 = a (3.100)
At the pole:
N a_ . a (3.101)

b= 96; T-f b

We thus see that M (see 3.92 and 3.39) an N are a minimum for
points on the equator. At the pole M=N=a2/b=c so that both
curvatures are the same.

We may find the ratio of N/M by using equations (3.88) and
(3.99). We have:

V32
= =V

N_c¢
MV

or:

-% V2 = 1 + e'2co0s2¢ _ (3.102)
Thus N > M where the equality holds at the pole.

3.53 The Radius of Curvature in the Normal Section Azimuth o

Since N is generally greater than M, we associate N with
1 that arose in equation (3.82). If we let o be the azimuth of
a line for which we are interested in the curvature, we have
6 = 90° - o . If p=R, we then may express equation (3.82) in the
following form for the ellipsoid of revolution.
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1 _ sin?a , cos?a
R, N 'MW (3.103)

or:

MN _ N '
Ra = WcosZa + W sinZa - T+ ¢ 2c0s% o575 (3.104)

3.6 Meridian Arc Lengths

We next turn to the computation of lengths of meridian arcs. A
differential arc length was written in equation (3.89) as:

ds = Md¢

In order to find the length of arc between two points with latitudes
¢; and ¢, we integrate the above equation to write:

= f¢2 Mds = a(l-e2) f¢2 %%. ‘ (3.105)
¢1 3! ,

The integral

-3
/ %%= | (1-e2sin2y) /2 44

represents an elliptical integral which can not be integrated in

elementary functions. Instead the value of 1/W3 1is expanded in a
" series and the integration is carried out term by term. First we find
the Maclaurin series expansion of 1/W3 to be:

ng =1+ %ezsin% + 185 etsinty + ‘;—Zeesinew —%—%éssin% + —g%ewsinl%---

(3.106)

For ease in integration we replace the powers of sin¢ by multiple
angle equivalents as given in equation (2.18) to find:
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'NIT= A - Bcos2¢ + Ccosd¢ - Dcos6o + Ecos8¢ - Fcos8y - Fcos10¢ + ---  (3.107)

where the coefficients A, B, etc. have the following meaning:

c1+3e2 4 85,0, 15 ¢, 11025 o 43659
A=1+ge?+gre" + 55508 + Te384°° * gaggg et -+

. 3e .15, 5% o, 2205 o 72765
B P T +512e * 2048 *t 655368 t o

i} 15, , 105 ., 2205 10395 ),
¢ 7¢" * 556°° * Z506°° * Te3sse” * -

(3.108)

i 35 315 g, 31185
D 512¢° * 2008° °* 13107280 -+

i} 315 o . 3465
E 16384 ¢ * B5536¢ * ---
F = -—6_9.§_e10+ PP

131072
We can now substitute (3.107) into (3.105) to write:
s = a(l-e2) j¢2 (A-Bcos2¢ + Ccosdp) do + ---
¢
= a(1-e2) [[%2 Ads - B [®2 cos2eds + C %2 cosdsdy] + ---
%1 . 9 93
= a(1-e2) [Ay |%2 =-%sin2¢ |92 +-%sin4¢ 1927 + --- (3.109)
L3 61 ¢

s = a(l-e2) [A(¢,-0,) --%(sin2¢2.- sin2¢,) +-%(sin4¢2 - sind¢,)

-%(sin6¢2-sin6¢1) +-%(sin8¢2-sin8¢l) --{%(sin10¢2-sin10¢1)] + ---
(3.110)

v;his equation may be written in an alternate form by using equation
(2.22

-37-



In this case X = ¢,, Y =¢;, so that:

sin ng, - sinng; =2 coOsSn (94%92) sin-% (00-91)- (3.111)
Letting:
_ 1492
2 )
and:
Adp = ¢ o 93

we can write specific values of (3.111) as:

sin2¢, - sin2¢; = 2c052¢msinA¢

sindg, - sind¢; = 2cos4¢msin2A¢ , (3.112)

sinby, - sinby; = 2c056¢msin3A¢

and so forth. Equation (3.112) may then be substituted into equation
(3.110) to yield:

. C X D .
= ) - L , D
s = a(l-e2)[Ar¢ BcosZ¢ms1nA¢4-2cosﬁ¢ms1n2A¢ 3c056<%s1n3A¢

+-%c058¢msin4A¢ --Ec0510¢msin5A¢ + -==] (3.113)

In order to compute the length of the meridian arc from the equator
to an arbitrary latitude ¢ we let ¢, equal zero and ¢, equal ¢ in

equation (3.110). We then find (with s = S¢):

y B 3 C . D “ E 2 :
= -p2 - + = 4¢ - = += _.___.l 4 cmm
S a(l e )[Acb 251n2¢> 1 4s1n ¢ 651“64) 851"8(1) 10 s1n10¢]

(3.114)
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Helmert (1880) carried out an alternate derivation for the meridian
arc length in which the expansion parameter is n instead of e?2.
In this case a faster convergence of the series is obtained.. We have:

S T%H'[a°¢ - a,sinZy + a,sind¢ - agsinbg¢ + agsin8¢l (3.115)
where:

we 1ty

ST

2, =32 (n2 - q; (3.116)

ag =-%%r13

ag = %%%n“

To achieve an accuracy in S¢ of 0.1 mm from the equator to the pole,
it is sufficient to set ag to zero, and neglect terms of n“ in the
a; coefficients.

Using either equation (3.114) or equation (3.115) it is a simple
matter to find the arc distance from the equator to the pole by letting
¢ = 90°. From equations (3.114) and (3.115) we have:

= - T .83 #
Sp=900° a(l e2)A2 Ttn 2 (3.117)

For the Geodetic Reference System 1980 we have the following
constants associated with the meridian arc computation:

A = 1.00505250181
B = 0.00506310862
C = 0.00001062759
D = 0.00000002082

E = 0.00000000004 (3.118)
F = 0.00000000000

a, = 1.00000070495

a, = 0.00251882970

a, = 0.00000264354

3, = 0.00000000345

a, = 0.00000000000
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The evaluation of (3.117) gives for the quadrant of the ellipsoid of
GRS80: 10,001,965.7293 m.. . ,

For some applications it 1is convenient to modify equations sucp as
(3.113) so that equations valid for shorter length lines may be obtained.
We make, in (3.113), the following substitution:

3

sinAg

sin2a¢ ZA?

Retaining basic terms to cosd¢ sin2a¢ but making approximations
consistent with the length of 1ined that the expressions are to be
valid for we find (Zakatov, 1962, p. 27):

s = ang[l- (%a‘%cosz‘pm)ez - (;634_,"'_133'(:052% - lg—cﬂs%m) et

Lo2,42
+ ge?ss c052¢m] (3.119)
Equation (3.119) 1is accurate for lines with a¢ =5° (length = 556 km)
to .03 m. If a¢ = 10° (length = 1100 km) the error is .07 m.

For even shorter lines, simplified equations- may be derived. If
we let My be the meridian radius of curvature at the mean latitude
(1.e.¢|n) of the line, it can be shown (Zakatov, p. 27) that:

- 1 o2,,2 ‘

s = Mas [1+3 e2np?cos2y ] ’ (3.120)
For a¢ = 5° the error 1in this equation is 0.03m. For lines less

than 45 km in length, the term in brackets in equation (3.120) may
be dropped so that for this shorter distance we have:

| s = MmM, (3.121)
3.7 Length of a Parallel Arc

We next turn to the computation of the length of arc on the

ellipsoid between two points having longitudes i, and A; situated

on the same parallel. The distance, L, desired is indicated in
Figure 3.14. ‘

Figure 3.14
: Parallel Arc Length
.  a0-



We recall from equation (3.97) that the length of the parallel radius
~p is Ncos¢ . Thus from the figure:

L = pax = NcosoA) (3.122)
where AX is in radians.
3.8 Calculation of Areas on the Surface of an Ellipsoid

We consider the area, on the ellipsoid, bounded by given meridians

and parallels. To do this we first consider the differential figure
shown in Figure 3.15.

Equator

Figure 3.15
Area Element on the Ellipsoid

from the differential figure ABCD we héve:

AB = CD = Md¢
(3.123)
AD = BC = Ncos¢dxr
Letting the area of the differential figure be dZ we have:
dZ = AD'AB = MNcosédéd: (3.124)

The area between meridians designated by X2 and A; , and parallels
designated by ¢, and ¢; is:
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Z=1dz =ji2 jiz MNcos¢dsda | (3.125)
1 1

Integrating with respect to A we have:

Z= (a5~ 2y) jizr MNcos¢ds (3.126)
1

In order to evaluate the integral we substitute for MN to write:

$2 = p2 (%2 C0s¢
j¢1 MNcos¢de = b f¢1 (T-e%sin2g)2 d¢ (3.127)

The integral occuring in (3.127) may be given in closed form as follows
(Bagratuni, 1967, p. 59):

2492 _ €056 do _ . b2, sing . 1 ,p ltesing. |92
b f¢l (1-e2sin?g) 2 [1-e251n2¢ * %o T-esing ] , (3.128)
1

Therefore equation (3.126) may be written:

= {2p-24)b2 sing ., 1 1+e sing, |92
. 2 [l-ezsin2¢ T T sin¢] l¢1 (3.129)

As a special case of equation (3.129) we compute the area on the
ellipsoid from the equator to latitude ¢ , completely around the
ellipsoid. Then (A,-A;) = 2m, ¢, =0 and ¢, ¢ so that equation (3.129)
becomes:

=1 h2[— sing 1 l+e sing
Zy-g =" b*l1gzsin s T 26 Tesingd (3.130)

If we are interested in the area of the half ellipsoid we let ¢ = 90°
in equation (3.130) to write:

1 1 l+e
= 1h2 =
Ziegee =02 izt 3g o0 17— 1 (3.131)
In order to find the area of the whole ellipsoid multiply equation
(3.131) by two.

In some cases, it may be more convenient to integrate equation

(3.127) using an expansion of the kernel into a series and its subsequent
term by term integration. We first write:
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(l-ceozss$n2¢)2 = cos¢ + 2eZcosgsinZy + 3ecosgsin'y

+ 4ebcosysinby + ... (3.132)

Equation (3.132) may be used in equation (3.127) which is used in (3.126)
to find: .

Z = b2(xp-1;)[sing +-§-e2 sin 3¢+%e‘+s1‘n5¢ + %eﬁsinw + ... b2 (3.133)
’ ¢1

If (Ap-2;) = 2m and ¢,=0° we find an equation from (3.133)
corresponding to (3.130) as:

Zo_¢=‘2nb2[sin¢ +%e251n3¢ +—gie‘+s1‘n5¢ +;e€>sin7¢ +%eﬁsin9¢ + ---] (3.134)

The area of the whole ellipsoid, : , may be found by letting ¢ = 90°
in equation (3.134) and doubling the result. We find:

T = 4nb2 [1 +%e2+%e“+ §e6+ geSf %e10+ . (3.135)

Equation (3.135) will be useful in a subsequent section

The area of the ellipsoid of GRS80 is 510065621.7 km?2.

3.9 Radii of Spherical Approximation to the Earth or Mean Radius of the
Earth as a Sphere

In some applications it is convenient to let the earth be a sphere
rather than an ellipsoid. It 1is then necessary to find a suitable
radius, R, of the sphere to be used. A suitable radius may be defined
in several ways that are outlined in the following sections.

3.91 The Gaussian Mean Radius

The Gaussian mean radius is defined to be the integral mean value
of R taken over the azimuth varying from 0° to 360°. Designating
such a radius as R we have:

= 1 2n 1 o MN
Roe 0 Rade 2n J o NeosZa + MsinZg 4o (3.136)
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do (3.137)

Removing ¥ MN, equation (3.137) may be written as:

- M do
] cosza

R=£vWWf2
w 0 1+(\/_tana)

(3.138)

If we let t =V (M/N) tana, and change the limits, equation (3.138)
may be written as:

2N

WAl - (3.139)

R = 0 T+t2Z

which upon integration yields:

R = /T = 2

T-e%sin% (3.140)

3.92 Radius of a Sphere Having the Mean of the Three Semi Axes of the
Ellipsoid
We let:
atatb

Rn =3 (3.140)

Substituting for b and expahding we have:

l-e ]___a[%.,.% (1-2-2— + ...)]

o
n
[«1]
L)
wl|r
+

(3.141)

1€ et e
R -a(l-—-ﬁ—.‘- 53 48...)

3.93 Spherical Radius of Sphere Having the Same Area as the Ellipsoid

To find such a radius we set the area of a sphere equal to the
area of the ellipsoid letting Rp be the radius of the sphere. Then:

4ﬂRi =3 (3.142)
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We find RA from:
N
RA '\JZ? (3.143)
Using equation (3.135) we find:
= AN VAR VA
R =a(l - et - zmg et +...) (3.144)

3.94 Radius of a Sphere having the Same Volume as the Ellipsoid

The volume of a sphere, VS’ is expressed as:

v =-§ R

S (3.145)

3
v

where Ry is the radius of the sphere. The volume of an ellipsoid
is expressed as:

Vg = 3mab | (3.146)
Equating equation (3.145) and (3.146) we find:

R, = 3/aZb (3.147)

v

Substituting for b we have:

R, = a(1-e2) /8 (3.148)

. .
Expanding (1-e2) /% into a Maclaurin series, equation (3.148) can be
expressed as:

- e2 5 ,__55 ¢
Ry = a(l—=5 - 558 % - 15gpeb...)

For the parameters of the Geodetic Reference System 1980 we have:

(3.149)

Rm = 6371008.7714 m
Ry = 6371007.1810 m
Ry = 6371000.7900 m
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Clearly the distinction between these radii is numerically small.
For most applications one might use simply 6371 km. An alternate
technique for a spherical radius is to take the Gaussian mean radius
at a specified latitude.

3.10 Space Rectangular Coordinates

In discussions connected with Figure 3.3 we defined the X, Y,
Z axis. Now we consider the computation of the X, Y, Z coordinates
of a point located at a geometric height, h, above the reference
ellipsoid. The geometric height 1is measured along the ellipsoidal
normal. To start we consider the meridian ellipse shown in Figure 3.16.

4z

Figure 3.16
The Geometry of a Point Above a Meridian Ellipse

We have:
x' = x+ hcos ¢
' (3.150)
z' =2+ hsinyg

where x and z are given by equations (3.42) and (3.44).

The space rectangular coordinates, as can be seen from Figure 3.16

can be related to x' and z' as follows:
X =x'cos a
Y =x'sina (3.151)
=2
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Using equations (3.42) and (3.43) and the expression for «x' and z'
we have:

X = (N + h) cos¢cosa
Y = (N + h) cos¢sina (3.152)
Z=(N(1- e2) + h)sing

where N = a/W. A problem to be discussed later will be the computation
of ¢ » A , and h given the space rectangular coordinates X, Y, Z.

3.11 An Alternate Form for the Equation of the Ellipsoid

We have previously written the equation of an ellipse (see equation
3.23) in the form:

where x 1is the coordinate measured parallel to the semi-major axis
and z is measured parallel to the semi-minor axis. The equation
of the ellipsoid can be written in a similar fashion as:

EZ+?Z+B'2'=1 (3.153)

where X, Y, Z are the space rectangular coordinates for the points
on the ellipsoid. )

An alternate form to (3.153) has been described by Tobey (1928).
We first define the axes x', y', and z' at a point P on the surface
- of the ellipsoid. x' is tangent to the ellipsoid towards the pole,
y' is tangent to the ellipsoid in an easterly direction and z' is normal
to the ellipsoid, positive towards the center. This system is shown
in Figure 3.17. :

W N\<'€90° -0 v
T

Figure 3.17
A Local Coordinate System on the Ellipsoid
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Using the notation of Tobey we indicate the meridian section of the
ellipse as WPLSV. The normal from P to the minor axis is the prime
-vertical radius of curvature, N, and ¢ is the geodetic Tatitude of
point P.

Define a sphere of radius N that has its center at T and is
thus tangent to the ellipsoid at P and to all the points on the .
parallel PS. The equation of this circle in the meridian plane is:

x'2 +2'2-20Nz2' =0 (3.154)

where the origin is at P. The corresponding equation for the tangent
sphere would be:

X'2 4+ y'24+2'2-2N2' =0 (3.155)

The meridian ellipse is the curve whichzis }angent at P where
the line x'cos¢ - z'sing = 0 cuts the circle x“+2'-2N2'= 0. Therefore
the equation of the meridian ellipse in this local coordinate system
takes the form:

X'2 4+ z2'2 - 2Nz' + §(x'cos¢ - z'sin¢)2 =0 (3.156)

An ellipsoid equation must reduce to (3.156) when y' = 0. Therefore
the general equation for an ellipsoid could be written as:

X'2 4+ 2'2 = 2Nz' + §(x'cos¢-z'sing)2 + f(y') =0 (3.157)

"Letting 6 =0 and comparing (3.157) with (3.155) we have f(y') = y'?2
so that the equation of the ellipsoid will be:

X'2 + y'2 4 2'2 - 2Nz' + 6(x'cosg-z'sing)2 = 0 (3.158)
Tobey (ibid. Proposition I) shows that &= e'? which was defined earlier.

Equation (3.158) is viewed as an alternate form to (3.153) for the
equation of the rotational ellipsoid.
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4. CURVES ON THE SURFACE OF THE ELLIPSOID

4.1 Normal Sections

_ We have previously defined a normal section as a curve formed
by the intersection of a plane that contains the normal at a given
point to the surface of the ellipsoid. A specific normal section from
point A to point B is one formed by the intersection of a plane
containing the normal at point A and that passes through point B, with
the surface of the reference ellipsoid.

Physically, the normal section can be viewed when a theodolite
is leveled with respect to the normal of the ellipsoid at the point
at which the theodolite is set up. A normal plane is the plane swept
out by moving the telescope in a vertical direction. By sighting on
a distant object, we define a plane that contains the normal at the
observation site, and passes through the observed site. The intersection
of this plane with the ellipsoid forms the normal section from the
observation point to the observed point.

In the following figure we indicate the normal sections from A
to B, and then B to A, noting that, in general, such sections are
different because the normals to the ellipsoid at different latitudes
intersect the minor axis at different places. The two different sections
are sometimes called counter-normal sections.
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The distance On, and Ony; may be computed by considering the following
diagram that is a meridian section through A.

T I NA
ZA ]
¥ ! \ 0o
~N
: <P>\“"
e n,
Figure 4.1
The Determination of the Distance Ony,
We have:
Ony, = Ny sing, - Z, - (4.1)

Using equation (3.39) for z we have:

= o - - 2 . - ‘2 ©
OnA NA sine, NA(l e )s1n¢A e NAs1n¢A (4.2)
Similarly:
= 2N <1
On, = e2N_sing, (4.3)

If ¢, >¢., On, > On,. From this it follows that the more northerly
the focatidh of “the po?nt through which the normal is passed, the larger
the On, and the further to the south is the axis of rotation intersected
by the normal. Thus if A is to the south of B, the normal section
from A to B will be to the south of the normal section from B
to A. The line from the northern point to the southern point will always
1ie to the north of the curve from the southern point to the northern
point.

The fact of having, in general, two normal sections between two
points creates problems when direction observations are being used in
the computations. This may be seen from the following figure where the
observed lines are indicated for a triangle on the surface of the
ellipsoid.
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Figure 4.2
A Normal Section "Triangle"

The measured angles are ©;, ©, and ©3. It is evident from this figure
that no closed figure has been observed.

Finally, we consider two cases where there 1is only one normal
section between two points. The first occurs when the two points are
on a meridian. The second case occurs when the two points are on the
same parallel. The first case occurs because the meridian is a planar
curve. The second case is clear because normals at the same latitude
intersect the minor axis at the same point.

4.12 The Separation Between Reciprocal Normal Sections

We will be ultimately interested in the azimuth differences and
distance differences between reciprocal normal sections. Before we
consider these quantities, we derive an expression for the angle f
which 1is the angle between the intersecting normal section planes.
This angle is shown in Figure 4.3.

Normal Section from B to A ——=> B
-~ _ “Angle Between Normal
P Section Planes

Figure 4.3
The Angle Between the Reciprocal Normal Sections
at the Chord Connecting Them
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In order to find this angle consider Figure 4.4

minor axis of the ellipsoid

90° + ¢ = 8,
90° - ©s
Ds
Figure 4.4

Normal Section Geometry

Angle o,z s the normal section azimuth from A to B at A, while
agy 15 the normal section azimuth from B to A at B. o is the
angle between straight lines n,A and n,B. ¢ _1is the angle n, Bng.
Bnyng lie on the meridian plane through B. 2

Since An, = Bn,, triangle AngB is approximately an isosceles
triangle. Consequently, angle ABn, is approximately 90° - %“

We next construct arcs An,' and Ang', from point B as center.
The arc n,'ng' will be in the meridian through B and will be of
length §,. Consequently the interior angle n,'ng'A will be 360° - @ g,
The arc An,' will be 90° - %.

The angle n,'Ang' will be equal to the angle f which we want
to evaluate.

Applying the law of sines to the tfiang]e An,'ng' we have:

sin f _ sin(360° - apa)

sin g, sin (90°ﬁ%)

- (4.4)
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or solving for sin f

sin(90°-&
( 2)
From the plane triangle Bnyn, we have:

sins, _ sin(90° + ¢p - §2)
W Bng

(4.6)

where ¢_ is latitude of point B. To find n,n, we subtract equation
(4.2) from (4.3):

nn,=0n_-0n, = eZ(NBsin¢B - NAsin¢A) (4.7)

A'B B A

Substituting for N and neglecting terms on the order of ae‘*(¢A - ¢B) we
find:

© 2 a2
Ny = ae?(éy - ¢,)cosdy (4.8)

where ¢p5 is the mean latitude.

Expanding the multiple angle expression in (4.6) we have:

nn

sind, = DANE coso coss. + sing, 2B sing (4.9)
Bn B 2 B Bng 2
B

Substitute (4.8) into (4.9), neglect the right most term, and noting
Bng = Ng, we have: :

. ae2(¢p -4 p)cosopcosoy (4.10)

sind,
Ny

With an error on the order of e“(¢5-9¢,) we take (a/Np) equal to

one and write:

siné, = e?(¢p - ¢,) coség cosép (4.11)
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Jordan (1962) has given a closed expression to determine &, and a
series form more accurate than (4.11). The closed form is Jordan (ibid,
Volume III, 2, p. 3):

Vs
tans, = &2(sinop - sinoa Va )cosop (4.12)
2 1-e2(sing g - sin¢A.%f)sin¢B

The series form is (ibid, p. 3):

2 2 3 2
s, =n2 88 4uls A7 b 207 onpts Lol (4.13)
BV 2 Y% 6 N 28V
B B B B
where n2 = e'2¢co0s2¢
(4.14)
t = tan ¢
Substituting equation (4.11) into (4.5) we have:
- 2 i
sin f ~€2(9dp- da)cos“dpsinapa (4.15)

cos &
2

where we have assumed ¢B = ¢m'

In order to find ¢ we consider an approximation of sufficient
accuracy. We take a small spherical triangle as shown in Figure 4.5:

Parallel

Meridian;:.

<P______;=r———<;Approximation to the
l:ﬁormal Section
~~

[o}
@ AB —

——

Figure 4.5
An Approximation for the Spherical Arc o
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From the triangle we have approximately:

(05 = ¢,) = o cosa, (4.16)

‘Assuming ap; = alé +180° (i.e. ignoring meridian convergence as we
are dealing with lines of the length 50-100 km),letting cos g = g,

f = sin f, and substituting equation (4.16) into (4.15) we f?nd:

Y 2, .
f = Le“Ocos ¢ms1n2aAB _ (4.17)

A reasonable approximation for o is s/N, where s 1is the length
of the normal section. Then: A

f = %ez(ﬁi-) cosz¢msin2aAB (4.18)
A

From (4.18) we see that f increases linearly with distance. It will
decrease as latitude increases and it will be a maximum for lines having
azimuths as oddmultiples of 45°. For s = 100 km, ¢y = 45°, and «;,=45°,
f=5.4",

4.13 Linear Separation of Reciprocal Normal Sections

We now consider the linear separation between the normal sections.
We consider the following figure, where, with sufficient accuracy the
arcs AaB and AbB can be regarded as spherical arcs with centers at

na and nb.

Minor Axis

11

Figure 4.6
Geometry of the Linear Separation of the Normal Section
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Point k is an arbitrary point on the normal section A to

g is

- the angle, analogous to ¢ , knzaA. As k varies in position between

A and B, o varies from 0 to o . We have:

= o g
angle BAna = 90° - >
angle kAn_ = 90° -3
a 2

angle kAB = kAn_ - BAn_ = &2

From Figure 4.6 we have:

= 5 g
Ak 2NA§1n2

Now consider a triangle whose vertex is on the chord:

d
ko k
Arc on the Surface of
the Ellipsoid
ky
Figure 4.7

Linear Separation
From Figure 4.7 we have:

kk, = d = kk; - f
where d 1is the linear separation desired. We have:

. 68 _.. 0o=-8
kk; = Ak sin kAB = 2NpSIn 5 sin 95-

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

using equations (4.20) and (4.21). Using equations (4.18) and (4.23)

in equation (4.22) we find:



= 2 3 i 1 E.q 2 7
~d = e?s sin 5 sin == cos ¢m51n2“AB , (4.24)

Assuming ¢ and 6 are small, equation (4.24) may be written:

= _e...?; - | 2 5
d i s6(c-6)cos ¢ms1n2aAB (4.25)

The maximum separation will occur at 6 = % which upon substitution
into equation (4.25) yields:

2
dmax = %3 so2cos2g, sin2u, (4.26)

or upon substituting for ¢ :

2 3 ’
dmax = Tg Nz COs26 sinzu,g (4.27)

Equation (4.27) breaks down in principle when the two points are located
on the same parallel as the separation . d should be zero in this case.
However, the result obtained will be correct to the accuracy of the
derivation. A more exact formula is given by Zakatov (1962, p. 53)

e2q3 _ o

d = N sin 2 cos t 4,28
max .8 aABcos qu( GAB > ancpA) ( )

We now consider some numerical examples using 4.27:

Case 1 Om = 45°, ap = 45°

s 200'kﬁ 100 km 50 km
dmax(m) 0.050 m 0.006 m 0.0008 m -
Case 2 ¢, = 52° «,, = 45°

s | 150 km 100 km 20 km
dmax(m) 013 m 0.0038 m 0.0001 m

Clearly this 1linear separation is very small and does not have any
practical significance.
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4.14 Azimuth Separation of Reciprocal Normal Section

We designate the angle between the normal sections, measured tangent
_ to the normal sections as A . This angle is also the difference between
the azimuths of the two normal sections as may be seen in Figure 4.8:

Figure 4.8
Normal Section Azimuth Separation

We have:

A = ﬁAB - GAB (4.29)
where ¢! is the azimuth of the normal section from B to A at
point pAB

From Figure 4.6 we can write:

angle kak, = Kk (4.30)

or using equation (4.25) for kk, and letting Ak = NAQ we have:

25(g- ,
angle kAk, = 3—%%%;91 cos2¢ sin2a,,

(4.31)

ez 24 si
7 o(o-6)cos 0pSina g

To obtain the angle A we Tet & go to zero so that angle kAk 55 in
the 1imit, goes to the desired angle. We then have:

_ ©202c052ySin20a8 - €2 (S \C. p. o
= 2 7 (NA) cos ¢ms1n2aAB (4.32)

Note that (4.32) breaks down when the two points are on the same
parallel as did (4.27). In this case a more accurate expression for
Ao is needed. From Jordan (Vol. III, 2nd half, p. 16) we have:
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-E‘—g—% =) (4.33)

e si (2 )2 26
2 cm—— 1n Py
A 5 S GAB NA cos ¢A COSchB N

One can show that the right most expression in (4.33) is essentially
zero for close points on the same parallel.

Sample values of a computed from (4.33) are shown below:

Case One ¢A = Q°, % = 45°

3 200 km 100 km 50 km
Av : 0.339 0.085 0.021
Case Two ¢A = 52°, B = 45

3 150 km 100 km 30 km
A 0.071 0.032 0.003

Generally for distances up to 20 - 25 km it is not necessary to
consider the angular separation of normal sections. For distances
beyond this, it is usually necessary to make appropriate corrections
using equations such as (4.33).

4.15 The Elliptic Arc of a Normal Section

In the derivation in the past section we interchanged o and (s/N,),
in several cases. It is appropriate to consider a more rigorous
relationship between o and s. We first consider Figure 4.9.

Na
Figure 4.9
The E11iptic Arc of a Normal Section
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We have s, the normal section distance, o the angle AngB, and Sy,
the distance naB. After some manipulation, it can be shown (Jordan,
second half, Vo?. IIT, p. 11) that:

S2

= =1 - %2r2¢c082y, _ + %3n2t coSq,. + --- (4.34)
NA A AB ATA AB
where:
2 = '200e2
n; = e'“cosZp,
t =t
A ane ,

We now wish to calculate a differential distance ds along the
normal section arc. To do this consider ;ﬁgure 4.10:

Figure 4.10
The Differential Element on the Elliptical Arc

We have:

ds? = (S,do)° + (ds,)’ (4.35)

The first term can be written from (4.34) as (and dropping the subscript
A and AB for convenience):

(S2do)? = N2(1-0%n2cos2a + 0352t cose + Yo'n“cos‘a

-305,%t cosda + %0€n%t cosZa)do? (4.36)

We then differentiate (4.34) regarding o as the variable. Squaring
the result yields: '
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(dS;)2 = N2(n“cos“ac2 - 3n*t cos3aod + %n‘*tzcoszac“)doz +--- (4.37)
' Taking the square root of the sum represented by (4.35) we have:
ds = Ndo + %Nn2cos2a(n2cos2a)o2do

- %-nzcos2a02dc-+ %-nZt cosac3do

- %g-n“t cos 3a03do (4.38)

We now integrate this expression from O to s and correspondingly from
0 to o to find:

(7]
L]

1 2 2
No (1+=02n%cos2a cos2q¢ - 1)
A (1+% "a AB (“A AB

+

%‘nitACOSaAB (1 -3 nZ cosZa, ) o) (4.39)

AB

Using (2.10) we can invert this equation to obtain:

=S 1 2 - n2c082 Ry
o = (1 + 3 nACOS aAB(l ngcos aAB(N )
A A
12 -3 2 cocl 53 4 oo
5 nAtACOSaAB(l 3 n2 COSQAB) (NA) + ) (4.40)

4.16 Azimuth Correction due to Height of Observed Point

When directions are actually measured, with, for example, a
theodolite, they are measured between points located on the surface
of the earth. However, geodetic computations are generally carried
out on the surface of the reference ellipsoid. It 1is thus necessary
to correct the observations, where appropriate, for any effects caused
by going from the earth's surface to the reference ellipsoid. One
effect considered in this section is that caused by the height of the
point being observed.

To consider this effect, a point A 1is located on the reference
ellipsoid and point B Tlocated at an elevation h. We 1level the
theodolite at A and pass a plane, normal at A, through the elevated
point B. The azimuth of the point would be designated as Ap. This
azimuth, however, is not the azimuth desired since the desired azimuth
is one to the point b projected onto the reference ellipsoid. We
let this azimuth be A. Since the ellipsoid is slightly flattened,
the difference, (A-Ap), that is to be determined,is small.
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In order to compute this difference, we consider Figure 4.11.

Figure 4.11
Azimuth Effect for a Point Elevated Above the El1lipsoid

The projection of B onto the ellipsoid point b is found by finding
point b, on the ellipsoid, where the normal passes through B. Point
b' is a point on the ellipsoid determined by the intersection of the
normal plane at A passing through I% with the meridian of b. Angle
§, 1is the angle naBnp. With sufficient accuracy, we can associate
8§, with &8, that was given in equation (4.11). We write for this
purpose, equation (4.11) in the form:

8, = eZagcosZe (4.41)

where A¢ 1is the latitude difference (¢p - ¢5). We now rewrite equation
(4.16) by letting, with sufficient accuracy, o = s/Mps where My, s
the meridian radius of curvature at the mean latitude ¢ p. We then
have: '

A¢ = ﬁi cosa, (4.42)
m
which may be substituted into (4.41) to give:
8, = ﬁi-efcosz¢mc05aAB (4.43)
m

«f2=



The arc bb' .is then hé, so:

v = DS 20062
bb e“cos“¢ cosa o (4.44)

3

We now consider, in the following figure, the triangle b'Ab.

- ah

A Figure 4.12
-Small Triangle for Height Effect Determination

We apply the law of sines to write (assuming a plane figure) since
we are dealing with relatively small triangles on the ellipsoid).

sin{oa - ap) _ sin(360° - epa} |
55T S (4.45)

Substituting equation (4.44) into (4.42) and letting:

sin(a -~ ap) * o = ap

sin(360° - aBA) z sinaAB

we find:
a =-ap = -2-%; e2c052¢msin2aAB . (4.46)

Equation (4.46) gives the desired correction. Thus, the corrected
azimuth o« obtained from the measured azimuth is:

= N 20c24 e /
a =ap + 2Mm e<cos ¢m51n2aAB (4.47)

A more accurate expression for a-ap is found in Jordan (III, part 2,
p. 20) as:
a - ap =‘ﬁl ni (sinaABCOSaA, --5%— sinuABtan¢A) ' (4.48)
A B A
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We notice that to a first approximation, the correction being computed
does not depend on the separation of the two points. In addition,
if the eccentricity of the ellipsoid is zero, the correction is zero.
Thus, the correction would not exist for a sphere. In fact, the main
reason that the correction exists is because ellipsoid normals at
different latitudes intersect the minor axis at different locations.

We consider two numerical estimates:

If ¢ = 45°, for h = 1000 m, o - ap < 00055 for h = 200 m, & - ap < 0%008.

Jordan (III, part 2, p. 20) gives the following example for a
line measured from Spain to North Africa:

¢1 = 35° 01
apg = 327° 40'
h = 3482 m

s = 269926 m

Then equation (4.48) has been evaluated to yield:
o - ap = -0V2291 + 0V0040 = -02251

This "height of tower" correction should always be considered
when reducing observations, although it is generally only appropriate
in -higher elevations. However, the neglect of the correction for lower
elevations could cause systematic errors when triangulation computations
are taking place.

Finally, we recall that in our derivations we assumed point A
was located on the surface of the reference ellipsoid. If point A
was elevated, our argument would not be altered since the directions
at A are measured with respect to the normal at A. Thus the
correction o - o is not dependent on the height of the observing
station.

4.17 The Dip Angle of the Chord

Consider two points A and B on the ellipsoid that are connected
by a normal section curve of length s. Let u be the dip angle with
respect to the tangent at A in the direction AB as shown in
Figure 4.13.



Figure 4.13
The Dip Angle

U is measured positive downwards in this derivation. We have from
Figure 4.13:

o _ - _9S2sino
tan(90 u) NA =S, c0s 0 (4.49)
or
tanu sino = gf-— Co0So (4.50)

We can re-write (4.50) by using N,/S> determined from (4.34) and
then expanding tan p, sin o, and coso . We have (Jordan, III, part 2,
p. 12):

B = %91 + n2cose (4.51)

= Q
" AB) ‘gnAt cos

AB

If we want an expression for u in terms of s we can use (4.40)
to write:

SZ

2
T 2N (1 + nAcos AB) - Eﬁi-nAtAcosaAB (4.52)

We consider some numerical values of U by considering a point where
¢ = 45°, and o5 = 45°, We have for this case

A
s (km) . R

10 2' 4147

30 8' 5Y09

50 13' 285

75 20' 12'7

100 26' 56'9
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4.18 The Normal Section and Chord Length

Let the chord length between AB be

¢ as seen in Figure 4.13.
We write (Jordan, III, part 2, p. 12):
ﬁi " sin (ijz 30° o) coé?glﬁ) (4.53)
Since o 1is small we can expand the right side of (4.53):
N, = o(1- % + 996 )1+ 5(0-w)® + 2 (o-0)" ...) (4.54)

We can obtain an expression for o- u from (4.51) so that (4.54) can
be written as:

L - -2 2 2c0e2+ Y4 L3 1
N, o(1 53 O (1 + BnAcos aAQ-+ 70 @ZtACOSaAB * 1920 o4...) (4.55)

If we introduce (4.40) one finds:

i 1
c = s(l1 - 5

NS

2 3 4
%PZ_ (1+ ZnAZCOSZQAB) + %% nitACOS(xAB"' 19120 ',%7: ) (4'56)
\ A A

Equation (4.56) can be inverted using (2.10) to find the normal section
distance given the chord distance. We find:

= 1 ¢ > 2epmc 20 . L €3 o 3 ct
s = c(1+ 247‘%: (1+ ZnAcos OAB) g W3 nAtACOSOAB+64ONZ)

(4.57)

o=

Bagratuni (1967, p. 77) gives a more accurate formula for the chord
to normal section distance as follows:

+ (=)
2r 40 *2r 112 ‘2r
tBLEP  F iy () )

(4.58)
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where:

r2 = Xf + Yf + Zf » the geodetic radius to the first point;
e'2sin2¢ac
u = S "2¢A 2SQA.B (4.59)
1 + nZcos?a,
iy = e'2(sinZpp - cos2pacos2azp)

1+ n% cos2aA

The accuracy of these formulas depends primarily on the length of the
line. For example, the last term in (4.57) times ¢ has a value of
9 mm with ¢ = 200 km, and 68 mm for c = 300 km.

4.19 The Normal Section in a Local Coordinate System

Consider two points A and B Tlocated on or above the ellipsoid.
The space rectangular coordinates of these two points can be determined
from equation (3.152) assuming that we know the latitude, longitude
and height above the ellipsoid of each point.

We now introduce a local u, v, w coordinate system where the origin
for this system is at point A. The (primary) w axis is in the direction
of the normal to the ellipsoid at point A. The u axis is perpendicular
to the w axis in the north direction defined by the geodetic meridian.
The v axis 1is perpendicular to the u-w plane in a positive east
direction. These axes are shown in Figure 4.14.

8l

. . , Figure 4.14 .
Space Rectangular and Local Coordinate Systems -
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The local coordinate system can also be viewed in terms of the
"observations" of the chord distance ¢, the vertical angle V, and
the normal section azimuth, o« , from A to B as shown in Figure 4.15

wé

<

Figure 4.15
The Local Coordinate System

Note that the uv plane forms the local geodetic horizon plane. The
vertical angle, V, can be regarded as a generalization of the dip angle,
u, described in section 4.17, but with opposite sign. . Note that, with
the direction chosen for v, this system forms a left-handed coordinate
system since u 1is considered the primary (1) axis, v the secondary
and w the tertiary axis. If v were chosen in the opposite direction
the system would be right handed.

From Figure 4.15 we can determine the u, v, w coordinates from
a » V, and ¢ as follows:

u=c¢ cos V cosa
v=c cos V sina (4.60)
w=oc¢sinV

"Dividing the first two equations we have:
tana=-v6 (4.61)

wthere we again note that o« is a normal section azimuth.

We now wish to express the local coordinates in terms of the space
rectangular coordinate ~ differences (AX = Xg = X5, AY = Yg = Yy,
AZ = Iz - 7,). To do this we first translate the X, Y, Z axes to a
parallel set of axes whose origin is at point A as shown in
Figure 4.16:
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mage of the Meridian

Figure 4.16
The Translated X, Y, Z Axis at Point A

~ Now the general rotation between two rectangular coordinate systems
that have the same origin can be written in the form:

x" | X
y" = Ry (e,) Rz(ey) R.(s,) y' (4.62)
Z" , zl

where ey, 6y, 6z are the rotations about the x', y', z'.

The orthogonal rotation martices are:

1 0 0
Rl(e) = 0 cos g sin g (4.63)
0 -sinsg cos 6
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cos g 0 -sing

R,(s) = 0 1 0 (4.64)
sineg 0 coS o
cos e sing 0
Ra(e) = {-sing cosg 0 (4.65)
0 0 1

This conversion is for a right handed coordinate system with positive
rotations for clockwise rotation as viewed looking from the origin
toward the positive axis (Mueller, 1969).

In our specific application to the (') coordinates refer to 2X,
AY, AZ, and the (") coordinates refer to u, -v, w, since -v forms a
right hand system. In our case the rotations can be accomplished with
a rotation of -(180°- %A] about the ||Z axis and then a rotation of
-(90° - o) about the new lY axis. We have:

u A X
-V = R2(-(90° - QA))Rs(-(180° - AA))- aY (4.66)
W AZ

Mu]tiplying out these matrices we have:

U - ilw >\ ‘ - i ¢ i A, A
v - "S COS ;\ Y ( .6 )

In terms of individual coordinates:

u = -sind cosx AX - sin¢ sinx AY + cos¢ AZ (4.68)
A A A A A
v = =sinX AX + cosx AY . (4.69)
A A
W = C0S A AX 4 inA AY + sing AZ 4.70
¢Acos A cost sinA sing, ( )
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If we use (4.68) and (4.69) in (4.61) we have:

-sinx, A X+ cosa,a Y
tana = : B - A (4.71)
-$1Nn¢,COSA,A X - STNng,Sini,A Y+ COS¢,A Z

If we use (4.70) in the last of (4.60) we have:
. 1 . .
sin V = = (cos¢ cosx A X+ cos AY + YA 4,72
< ( ¢A AA co ¢As1nAAA s1n¢AA ) ( )
The chord distance can be computed from:

C = (U2 + v2 + w2)% = (AX2 + AY2 + 72)% (4.73)

From the equations in this section we see a procedure to consider
the normal section and related quantities using closed expressions
as opposed to the many series expressions used previously. The equations
developed in this section will be used later in developing procedures
for the calculation of geodetic positions on the ellipsoid. Note,
however, that in the equations derived here the points can be at any
height above the ellipsoid. .

4.2 The Geodesic Curve

To this point, we have primarily considered the normal section
which was a plane curve on the surface of the reference ellipsoid.
We saw that using the normal section had the disadvantage of not being
_ unique between two points. We now examine a curve, called the geodesic,
for which there is only one between any two points.

The fundamental definition of a geodesic curve is a curve which
gives the shortest distance; on a surface, between any two points.
If the surface is a plane, the geodesic is a straight line; if the
surface is a sphere, the geodesic is a great circle. On the ellipsoid,
the geodesic is a curve having a double curvature and is thus not a
plane curve.

To begin, we consider the construction of the geodesic on the
surface of the ellipsoid. We first level our theodolite with respect
to point A and then aim at a distant point B defining the normal section
curve AaB. We then go to B, level the theodolite, point at A to define
the normal section BbA, we then turn the theodolite by 180° and define
a new point C and the normal section BbC. We repeat the operation
by going to point C, point D and subsequent points. This construction
is shown in Figure 4.16.
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Figure 4.16
Normal Sections Between Close Points

We know that the separation of the normal section lines is small
and becomes smaller as the separation between the points decreases.
If we let the distance AB, BC, CD, etc. become smaller and smaller,
a unique curve will be obtained between the points. This curve is
the geodesic.

If we had two points A and B, we could construct the geodesic
between two points if we knew the appropriate azimuth of a starting
segment. Such a curve has been constructed in Figure 4.17.

A C:ﬁbrnuu.SectnxxJLtoiB

Figure 4.17
The Geodesic Between Two Normal Sections

An example of the relationship of the normal section curves and
the geodesic for two points located on a highly flattened ellipsoid
is shown in Figure 4.18 from Jordan (Volume III, second half, p. 26).



Figure 4.18
A Geodesic and Normal Section on a Highly Flattened (f=1/3) Ellipsoid

An important property of the geodesic is clear from its construction
definition. This property is that the principal normal of the geodesic
at any point will coincide with the ellipsoid normal at the point.
The principal normal 1is contained within the osculating plane which
passes through three neighboring - points on each curve. It is
clear that a normal section does not have this property because each
point on the normal section does not contain the normal at the point

To this point, we have considered the geodesic in a geometric
interpretation. It is possible to find certain properties of the
geodesic by mathematical considerations arising from the definition
of the geodesic of being the curve having the shortest distance between
any two points.

We now consider a differential triangle on the ellipsoid as shown
in Figure 4.19.

Figure 4.19
A Differential Figure on the Ellipsoid
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From the differential right triangle, PP P' , we can write:

ds cose = Md¢

(4.74)

ds sina = N cos¢da

Equation (4.74) holds for an arbitrary curve (e.g. normal section or
geodesic) on the ellipsoid. Now we specify that PP'P" 1lie on the
geodesic. This would be the case if the three points lie in a vertical
plane of the ellipsoid passing through P', which is the osculating
plane of the geodetic line at P' (Jordan, volume III, second half,
p. 27). In this case we consider the triangle PSP' to find that the
angle at S in this triangle is da. We then can write:

do = NEQ2EAL = ingay (4.75)

Equations (4.74) and (4.75) are the primary differential equations
for the geodesic curve on the ellipsoid. Two other equations can also
be written. We have:

- N cose gx '
tana m s (4.76)
ds2 = (Mde?) + (N cosedr)? (4.77)

If we now let p = N cos¢ , and assume that on the geodesic, the
lTongitude is a function of latitude, it is convenient to write equation
(4.77) as:

€7 = m e (@) (4.78)

or solving for ds:

ds = [M2dp2+ pzdxz]sz

(4.79)

2
M () +p2)% o

2
If we let v = [MZ(%%) + pz]% we can write:

ds = vdx
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which we integrate to form:
s = [udh (4.80)

For the curve defined by equation (4.80) to be a geodesic, the value
of the integral must be a minimum. This turns out to be a calculus
of variation problem which is solved in Bagratuni (1967, p. 83) and
Jordan (Volume III, second half, p. 30).

After manipulation of equation (4.80), subject to a minimum distance

criteria, it is found that the given curve or specifically, the geodesic
must satisfy the following equation:

p sina = constant (4.81)

Thus, the product of the parallel radius times the sine of the geodesic
azimuth, at each point on the geodesic is a constant. This equation
is known as Clairaut's equation.

An alternate proof to (4.81) can be constructed by starting with
the length of the parallel radius p:
p = N cos¢ (4.82)

We differentiate this:

dp = =N sin¢dd + cosédN

Since
=L
N =5
we have
N _ -c dV
do  VZ do
But
dv . -n’t
dé v
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so that

dp = =100 g (4.83)

Since N = MVZ2 (4.83) reduces to
dp = -M sin¢ds (4.84)

For the geodesic we saw that do = sin¢dr which can be written as:

_ M sinéde
= "wae 9

da
Using (4.84) we have:

=2dp 43 = _-dp_ dr
do Md¢ dA cosc ds

Using the second equation of (4.74) we can write:

da = -Sino dp
cosa p

which takes the form:

p cosada + sinadp = 0
which implies

p sina = constant

which is the same as (4.81)

If we consider many points in a geodesic it follows from (4.81)

p,sina, = p,sina, = pjsina, = ... = a constant = k (4.85)

In order to find the constant involved in (4.85), we can examine the
geodesic at two specific points. At the equator p = a and we let the
azimuth of the geodesic at the equator be ar. Then:
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asine; = k ) (4.86)

Since p is a maximum at the equator, the sine of the azimuth ap
at the equator will be at its smallest.

The maximum value of sima will be one when « equals 90°. This

will correspond to the smallest value of the parallel radius, Pmin
From equation (4.25) we write:
pmin51"90 =k
or (4.87)
Pavin =k

Clearly ppj, occurs at the highest (or maximum) latitude reached by
the geodesic of interest.

If we had written in equation (4.81) p = a cosB, we would have:

a cosB, sina, = a coss, sing, = e = k (4.88)

From this equation we have:

. _ . _ _ -k
CosB, sina, = CcosB, sino, = ... = a constant = 3 (4.89)

Thus the product of the reduced latitude and the geodesic azimuth is
a constant at every point in the geodesic. At the equator B equals
0° so that we have:

sina, = g— o (4.20)

At the maximum 1latitude reached (¢H or BH) by the geodesic o« = 90°
and we have from ((4.89):

_k
cosBH =3 (4.91)

Equating equations (4.90) and (4.91) we find:

sinaE = cosBH (4.92)
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Thus we see that the maximum reduced latitude reached by a geodesic
is equal to 90° minus the azimuth of the geodesic at the equator.

We conclude the discussion concerning the general behavior of
a geodesic as it goes around the ellipsoid. Such a geodesic is shown
in Figure 4.20 where the azimuth of the geodesic is ap.

e Maximum Latitude ()

Figure 4.20
The Geodesic in a Continuous Form

As the geodesic goes from A to B to C, its azimuth will continuaily
change. As point C is passed, the geodesic will go past the equator
on 1its way to be tangent to the parallel ¢, . Of specific interest
is the fact that the equator crossing, after passing through point
C will not be exactly 180° in longitude from the crossing point B,
but at some point B' generally to the west of B. Thus with but a few
exceptions to be discussed in detail later, a geodesic does not repeat
its path. There 1is thus an infinite number of different equator
crossings for an arbitrary geodesic. A view of such crossings is seen
in Figure 4.21 from Lewis (1963).

P .
Figure 4.21
A View of a Continuous Geodesic from the North Pole
Showing Consecutive Equator Crossings
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4.21 ‘Local X,Y¥.,2 Coordinates in Terms of the Geodesic

We re-write the equation of the ellipsoid (3.158) wusing the
“following notation:

A=1+e'2cos2¢p =1+0D
B=1+e'2sin2p =1+ D’ (4.93)
C=-%e'2s5in2y

We have, for the equation of the ellipsoid, (Tobey, 1928):

u=0-=Ax2 + y2 + Bz2 + 2Cxz - 2Nz ‘ (4.94)
where x = x(s), y = y(s), z = z(s) where s is the geodesic distance.

Now consider a small portion of the surface of the ellipsoid containing
a di;ferentia] portion of the geodesic as shown in Figure 4.22 (Tobey,
1928):

N N

: Figure 4.22
The E1lipsoid Surface Containing a Differential Element of the Ellipsoid

We let PACD and PBED be portions of the surface u = 0. Let PA = PB = ds
be a portion of the geodesic. PN, a line perpendicular to AB, is the
principal normal. : '

At any point on the geodesic the osculating plane of the curve
contains the normal to the surface so that the principal normal of
the curve coincides with the normal to the surface. This statement
can be expressed by writing:

d®x d?y d?z
ds2 ds2 ds2
= = (4.95)
du du du
dx dy dz
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To apply this equation we assume a power

bl
f

<
n

N
]

We now substitute (4.96)
in s. Since the whole equation

coefficie
we need
derivativ

alo
xi|c
] "

Q0.
3 f

[aN e}
NiC
L

+ 2+ 3 + S
2,5 + 2,8 2,8 %,

+ 2 4 3+ nA
ms +ms m,s m,s

+ 2 + 3 4+ bt ..
ns+n,s ngs n,s

nts of s must be zero.

to implement the condition

into (4.94)

series in s for x, y, z:

(4.96)

to get an nth degree equation
equal to zero, the individual
result will imply n; = 0. Next
(4.95). We first compute the

es in the denominator of (4.95) from (4.94):

2(Ax + Cz)

2y

2(Bz + Cx - N)

(4.97)

The derivatives needed in the numerétor are found by differentiation

of (4.96)

d2 x

ds2

jalial
wi

Q.
wnl v
N

fl

. . . 2
1 212 + 2 3235 + 3 4zqs + ...

. . . 2 -
1 2m2 + 2 3m35 + 3 4mqs + ... (4.98)

=1+«2n,.+2-3ns+3:4ns2 + ,,,
2 3 L

We then substitute (4.97) and (4.98) into (4.95) and equate the coef-

ficients of the commom powers of

After some reduction (Tobey,

1928, Proposition II) we have the following equations:

>
|

<
L[}

N
i

- . S
2N sin? N + N

De(1+42) 5 _ _C

. S
= AN siny - 24N

s Dmge?2 3 Cm 4

mN sing - Zp7s” - 3Es t ...

(1¢8 22) s “ + ..

(4.99)

262 2 v 2
De2s2 Ce(1+D 2 )53 + 3D 6Dz S b

24N



where

£ =4, = cosa
m=m = sina (4.100)

=
]

a/(1 - ezsinzg)%

Given a geodesic azimuth («) and distance s, we can use equation (4.99)
to compute the coordinates of the geodesic based on a local system
at the starting point. Since these equations are in series form there
will be a distance beyond which the equations will not be sufficiently
accurate. Similar equations can also be derived for a normal section
(Clarke. 1880, p. 118).

4.22 The Length of a Differential Arc of a Rotated Geodesic

Consider a geodesic from point A with a length s and an azimuth
o . The endpoint of this line defines a point F. Now rotate the
geodesic by an amount do so that the endpoint is now at D. We let
the distance DF be dg, which is to be determined. Using the local
X, ¥, z coordinate system described in the previous section we have:

dgé = dx?2 + dy? + dz? (4.101)

We can differentiate (4.99) with do as the variable to find dx, dy,
and dz. We can simplify (4.101) by writing:

dg, = wdo (4.102)

where w is a quantity to be determined from the derivatives from
(4.99). After some reduction .(Appendix 1, Tobey, 1928, Proposition
IV) we have: '

L
w =R sinii - BAE& (ji) + ...
R 3 R
A A

(4.103)

where R, is the Gaussian mean radius at point A. w is called the
reduced iength of the geodesic.

4.23 Relationship Between the Geodesic and Chord Length

The chord length, c, between two points on the ellipsoid can be
computed from:

cZ = x2 + y2 + 22 (4.104)

=81~



We can express this in terms of the geodesic length by substituting
for x, y, z from (4.99). To compute c¢ from s we have (Appendix 1,
- Tobey, 1928, Proposition V):

. 2 2 3
c = 2N sm—;—N(l-%’L—z— (%) -Cg- )+ .. (4.105)

where N dis the prime vertical radius of curvature at the first point.
This series can be inverted to find s as a function of c:

1 2, D22 5, Ce g
2 +qomm €2 tgzedt o) (4.106)

s=cl*zm

Clarke (1880, p. 108) carries out a derivation analogous to the
above where the normal section distance, s', and the chord distance
are related. Without derivation we have:

c? c 3 3 1 ct
s' = ¢l + (1 - 3F5=) + (57 + gt +5F2) &+
EZEE Ry 640 80 4 Ry
3 5 3y €3
- (16FH + 12F ) R§ + ...) ‘ (4.107)
where
_fh _f2-h2
=i H 1+h2

F o= e sing . h = £.C05¢COSa
v 1=e? /1-e2

and Ra is the radius of curvature in the normal section azimuth

4.24 Comparison of Geodesic with the Normal Section

We shall now consider the angular distance difference between
geodesics and normal sections. We first consider azimuth differences
starting with Figure 4.23 which shows the normal sections and the
geodesic between two arbitrary points, A and B.
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Figure 4.23
The Geodesic Lying Between Two Normal Sections

In this figure:

o, is the azimuth of the normal section, at A, from A to B
a, is the azimuth of the geodesic, at A, from A to B
a is the azimuth of the normal section, at A, from B to A

The difference @, -co,was computed as 4 and given in equation (4.32)
or (4.33). To determine the difference a; - ap we follow Tobey (1928,
Proposition VI) which is Appendix 1. We construct in Figure 4.24 a
normal section AHFT at point A with azimuth «,. AH is tangent to this
normal section. AF is the geodesic from A to F that has an azimuth
a, . The normal section at A, which passes through the point F(x, y, z)
(on the ellipsoid) will also pass through the point H(x, y, 0), where
H is on the line TF produced.

" Figure 4.24
Determination of the Azimuth Difference Between
a Normal Section and a Geodesic
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The distance AH is:
AHZ = x2 + y2 (4.108)

which can be found using (4.99)

AH = N sind (1- D% )2--3%(%)34,...) (4.109)

Now the normal section azimuth can be determined from:
_ X
cosa; = 4 (4.110)
Using (4.99) and (4.109),Tobey shows:
_ (Dam ,s,2 . Cm ;5,3 111
-a,) = (-?r'(NJ t 57 (ﬁ) +...) (4.111)

If we substitute for C, D, 2, m we have

2 5.2 . 2¢ ,5.3 .
(@,=a,) = I%— ON) sinacosa - %ZT () sina (4.112)
where:
2 = o'2 2
n? = e'2 cos?y
t:

tan ¢A

If we consider only the first term of (4.112) we can compare it with
(4.32) which gives the azimuth separation of the counter normal sections.
We conclude that: '

1 ,
(@,-e,)*3 (a,-a) (4.113)

which says that the geodesic approximately trisects the angle between
the counter (or reciprocal) normal sections, lying closer to the direct
normal section at the given point.

As a numerical estimate of this difference, consider a line of

length s located at a mean latitude of 45° and an azimuth of 45°. The
value of (al-az) is then:
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s {o1-02)
30 km 0001

60 0.005
100 0.014
120 , 0.020

Although equation (4.113) implies that the geodesic always lies
between the two normal sections this is not always true. Consider
the case of two points on the same parallel where there is only one
normal section. Then the value of & in (4.32) is zero so that (4.113)
is not correct. In this case the geodesic will be towards the pole
side of the normal section and lie completely outside of it. For points
not exactly on the same parallel, the geodesic can cross a normal section
curve.

In the case of two points on the same meridian there is only one
normal section. The geodesic will coincide with this normal section.

4.25 Difference in Length Between the Normal Section and the Geodesic

To derive the length difference s, - sq we follow Tobey (1928,
Proposition VII). We consider two points A and F that are connected
by the normal section of azimuth 6 , length s, and the geodesic of
azimuth o and length Sg as shown in Figure 4.25.

Figure 4.25
Differential Relationship Between Normal Section and Geodesic Lengths

We rotate the geodesic AF about the normal at A, through an angle dao,
that will yield the arc dge = FC. From (4,102) we have:

= 4.114
dge w do ( )
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We now extend the line AC to D (on the normal section AF) by an amount
~ dsq. This corresponding normal section distance change is ds,. We
thén have:

FD2 = DC2 + CF2

or

ds% dsé + (wda)? (4.115)

To find do we differentiate (4.111) with the variables being ag (or
ap) and ds. We have: )

- 2
do = (9—’31"—(%) -%‘" § * ) 9%9 (4.116)

Recalling the value of w from (4.103) we have:

- 2 3
wda=(9—§-"1(%) -%" (§) +...) dsg (4.117)

We now substitute (4.117) into (4.115) to find:

ds,, = dsg (1 +ip—“1—mg3 (—,fl-)“ +...) (4.118)

n

We integrate this expression to find:

Sy = s (1+ B2 (&, ) (4.119)

Substituting for D, 2, and m, and solving for Sp = Sg we have:

- = (Blfcosty s\ Lo,
S sg s 360 (N) sin22q (4.120)

This Tline length difference is very small due to the presence of the
e' and (s/N)* term. At a .distance of 1600 km, this length difference
is only 1 mm.
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4.3 The Great Elliptic Arc and the Curve of Alignment

, Consider two points, A and B, located on the surface of the
ellipsoid. The intersection of the plane containing A, B, and the
center of the ellipsoid, with the surface of the ellipsoid, is called
the great elliptic curve. There clearly is only one great elliptic
curve between two points. For such a curve there will be a unique
azimuth and distance. The great elliptic curve is hardly used in
practice so that little literature exists on this curve. Bowring (1984)
has described position computations using this curve.

Another curve that has been described between two points on the
surface js the curve of alignment (Clarke, 1880, p. 116, Baeschlin,
1948, section 17). To describe this curve, again consider two points,
A and B, on the ellipsoid. Let AB be the normal section from A to
B, and BA be the normal section from B to A. Next consider a meridian
between the meridians of A and B. The two normal sections will intersect
this meridian at Q, and Q, as shown in Figure 4.26:

L

1
A Figure 4.26
The Curve of Alignment

We now define a point L on the meridian Z Q, Q,, such that the azimuth
of the sighting to A and to B differ by exactly 180°. If this operation
is repeated for all meridians between A and B, the connection of all
points L forms the curve of alignment. Because of its construction
this curve will be close to the geodesic between the points A and B.
As the curve of alignment is not widely used in practice no additional
information is given on it. '

4.4 Geometric Reduction of Measured Directions or Azimuths

Ltet D be the observed direction from point A to point B. For
certain applications of this data in a triangulation adjustment it
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is necessary to apply two corrections based on our previous discussion.
In section 4.24 we considered the azimuth difference between the normal
section and the geodesic. To convert the normal section direction
to the corresponding geodesic direction we add 8, to the observed
quantity where 8, (see equation- (4.112)) is:

- €2 (5)2 0524 si
8, = T3 (N) cos ¢ms1n2aAB

If the observed point B is at an elevation h we must add the correction
to get the corresponding direction to point B now projected onto the
ellipsoid. We let such a correction be §, which is (see equation 4.46):

= __h._... 2 2 3 V
5, 2Mm e? cos ¢ms1n2aAB (4.121)



5.  SOLUTION OF SPHERICAL AND ELLIPSOIDAL TRIANGLES

. One of the basic goals of geodesy is the determination of the
"~ geodetic coordinates of points referred to a reference ellipsoid. In
classical geodetic procedures this is usually done by triangulation
and/or trilateration procedures where we measure distance and/or angles
or directions to define triangles on the reference ellipsoid. In order
to carry out position computations for certain cases it is necessary
to develop procedures for solving triangles on the ellipsoid. We first
consider the problem by approximating the ellipsoid by a sphere and
seeking a solution for spherical triangles. Such triangles are
equivalent to ellipsoidal triangles up to sizes of approximately 200 km.

5.1 Spherical Excess
We consider a triangle on the sphere where the three spherical

angles are A, B, C. The spherical excess of the triangle is defined
as the sum of the three angles minus 180°. Thus:

e = Ao+ B+ C°- 180° (5.1)
This definition arises from the fact that on a plane, the sum of the
angles in a plane triangle is 180° exactly.

If R is the radius of the sphere and F is the area of the spherical

triangle it can be rigorously shown (Jordan, Volume III, first half,
p. 89):

e =—REZ- (5.2)

so that spherical excess is proportional to the area of the figure.

If the sides of the triangle are expressed in radian measures
as a, b, and ¢, an alternate expression for spherical excess may be
given as (Jordan, Volume III, first half, p. 17):

£ _ s s-a s-b s-C .
tanz—\/tanztan 5 tan=5-tan=; (5.3)

where a + b + ¢ = 2s.

Examples of the magnitudes of spherical excess are given by Jordan
(Volume III, first half, p. 92) as follows:
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Area of the Triangle £

1 sq. km 000507
21 sq. mile (equilateral triangle with sides of 113% km) 07279
200 sq. km (equilateral triangle with sides of 21-% km) "
equilateral triangle with sides of 111 km 27"

5.2 Solution of the Spherical Triangle by Legendre's Theorem

The solution of spherical triangles is simplified if one utilizes
Legendre's Theorem which is stated as follows: "If the sides of a
plane triangle are equal to the corresponding sides of a spherical
triangle, then the angles of the plane triangle will be equal to the
corresponding angles of the spherical triangle minus one-third of the
spherical excess". This theorem was derived by Legendre in Paris in
1787. In order to prove this theorem we consider a spherical triangle
(on a sphere of radius R) and the corresponding plane triangle as shown
in Figure 5.1 c

A B A
Figure 5.1
Spherical and Planar Triangles

In using these figures we will attempt to find the difference between
the angle on the sphere and the angle on the plane, that is (A-A'),
(B-B'), (C-C'). To do this we first apply the law of cosines to the
spherical triangle to write: .

8 - cos® cosE + sink sinS
cosg = cosg cosg + sing sing cos A (5.4)
or
cos% - cos% cos%
A=
cos b ¢ (5.5)
sing sing
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Restricting ourselves to small triangles, we note that a/R, b/R and
c/R will be small and series expansions for sine or cosine are
appropriate. Neglecting the fifth power of a/R, b/R and c/R equation
- (5.5) may be written as:

a2 at b2 b* c2 ch
cos A= 1 -7z *gagw) - (1 - opr togpw) (1 - sprtogpw) (5.6
T LR TR
R "~ 6R3/ ‘R ~ 6RT

Multiplying the bracketed terms out, expanding the denominator we find
(Jordan, Volume III, first half, p. 94):

b2+c2-a2  ak+b“+ch-2a2c2-2b2¢2-2a2h2
b 24RZbc e (5.7)

cos A =

If we apply the law of cosines in the plane triangle we have:
a2 = b2 + ¢2 - 2bc cos A’ (5.8)
which is solved for cos A' to find:

2 2 - a2
cos A' =2 4-£Lc a , (5.9)

We may also obtain an expression for sin2A' by solving sin2A' = 1-cos2A',
so that we have from equation (5.9)

-al - bk - cb 2h2 2¢2 2¢2
sin2A' = =@ b c +4b22ac2b + 2a2¢2 + 2b2c (5.10)

We note that equation (5.9) represents the first part of equation (5.7)
while the equation (5.10) is related to the second part of (5.7). Using
(5.10) and (5.09) in equation (5.7) we find:

P _
cos A = cos A' - 95—%%2—A— + ... (5.11)

We now use (2.23), writing it for n = 1 as:

COS X - cOS y = =2 sinzéx'sinlgx (5.12)



where in our case x = A and y = A'. As a sufficient approximation
we take: .

s1n——x-- sinB-A_ . A-AL

2 ~ 2
(5.13)
s1’n-’—(i=x = sinA+A' =z sin A'
2 2
since the difference between A and A' will be small.
Combining equations (5.13), (5.12) with equation (5.11) we have:
- bc sin A’

A-A' = 2= s L (5.14)
The area of the plane triangle, is Qg_é%ﬂ_ﬁ_ » SO that equation (5.14)
is written:

A-A = ’ (5.15)

3R2 .
In a similar manner it can be shown thatf
S
B-B'= IR
5.16

C-C' =L ( )

3R2

If we add equation (5.15) and (5.16) and note that (A' + B' + C') = 180°
we have:

oy P
A+B+C=180 +§.5_- » (5.17)

Comparing this to equation (5.1) or (5.2) it is clear that P/R? is
essentially the spherical excess of the triangle. Thus equations (5.15)
and (5.16) may be written in the form:

v E
A-A' =3
B-B' =% (5.18)
- (' =&
c-c =%
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These equations are the justification for Legendre's theorem.

Equations (5.17) and (5.18) are approximations only. More precise"
derivations yield the following extended equations (Jordan, Volume
-II1, first half, p. 110):

(A~ A') = 5oy [1 4222 iggR; 7c2q
(B - B') = ooy [1+ 1222087 Tch (5.19)
R LR
If we sum these equations we have:
A+ B+ C=180° + oy [1+ 225Dt (5.20)

so that upon comparison with equation (5.1) the spherical excess of
the triangle is :

aZ + b2 + Cz]
24R?

e= oy [1+ (5.21)

At this point we note that the area, P, of the plane triangle can be
rigorously given by:

P =vs(s-a)(s-b)(s-c) (5.22)

where s = (a+b+c)/2.

We next solve for P/R? from equation (5.21) and substitute the results
in (5.19). We have (Jordan, Volume III, first half, p. 112):

(A - A') =5+ fr (n2 - a2)
(B-B')=5+gky (n2-b2) (5.23)
(C-¢C') =35+ gz (M2 - c2)

2 4+ p2 4+ 2
s _ 4
mé =
where 3
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Equation (5.23) can be compared to equation (5.18) to see that Legendre's

theorem is only an approximation.

For applications in triangles that are not typical of those found

in ordinary triangulation it

ellipsoidal excess.
IIT, second half, p. 66).

is necessary to derive the Legendre's
theorem for triangles on the ellipsoid.

In this case we now deal with

A complete derivation can be found in Jordan (Volume

To summarize the solution we first designate the vertices of the

ellipsoidal triangle as A, B, C.

At each point, the mean curvature

is:

= =-1. = =1l = -
KA (MN)A : KB (MN)=L, KC (MN)C1 (5.24)
The mean curvature is:
Km = (KA+ KB + KC)/3 (5.25)

Then the relationship between the ellipsoidal angles and the planar

angles is:
(A-A')=5+gK(m2- a2) *1%&“7":(“
(C-C')=3+gpKy (m2-¢3 +1L2&-T:m

The second terms on the right hand side of (5.26) are the second order
spherical terms (equation -(5.23)) while the third terms represent the
ellipsoidal contributions. The value of ¢ is:

m2K )
€ =P Km (1 + —§—JD (5.27)

The area of the plane triangle can be found from (5.22)

As a numerical example we consider a triangle described in Jordan
(Volume III, second half, p. 67) where:
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69194 m

= 105973 m

c =84941 m
$, = 50° 51° 9"
¢ = 51° 28° 31"
¢, = 51° 48' 2"

The ellipsoidal excess of this triangle is 14%850054. The results
of the evaluation of (5.26) are as follows:

A - A' = 4,950018 + 0.000018 + 0.000148 = 4950184
B - B' = 4.950018 - 0.000021 - 0.000028 = 47949969
C -C' = 4.950018 + 0.000003 - 0.000120 = 47949901

We note that the corrections due to using the ellipsoidal triangles
are larger than the corrections from the higher order spherical term.

5.3 Solution of Spherical Triangles by Additaments

In the solution of triangles by Legendre's method the sides of
a triangle were kept fixed while the angles were modified. In the
additament method two angles are kept fixed while the side 1lengths
are changed. In order to derive this procedure, one can write the
law of sines ig the spherical triangle shown én Figure 5.2.

b a
A p B
Figure 5.2
Triangles for the Additament Method
a
S (529
sin .ﬁ
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while in the corresponding plane triangle (with unchanged angles)

sin A _a' .
sinB b’ (5.29)

Equating equations (5.28) and (5.29) we have:

3

g_l - R - R 6R3 - :6R2 (5 30)
SRR Sl S X '
R R~ 6R3 6RZ

where we have retained terms to the third power in (a/R or b/R). We
can satisfy this equation if we set:

: a3

a' =a - g5y (5.31)
3
b' = b - 2

T 6RZ

or for an arbitrary side.

.o s3

st x-S (5.32)

The value of s3/6R? is called the linear additament for side s. For

various )s values this correction is approximately as follows:
(d’m = 50°):

g3
s (km) ; Rz (m)
10 ' .004
20 .033
30 .111
40 .262
50 .512
60 .884
80 2.096
100 4.093

The use of additaments was primarily in a logarithmic form as shown
in Jordan (Volume III, first half, p. 98). Since this procedure is
not extensively used now, we do not examine this method in further
detail at this time.
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6. CALCULATION OF GEODETIC COORDINATES (SOLUTIONS OF THE ELLIPSOIDAL
POLAR TRIANGLE)

6.1 Introduction

We next look at the computation of the geodetic coordinates of
points on the ellipsoid. Such coordinates are usually specified as
Tatitude and longitude. If we assume that we are given the coordinates
of a starting point, a distance and azimuth to a second point, we desire
to compute the coordinates of the second point, as well as the azimuth
from the second point to the first. Such a problem is defined as the
direct geodetic problem or simply the direct problem.

The inverse geodetic problem is defined as the case where the
coordinates of the end points of the line are given and we desire to
find the azimuth from point one to point two, the azimuth from point
two to point one, and the distance between the two points.

The solution of either of these problems is basically a solution of
the ellipsoidal polar triangle shown in Figure 6.1.

POLE

P (6,5 1))
- Figure 6.1
The Polar Ellipsoidal Triangle

We can express the previously defined problems in the following
functional form:

Direct Problem: 62 = F1(d1s A1sgi12s )
g = Folé1s Aps aygs S) (6.1)

azy = F3l61s Aps @125 8)

Inverse Problem: S = f,(¢15 A1s 025 A2)
ayz = 5oy Aps 625 A7) (6.2)

ey = Felogs Aps 625 2p)
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There are many solutions for these problems. Such solutions are
generally classified by the distance for which they are valid and by
the type (e.g. normal section or geodesic) of 1line being considered.
We may have simplified solution techniques for short distances while
more extensive formulas are needed for long lines. We shall look at
equations for short and medium length lines in the next sections.

6.2 Series Development in Powers of s

6.21 The Direct Problem

We assume that a curve on the ellipsoid can be expressed as a
function of s:

¢ = o(s)
A = a(s) (6.3)
a = a(s)

We now develop equations (6.3) into a Maclaurin series about the first
point as an origin:

- do d% | s2
S S Srdsz |7t
2 2
)\'—')\1“"% S+g?>\ ST'*'... (6.4)

2 2'
o1 = Q1o + 180° 4 Aa = o)+ 180° + (g—%) Ils + (3—5%) l-§2—-+ .o

ajp is the forward azimuth at point 1 while ap; is the back azimuth
at point 2. We now start the evaluation of the derivatives by recalling
equations (4.74) and (4.75):

ds cos o = Md?
ds sina = N cos¢dr . (6.5)
da= sinddAr

We recall that:
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so that we have from (6.5) after substituting for M and N:

.g_% = -(]:'_ V3 C0Sq = --—-—-COMSG . (6-7)
dr _ ¥V sing _ __ sing
S ccos¢ N cose (6.8)

If we solve equation (6.8) for da and substitute this into do = singdx
we have:

sing tang (6.9)

do _ V
ds ¢

In order to carry out the differentiation needed in equation (6.4)
we will need the derivative of V with respect to ¢ since:

dv _dvde
ds d¢ ds
We have

V=y1+e'2cos?y

dV _ -e'2 singcose
do v

Letting: n? = e'? cos?¢ and t = tan¢ we have

V2 =1+ n?

dvV _ -n?t o

Fraa (6.10)
2

%¥-= -nz-%; cosat

In order to find the second derivatives needed in equation (6.4) we
first write:

d?¢ _ d V3
@s2 © gs ¢ cosal
2 3
=§Z—-g-¥- cosa--ye—sina%
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Using equations (6.9) and (6.10) we find:

4

2 -
&4 = 2% (sinfat + 3 cosZan?t) (6.11)

A compact form for expressing these derivatives can be obtained by
letting:

y = 35.s8ina _ Vs sina
N c

(6.12)
_ S cosa_ V s cosa

u= N c

Then the derivatives of ¢ with respect to s are as follows (dJordan,
Volume III, second half, p. 77):

dqa 8
s vE =t

2
%—‘ﬁ:—-v’t-—u?@n?l)
f%-;:-z=—-vzu(1+3z=+q=—9q=tz)—snsqz(l—-cz-}-qh—snztz) (6.13)
f}g =+ V(148 By — Oyt ) —2urut t (446 E— 1872 —9n2 2178

4578 te) putty? (124 6972 — 4572 £2 5T 74 — 105 94 £3)

5
g%%dquu+wn+ﬁw_awmu+mnTww

In these expressions all terms are retained to the fourth order
derivative but all n" terms in the fifth derivative have been set
to zero.

: 2
We next consider %E% by differentiating equation (6.8):

d2>\=__d_<_i_>_\_=_1_ ﬂ V cosa do , V tany _. do ‘

dsZ ~ ds [ds:I ccoss ds ¢ cos¢ ds © ¢ cosy °'"ds (6.14)
Substituting the value of 3! from (6.1C), da from (6.9) and ~% from
(6.7) we have:

d2y _ vz _. _ovet

ds? ~ Ticoss sing cosat Zcose sin2y (6.15)
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Using the notation of (6.12) the derivatives (to the fifth order)
are:

_‘:'l__)\_, corp =-v

as
%s’coaq) +2vut
3y ‘
73 cosp=+2vuz(l14+3882492)—23¢2 (6.16)
d .
ds}a«mcp Buust (24824 n2—n0)—8uSut(14+812417?)
ar)
Tos #5cos @ = Bvut (241582 4 15£6) — 8 v us (1 420 {2130 £4)+-8 o8 £2 (143 £2)

We next differentiate equation (6.9):

d?2g sina .4V .V 2Y ein. G0 LV .4 . dA
e [ ] ~— st ¢ (1 + t2) sing qs t T cosa-t 0
Substitution of the appropriate derivatives gives:
24 2
% = L sina cosa (1 +2t2 + n2) (6.17)
The values of these derivatives to the fifth order are:
-g—:a =vi
S r=vu(l264y)
d3a
T P =V B 6Bty —dg) —w (1420 4y - (6.18)
d¢ ' °s
a_“a‘--vu3(5+28t=+24t‘+6n’+8q’t’—-3q4+4r)‘t2—4r)0+24q°t’) ‘
e —-v’u(l+20£’+24l4+2f)=+8n’t3+r)‘—l2q‘lz)
‘T-?a u‘t(6l+180t’+l20t‘)—v’u’t(58+280¢2+240{‘)
_ 48 (142082 4-2414),

If we now substitute these derivatives into the general form represented
by (6.4) we have the following working equations (Jordan, Volume III,

second half, p. 78)
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1oy L300
u 5 vt 5 usn<t

f

2 3
25 (143t24 02 -9n2t2) - 5 n2(1-12)

6
N
+'%Z t(1+3t2+4n2-9y 2-9n2t2)
L
+ -u?-nz t
+ '_b' (1+30t2+45
(Az-xl) cos¢ = v + vut
3 2
- 512 + BT (143t24n2)
V3
- L t(143t24n2) + B > t(2+3t24n2) (6.19)
* 18 t2(1+3t2) + = (2+15t2+15t‘*) - ——1-5-—( 1+20t2+30t%)
@, -(%;,+180°) = vt + ——(1+2t2+n2)
v3 2402 vu? 242 4.k
- —G—t(1+2t +n2) +—6—t(5+6t +n2=4n*)
(1+20t2+24t“+2n2+8n2t2) + 5, (5+28t2 +24t4
+6n2+3n2t2)
120 120
2 L
120t(61+180t +120t%).

A1l angular units in these expressions will be in radians. Also
recall that these equations specifically hold for the geodesic line.
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The accuracy of the extended question 1is such that Bagratuni (1967,
p. 136) dindicates that they can be used up to 130 km. However,
Grushinsky (1969, p. 62) indicates that such formulas are useful up
to 600-800 km. More detailed accuracy statements will be made later.

6.22 The Inverse Solution

The solution of the inverse problem using series expansions is
not as direct as expressed by equation (6.4). We will solve this problem
using the first terms of equation (6.19) in an iterative procedure.
We can write (6.19)1in the form:

(6.20)

where A and A, are functions of s, o;,, and ¢;. We now solve
equation™ (6.20) assuming A, and ap are known. Letting ap =¢,-¢)
and Ax =X, -x; » we have

VY, sinoyo o -
c Cos ¢, S = AN - Ag

V3 (6.21)
= C0SajpS = A4 - A,

Dividing these two equations and rearranging terms we have:
AX - A
tana;, = V2 cos ¢, [—E_—A-B_] (6.22)
A _

In addition, s can be found from either of the equations given in
(6.21). For example, for the second expression:

g = S(8o - 8,) (6.23)

V13COS L5y

Knowing Ax, A¢ s and ¢;, and setting‘ A, and A, to zero as a first
approximation to the azimuth (o)) we have“from quation (6.22):

12
1
tana£; = vicos ¢, [%%] (6.24)

Again setting Ay equal to zero, now in equation (6.23), and using the
azimuth from (6.24), we compute the first approximation to the distance
as:
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(1)= cA
s V?ZS%Z?; (6.25)

1) (1)

Using the now known values of a;, and s we can compute values for
Ap and Ag which can then be used in equation (6.22) and (6.23) to
find better values for o;, and s. The process is iterated until the
values of a;,and s do not change beyond a specified amount.

6.3 The Puissant Formulas

These equations were originally derived by Puissant in the 18th
century. They have been extended and used by a number of different
geodetic organizations for their position computation work. These
equations are not derived with great rigor and are not usually used
for lines greater than 100 km in length.

6.31 The Direct Problem

To derive the necessary equations for the direct problem we consider
a sphere of radius N;, tangent along the parallel through the first
point. For short distances the sphere will be approximately coincident
with the second point. We will assume that the azimuth and distance
are the same on the sphere and on the ellipsoid. This information
is shown in Figure 6.2. ' b

-90° - ¢;

P, (6,5 1,)

P1(¢1. A,)

Figure 6.2
The Puissant Approximation for Latitude Determination

90 - ¢, and 90 - ¢, are arcs on a sphere of radius N,, tangent
at point one. In measuring these arcs we have ¢; = ¢;, since the sphere
is tangent at the first point. From the spherical triangle P,P'P,
we write the law of cosines:

sin¢’, = sing, cos P;P, + cos¢, sin P;P, cosa (6.26)

12
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S1nce we are dealing with short distances we let ¢, = ¢; + a¢' where
A¢' is a small quantity in radians. In addition we let the arc P 1P
be given as s/N,. Equation (6.26) now becomes:

i ') = ¢ S T
sin (¢1+4¢') = sin¢, cos N, + €0S ¢, sin Ny €os a, (6.27)
We now expand sin (¢;+4¢') into a series:
12

13
sin (¢1+A¢') = sin ¢, + cos ¢1A¢' - sincpl—A%— - €OS ¢, —A—‘g— + (6.28)

Recognizing that s/N; is small we write:

s .s _s?
S1n'N-l—— Nl -—§6N1
(6.29)
SZ
cos N 1 ?ﬁ?

We may substitute equation (6.28) and (6.29) into (6.27) and solve
for a¢'. We find:

2 3
g =N§—c05a12—-§%‘7tanq)l--éq—gcoml;—L tang, +L (6.30)
1 1 1

Since A¢' appears on the right side of equation (6.30) we must solve
the equation by successive approximations. On the first approximation
we take A¢' = s cosaj,/N; so that (6.30) now becomes:

'S Ag'3
86" = J- cosa,, - ?ﬁf tang; sin%o, Eﬁg cosa , + =% (6.31)
Thus, a better approximation to a¢' is:
1 p— S SZ - 2
A" = COSa , = Hy tanq)1 sina , (6.32)
1 1

Equation (6.32) may now be substituted back into equation (6.30) to
find:

=S .52 a0 _S3 in2 2
Ad N, cosa,, Wfsm c:nlztanqa1 —gﬁlgcowlzsm a12(1+3tan ¢1) (6.33)

-105-



Now we must change a¢' (measured on the sphere of radius N;) to
b6 which is measured along an arc of the meridian. To do this we assume
the distance N,A¢’' on the sphere is equal to the corresponding distance
on the ellipsoid. Letting M; be the meridian radius of curvature at
the mean latitude we have:

Nag' = M A (6.34)

which may be solved to find A¢ if we can find My. In order to evaluate
Mn we need to know the latitude of the second point which is what we
are trying to find. To solve the problem we find My by an expansion
of M about the first point. Thus:

M = Ml o+ — Ai + o (6.35)
1

or upon differentiation:

M =M

+ 3 Mie2siné;c0Sé
m 27 (6.36)

1 - eZsinZg,) 4¢

Solving (6.34) for a¢ and substituting (6.36) into this expression
we have:

Ap = 8¢ - cOoAd (6.37)
where

_s s2_ .o $3 _ ein2 2
8¢ -FECOSdlz-ﬁﬂzﬁ; sin alztan¢l-gﬁgﬂ— sina;2c080;2(1+3tan?¢;) (6.38)
_ 1™ :
and

e s1n¢1cos¢1
(1-e%sin?gy) (6.39)

=3
2

Since (6¢ -2¢) is small, we can let &¢A¢ appearing in equation (6.37)
be: (6¢)2. With this substitution and introducing the following symbols
(Hosmer, 1930, p. 212):
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= L - tang; = 3e2sing;cosg;
B=w, > Camn, * D" 2(T-ezsinZe,) °
(6.394)

p = 1+ 3tanZey | h = 30522

6N2 M

1 1
we have:

8¢ = s cosa B-s2sinZq C - thSinzale - (8¢)2D (6.40)

where §¢ is given by equation (6.38) or by the sum of the first three
terms in equation (6.40). The latitude of the second point will then
be ¢,= ¢, +a¢.

In order to determine the longitude of the second point we define
a sphere of radius N, tangent to the parallel through P,. We assume
that this sphere passes close to the first point, so that the azimuth
and distance on the ellipsoid and the sphere are the same. This
situation is shown in Figure 6.3.

PII

- <7

P, (6,5 .1,)

P (¢,5 1))
Figure 6.3

The Puissant Approximation for Longitude Determination

Applying the law of sines to the spherical triangle P,P,P" we have:

sinax _ sinayo
sinsS C05¢2
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sinax = sin cﬁ%) sina , seco, ' (6.41)

Equation (6.41) is a closed expression for an gpproximate result. The
‘longitude of the second point would be x,=x;+ax. Equation (6.41)
may also be developed into the following series form (Clark, 1957,
Volume II, p. 336).

S

A= sina__s [1 s2
A T, ST, ,S€Ce,

- < 2
6N§(1 s1n%xnsec ¢2)] (6.42)

We should note that before equations (6.41) or (6.42) are applied,
it is necessary to compute the Tlatitude of the second point using
equation (6.40). In order to compute the back azimuth, we apply the
following equation obtained from Napier's analogies:

N . cosk(b-c A
tank (B+C) EEE%TE:E% cot > (6.43)

where we have by analogy with the Figure 6.1:

B =0, b = 90° - ¢,
C = 360° - o, c=90°-¢ (6.44)
A = AX

which may be put into equation (6.43) to yield:

L o_ - Ax cos}[(90-43)-(90-¢
tani(o ,+360°-0,,) = cot = cosul (90-03)%(90-0, (6.45)

We write o, = o, +A4a*180° so that equation (6.45) becomes (after
inverting):

tan%g = -5—1—'1—1/2—-(2-11?—&)- tan% (6.46)
cos A%_

Since ¢, = ¢, and A¢' = A¢, equation (6.46) can be written as:

tanid= Siném tanfgL (6.47)

cosAd
2

Equation (6.47) may be put into series form as follows (Clark, 1957,
Volume II, p. 337):
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- A si be 823 B8 (in3s sec3A?
Aa = Als1n¢msec 5 * 13 (s1n¢msec 5 - sin“¢ sec 5 ) (6.48)

Equations (6.40), (6.41), and (6.42) (or equivalent series forms
for the latter two) constitute a usual implementation of the Puissant
equations. They have been used for distance to the order of 100 km.
An additional term to be added to the right hand side of (6.40) extends
the accuracy of the procedure to 1lines of somewhat greater extent.
This term is (Hosmer, 1930, p. 219):

%szkE --%szcoszakE - Ls2cos?asecZoAk (6.49)
where k = s?sin?aC
(6.50)
A= 1/N

1

If short lines (up to approximately 12 miles or 19 km) are being
computed, simplified versions of the Puissant equations may be given.
From equation (6.40) we could write:

4¢ = s cosa;, * B - s?sina;, - C - (84)2D (6.51)
From equation (6.42) we would write:

AX = ﬁ% sina sec¢, (6.52)
and from equation (6.48) we have:

Ao = AAsin¢m (6.53)

6.32 The Inverse Problem

In order to solve the inverse problem using the Puissant equations,
we first solve equation (6.42) in the following form:

s sina,, = NpArcoss, (6.54)

21 - —GSNE—Z (1-sin 20 sec 2¢)]
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If, as a first approximation we set the denominator to one, we can

compute s sina We next solve equation (6.40) for s cosa.  :

12 12

scosa,, = %-[A¢'+5251n2a12 - C + hEszsinza12 + (8¢ )2D] | (6-55)

2

Although we do not know h on the right hand side of the equation, we

can find a good approximation to s cosa, . Then
tang. = s sinoyy ; 4= ((s sinalz)z + (s cosglz)Z)l/Z (6.56)

12 s COSC!12

from which we can find a;, and s. Iteration will be necessary to
achieve accuracy compatible with that of the direct problem. -

We should note that the derivation of the Puissant equations is
such that we can not state whether the method is for a geodesic or
a normal section. This is immaterial, however, since the application
of the Puissant formulas is limited to line lengths where the difference
between geodesic and normal section curves is not significant.

6.4 The Gauss Mid-Latitude Formulas

The equations of Puissant are convenient for the solution of the
direct problem but they are less convenient when solving the inverse
problem. To avoid such a problem it is appropriate to consider the
Gauss-mid-Tatitude formulas (Lambert and Swick, 1935, Lauf, 1983).
In this procedure we replace the ellipsoidal polar triangle by a
spherical triangle on a sphere having for its radius the prime vertical
radius of curvature at the mean Jlatitude between the points. The
ellipsoidal triangle P,P,P and the corresponding spherical triangle
P/P,P' are shown in Figure 6. 4.

Polar Triangles Solved through the Gauss-Mid-Latitude Formulas

We assume that the azimuths and distance on the ellipsoidal and spherical
triangles are equal. However, we note that ¢; and 4, are not equal
to ¢ and ¢, because the quantities are being measured with respect
to different surfaces. We shall assume that:

- =110~



=1 =1 (4 + g
og =5 (0, +¢,) =5 (o) +¢)) (6.57)

m 2

We shall also assume that the distance on the arc between the parallels
¢} and ¢, on the sphere is equal to the distance between the parallels
¢; and ¢, on the ellipsoid. Knowing the radius of the sphere is Ny
and, with sufficient accuracy the meridian radius of curvature on the
ellipsoid is My, we can write:

No(o, = ¢1) = Mo(e, - ¢) = Mpae (6.58)

This equation is similar to equation (6.34) utilized in the derivation
of the Puissant equations. We now utilize the Gauss' or (Delambre)
equations written down for the following spherical triangle:

We have:

. C 1 P | . C
sins cos (A-B) = sins (a+b) sins
(6.59)
N P | - cind (a_ c
sins sin (A-B) = sins (a-b) cos3
In our case we have:
S
cC =<, C = ax
Nm
A=a12’ a=90°’¢é
B = 360° - a,ys b =90° - ¢{
so that we have:
A-B =a,, +a, - 360° a+b = 180° - (¢ + ¢,)
@, =oa,* Aa + 180° a-b = ¢{ - ¢5 (6.60)
A-B = 2a12+ Aa - 180°
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Substituting these values into equation (6.59) we have, after several
simplications:

. S . Aoy . s AN

S1niﬁﬂ; sin (a12 +-—§—) cosg sin=s | (6.61)
. s . Ady - cindd' oo AX

s1n2Nm co=(a12 + 2) sinS* cos (6.62)

From equation (6.58) we solve for a¢' in terms of a¢ and substitute
into (6.62) to find:

. S
SiNsy cos (o, +42) = sin [ g cosil (6.63)
2 N 5

Equation (6.61) and (6.63) are the main equations leading to the Gauss
mid-latitude formulas. To derive the inverse solution we divide (6.61)
by (6.63) to obtain:

A
tan (o +582%) = £0SomSIN 2 : (6.64)
12 2
sinEﬂmﬂ¢] cosil
2N 2

Note that in the inverse problem the right side will be a known quantity
so that equation (6.64) may be used to find o;p+ 8a/2. Knowing this
quantity we can solve either equation (6.61) or (6.63) for s. For
example from (6.61):

9
S . costp sin"o

sin
N, sin(a,, +£%L) ‘

(6.65)

In order to find the azimuth, the value of Ac may be computed from
equation (6.47) or (6.48) which have been previously given.

The Gauss mid-latitude formulas are usually seen in series form.
These may be derived by expanding sin (s/2Ny), sin (Ax/2), and

sin (My2¢/2Ny,) that appear in (6.61) and (6.63). For example, retaining
first terms in (6.61) we have:

. Aoy _
s sin (o), +'7T) = chos¢mAA _ (6.66)
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and from equation (6.63):

Aoy _ AA
s €os (a12 + 7?) = MmA¢cos 5 (6.67)

These equations may be used to solve the direct problem in an iterative
fashion by writing equations (6.66) and (6.67) in the form:

s sin (o3p + Aa/2)

AX =
chos¢m

(6.68)

_ S cos (oo + 80/2)
89% "W _cos (5372 (6.69)

where Ac could be computed directly from (6.47) or (6.48). It is clear
that the precise solution of the direct problem in this manner is an
iterative procedure.

A more complete series form for the inverse problem has been given
by Lambert and Swick (1935), Bomford (1971, p. 137), and Lauf (1983,

p. 71). Given the information for the inverse problem we compute Np
and Mp. Then compute F:

1

= i 2 }
F 15 sine cose, (6.70)

We then essentially evaluate (6.48) in the form:

Ao = Axsin¢msecé§-+ Fax3 (6.71)

Then compute:

XY

fn

8¢ (sin (24/2)/(84/2))
Ax (sin (ax/2)/(ar/2))

X, = sysin(e;, + %?)

ax'

NmAlcos¢m (6.72)
MmA¢’cos(AA/2)

>
"

slcos(a12 + %%)

Knowing X; and X, compute s;:

s, = (X2 +x§)’2 (6.73)
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Then find:

s =s (SI/ZMQ/sin (51/2Nm)
ap, = tan~H(X,/X,) - Aa/2 (6.74)
e, =a,, + Axx180°

The importance of the Gauss mid-latitude formulas is in the solution
of the inverse problem through equations (6.64) and (6.65) where no
iterative procedures are required. The accuracy of the Gauss
mid-latitude formulas is about 1 part per million for lines of 100
km.

6.5 The Bowring Formulas

Bowring (1981) has derived equations for the direct and inverse
problems for the geodesic for lines up to 150 km in length. The deriva-
tion is given in detail by Bowring and will not be repeated here. The
method uses a conformal projection of the ellipsoid on a sphere called
the Gaussian projection of the second kind. In this application the
scale factor 1is taken to be one at the starting point of the 1line.
In addition the first and second derivatives of scale factor with respect
to latitude are set to zero. The geodesic from the ellipsoid is then
projected to the corresponding 1line on the sphere where spherical
trigonometry can be applied.

The procedure for the direct and inverse solution is non-iterative
using the following equations:

Common Equations

. .

= (1+ c=.'2cos“d>1)l/2
B=(1+ e'zcoszct:l)ll2
C=(1+e'2)* (6.75)
w=A(X, -1)/2 .
6 =6, -4,
AX = AZ - Al
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Direct Problem Equations

(o]

sB2/(aC)

>4
i

1 Atanosina
= + = =1 12
2 M TR tan (Bcos¢1 - tanos1n¢1c05a1)

S S B _1 .. .
D= 5 sin [s1no(c05a12 A S1n¢ls1na12tan w)]
(6.76)
= - ._3. 12 i i
9, =¢, + 2D [B 5 e'2 D sin (2¢1 + 3 BD)]
= -1 -B sinoj2
o, = tan [c050(tanotan¢l - B c05a1)]
Inverse Problem Equations
=M. 39.2 5 g
D = 55 [1 + Sgzassin(2g, + 300)]
E = sin D cosw
F = %-sin w (B €os¢, €os D - sin¢1sin D)
tan G = &5 sing = (E? + F2)* (6.77)

tan H = [ %-(sincp1 + B cos¢1tan D) tanw]

o, =G=-h; a =G+H £180°; s = aCo/B 2

Meade (1981) discusses the accuracy of this solution indicating
accuracies of 1 or 2 mm for the direct or inverse solution for lines
on the order of 120 km in length. For 150 km lines the error in an
inversed distance increased to 3 or 4 mm. For lines up to 100 km the
azimuth error will be on the order of 0.001 second.
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6.6 The Chord Method

Another procedure to solve the inverse and direct problem is to
‘work with the chord between the two points of interest. In section
4.19 and 4.23 we discussed methods for working with a chord between
two points. In 4.19 we considered the chord and its normal section
azimuth between two points on or above the ellipsoid. In section 4.23
we discussed the conversion of a geodesic or normal section length
between two points on the ellipsoid to a chord and vice versa. We
now apply these equations to the solution of the direct and inverse
problem.

6.61 The Inverse Problem

Given ¢, , A, , ¢, , A, we calculate the X, Y, Z coordinates from
equation (3.152)  assuming the height is zero. The chord distance
is then:

¢ = ((X, - X))+ (Y, - V)2 + (7, - 7,)2)" (6.78)

This chord distance can be converted to a geodesic length using (4.106)
or a normal section length using equation (4.107). The normal section
azimuth can be computed in closed form from (4.71) where A is the first
point. If the geodesic azimuth is needed, equations such as (4.111)
can be used. The back azimuth, if needed, can also be found from (4.71)
making point A the second of the two points.

6.62 The Direct Problem

Recall for the direct problem we are given 05 As 0 s and s.
For convenience we can set A =0 and solve for a longi%ude difference
with respect to the first point. In this case the rectangular

coordinates of the first point are (from 3.152):

X1 = Nlcos¢1
Y =0 (6.79)
Z, = Nl(l-ez) s1‘n¢1

The coerdinate differences would be:

AX

[
>
t
>

2 1
AY =Y, (6.80)
AZ = 22 - Z1
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We now invert (4.67) and at the same time set A= 0. We find:

AX -sin¢1 0 cos¢1 u
AY = 0 1 0 v (6.81)
AZ cos ¢, 0 sin¢1 W

where the local coordinates are (see 4.60):

u=c cosVcosa,,
v = c cosVsina , (6.82)
w=c sinV

Substituting (6.82) into (6.81) we have:
8X = -c(sin¢, cosVcosa,, - sinVcos ¢,)
AY = c cosV sina , (6.83)
87 = c(cos ¢, cosVcosa, , +sin¢, san)

We know ¢ and o ,on the right hand side of (6.83). Assuming we know
V, we can use (b.83) to find AX, AY, and AZ. We then compute the
rectangular coordinates of the second point.

X2 = X1 + AX
Y2 = AY . (6.84)
22 = Zl + Az

Given these coordinates we can then compute the latitude and longitude
from (as will be discussed in section 6.8):

, Z
tant, < Ten) (k2 ¥ V2)% (6.85)
2
tanax =-%2 (6.86)
) .

These equations would complete the solution of the direct problem.
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In solving (6.83) we assumed that we had V. This angle V is the
negative of the dip angle discussed in section 4.17. For example,
from (4.52) we can write:

) (6.87)

oV o= o 2c0s2 .82 5
v N, (1 + n2cos alz) 2Nz n2t cosa
A simplified value for V can be derived from Figure 6.5 which assumes

the two points are on a sphere whose radius is the radius (Ra) of
curvature in the direction of the line.

Figure 6.5
Approximate Determination of the "Dip Angle"

We have:
sin p = sin(-V) =-§%; (6.88)

The use of (6.88) or even (6.87) could create a small error in the
computed coordinates. If the rectangular coordinates are correct the
equation of the ellipse must be satisfied. Specifically, from (3.153),
we should have:

72
[xZ + Y2 +T—2“)'1-ez ]* -a=0 (6.89)

If V is incorrect the right hand side will equal (say) h. Knowing
h,a correction to V can be computed (Vincenty, 1977) as follows:

v = —P (6.90)
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The corrected vertical angle would be:

Vig, = V; + dV (6.91)

Which can be used in (6.83) to obtain improved values of aX, AY, and
AZ. After the iteration cycle has converged (e.g. h < 1 mm) the final
set of X,, Y,, Z, values can be used in (6.85) and (6.86) to obtain
the Tatitude and longitude of the second point.

6.7 Accuracy of the Direct and Inverse Methods for Medium Length Lines

In the previous sections we have discussed a number of different
methods for solving the inverse and direct problem. Each method had
approximations associated with it in terms of series truncation or
geometric approximations. In some cases we have quoted guidelines
on the accuracy of the equations. But more specific accuracy estimates
can be obtained if a series of test lines are computed with the most
accurate set of formulas with comparisons made with the results for
the approximate methods. Such computations have been carried out by
Gupta (1972) for a number of methods and by Badi (1983) for the Bowring
method.

Before discussing the accuracies of each method we should put
in context the accuracy we might want in position computations. For
example, we first recall that 1" of arc corresponds to ~ 30 m on the
surface of the ellipsoid. We have then:

Arc Measure Linear Measure
1" 30m
0%1 3m
0701 .3m=30cm
07001 .03 m=3cm
00001 . .003m=0.3cm=3mm
0700001 .0003m=0.03cm=.3mm

If we are given a set of latitudes and longitudes we would like to
have them given such that any distance computed from them should be
correct (for consistency purposes) to 1 mm. This would imply that
¢'s and 1's should be given to an accuracy on the order of 0'00001.

There may be cases where such a stringent criteria can be relaxed
depending on the application of the results.

The point of the above discussion is to note that when we discuss
the accuracy of the direct solution we must clearly specify what is
our accuracy criteria. We should not imply that a given formula is
accurate for lines of XXX km.
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The tests made by Gupta consisted of lines of varying length and
azimuths and latitude of the first point. In most cases there is a
sensitivity to the results depending on these three quantities. A
complete Tlisting of all results 1is not appropriate here. It is
sufficient to tabulate the maximum distance at the poorest azimuths
‘and Tatitudes, for which the specific equations yield the given accuracy.
Such results are given in the following table:

Maximum Length of Line for Which a Given Direct Solution
Achieves the Given Accuracy
(Distances are in km)

0700001 070001 07001 0701
Legendre Series 30 40 80 100
(4 terms)
Legendre Series 60 90 100 200
(5 terms) .
Puissant 10 10 10 10
(short, 6.51)
Puissant 10 20 40 80
(long, 6.40)
Bowring 70 100 300 700
Chord

The poorest accuracy in these results usually occurs at the high
latitudes. (The highest latitude used in these tests was 70°). For
example at a latitude of 10° the maximum distance for the Legendre
series with 5th order derivatives is 100 km for an accuracy of 0"00001
instead of 60 km given in the table.

From these results we conclude that the Bowring formulas for the
direct problem will yield the best accuracy of the equations described
in this discussion.

The accuracy of the inverse problem can be described in a similar
way. In the following table we compare the distance and azimuth errors
for the Gauss Mid-Latitude Formulas and the Bowring Formulas. Again
we have chosen maximum errors that do depend on azimuth and latitude.

Maximum Error in the Solution of the Inverse
Problem for Various Length Lines

Line Length Gauss Mid Latitude Bowring
km Azimuth(") Distance(mm) Azimuth(™) Distance({mm)
50 020048 4 070003 0.1
100 0020 33 00024 1.1
200 0083 136 0v0049 9.7
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The Bowring results are clearly the better. The errors are still
quite sensitive to latitude and azimuth. For a 100 km 0° azimuth the

error in the Bowring formulas at 1latitude 10° is 0.08 mm increasing
to 1.1 mm at 40°.

6.8 The Inverse Problem for Space Rectangular Coordinates

Given ¢, A, and h of a point we compute the space rectangular
coordinates as follows (see 3.152):

X = (N + h) cospcosr
Y = (N + h) cosesim (6.92)
Z = (N(1-e2) +h) sing

We now examine the question of computing ¢, A, h given X, Y, Z
and the ellipsoid parameters. The solution is not straight forward
as N is a function of latitude. A number of iterative and closed form
solutions of this problem have been presented. We first consider an
iterative solution suggested by Hirvonen and Moritz (1963).

We first find the longitude by dividing the Y by the X equation
of (6.92):

tamn = -XY- (6.93)

(N+h)sine¢

Figure 6.6
A Meridian Section Showing a Point Above the Ellipsoid
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We have:

(NX++h$ sing (6.92)

tang =

Now Z = Nsing-e?Nsine + hsiné or (N + h)sine = Z + e2Nsin¢

1)

_Z+ e°Nsing

tanp = £ | (6.95)

We need to solve this equation by iteration so we first write:

tane = e Ns1n¢] (6.96)

,”2———‘2 [1+

If, as a first approximation, we take h = 0, Z = N(l-e2)sin¢, equation
(6.96) can be written as:

_ z e?
tancbl = —x"‘/—z_-'ﬁ [1+ m] (6.97)
or
.1 Z
tan ¢l = 1_e2 * /XT-_-I-—TZ

This equation 1is exact when h =0, and may be used to find a first
approximation for the desired latitude. With this approximation equation
(6.95) can be iterated to convergence.

From the first two equations of (6.92) we can find h:

N /X2 + Y2
= ot " N E (6.98)

From the third equation of (6.29) we have:

h = Sizm) - N + e2N (6.99)

The choice between the use of (6 98) or (6.99) depends on the
approximate latitude. In the polar regions (6.99) should be more stable
than (6.98) while the converse will be true 1n equatorial regions.
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In 1976 Bowring described an iterative procedure that converges
faster than the one just discussed. We consider (see Figure 6.7) a
meridian ellipse with point Q Tlocated at some elevation above the
ellipsoid with P being the corresponding point on the ellipsoid. Let
C be the center of curvature of the meridian ellipse at point P. The
distance CP is the mgridian radius of curvature, M.

-
X

Figure 6.7
Meridian Ellipse for the Bowring Derivation

The x coordinate of C is:

X, = Xp - M cos¢ v (6.100)
Using (3.42) for xp and (3.88) for M, (6.100) reduces to

X. = a e2cos3¢/W3 (6.101)
Using (3.66) this becomes:

X. = a e2cos3g | . (6.102)
In a similar fashion we compute the z coordinate of C. We find:

z. = -e'2b sin3p (6.103)

From Figure 6.7 we see:
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or substituting for X, and z _ we have

Zo + e'?b sindg

tan¢ = xq - @ e%0s (6.104)
In terms of X, Y, and Z we can write (6.104) as:
1 2hein 3
tang = Z*te "bsin 8 (6.105)

VX7 + Y2 - a e2cos3B

Equation (6.105) is the basic equation to be iterated for the Bowring
so]ution.) The initial approximate value of B8 can be found from (3.28)
and (3.29):

(6.106)

Any updated values of 8 that are needed can be computed from (3.63):
tang = (1 - ) tané ' (6.107)

where ¢ will be computed from (6.105).

For terrestrial applications a single iterative cycle of (6.105)
starting with (6.106) is all that is needed to obtain results accurate
to better than 0.1 mm. At heights of 5000 km the error of such
computation could reach 39 mm which could be eliminated by another
jteration. »

The height could be determined from (6.98) or (6.99). However,
a more convenient way for any technique was suggested by Bartelme and
Meiss1l (1975) as part of their derivation of another procedure for
the determination of ¢, A, and h. We start with the meridian ellipse
and a circle passing through the point of interest as shown in Figure

6.8.
z

/X2 +VZ = p -

h
acosg
Pl
y4
bsing
—»
Figure 6.8

Geometry for the Determination of h
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We note that the x and z coordinates of P' on the ellipsoid are
a cosB and b sinB from (3.28) and (3.29). We then have:

h? = (P - a cosB)2 + (z - b sinB) 2 (6.108)

The sign of h is assigned to be the same as the sign ¢f the first term
in parenthesis. The use of equation (6.108) is recommended for height
computations because of its simplicity and stability although it fails if
the point is at the poles.

Vincenty (1980a§ suggested an improvement in the Bowring procedure
by introducing an auxiliary ellipsoid that passes through the point
being transformed. This method is especially helpful when an elevation
is approximately known or is computed in an approximate way.

Closed formulas for the evaluation of ¢, A, and h from X, Y, Z
have been proposed by a number of authors (e.g. Paul (1973) and
Heikkinen (1982)). The computational steps for the Heikkinen procedure
are as follows:

1) ro= (X2 + 2%
2) F = 54p272
3) G =r2 + (1-e2)22 - e2E2; (E2 = a2 - b?)
4) c = e"Fr2/62
5) s =V 1+c + /cZ + 2¢
F
6 P =
) 3(s +%+1)262

7) Q=1+ 26% (6.109)

_-Pér  ra? .. 1, P(1-e?3z2 pri.y
8) r=rrgt U g - 2!
9) us="v(r- e2r0)2 + 72
10) V="+V(r- eZrg)? + (1-e2)72

_ b2z
11) Zo-—a—v—

. b2
12) ho=U(1 - 2y)

12

13)  tans = 3141—%—-351
14) tanx = Y/X
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Any errors in the application of these equations would stem from
instability situations. The formulas of Heikkinen are apparently stable
‘(Vincenty, 1982, private communication).

In terms of computer evaluation time the technique of Heikkinen
is the slowest. If we let the time for this approach to be 1, the
time for the Bowring approach would be 0.73, for the Vincenty (1980)
approach, 0.66; and for the Hirvonen-Moritz approach, 1.05.
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7. ASTRO-GEQDETIC INFORMATION
7.1 Astronomic Coordinates

To this point in our discussion we have considered geodetic co-
ordinates that are defined with respect to some specific system of
axes and planes implied by these axes. We have latitude measured from
the equatorial plane that is perpendicular to the Z axis or rotation
axis of the ellipsoid. The geodetic longitude is the angle between
an initial meridian (containing the X and Z axes) and the meridian
passing through the point of interest.

In the real world where measurements are made with respect to
the direction of the gravity vector, at a point on the surface of the
earth, we cannot directly determine geodetic latitude, longitude, normal
section azimuth, vertical angle etc., since the horizontal plate of
the instruments used for these measurements are oriented by making
the horizontal plate of the instrument perpendicular to the direction
of the gravity. The quantities measured with respect to a gravity
vector orientation are generally called astronomic quantities. We
have astronomic latitude ¢; astronomic longitude A; astronomic azimuth A;
astronomic vertical angle V; or astronomic zenith distance z'. In
order to define such quantities it is necessary to define a coordinate
system and initial planes for referencing (for example) astronomic
latitude and astronomic 1longitude. The definitions of these systems
is widely tied to observables related to the physical earth.

It is not the intention of our discussion to go into detail in
the definitions of astronomic coordinate systems. Such discussions
may be found in Mueller (1969, p. 19), Bomford (1980, p. 97), Vanifek
and Krakiwsky (1982, p. 296), Mueller (1981, p. 9) etc. It is important
for us, however, to briefly review some appropriate definitions and
applications.

The Z axis wused for astronomic referencing purposes is related
to the rotation axis of the earth. Such an axis requires a precise
definition since the instantaneous rotation axis does not remain fixed
in position with respect to the crust of the earth. The first monitoring
of the motion of the pole was started-in 1899 through the defined lati-
tudes of five stations of the International Latitude Service. The
data from these stations have been used to define the Conventional
International Origin (CIO) which 1is the average terrestrial pole of
1900-05. Polar motion values have also been determined by the Interna-
tional Polar Motion Service (IPMS) which uses data from a large number
of observatories, and by the Bureau International de 1' Heure (BIH).
Changes in polar motion are now also routinely obtained from the analysis
of the motion of satellites. Each determination of polar motion may
be slightly different depending on star catalogues used, adopted station
coordinates, observational procedures, constants adopted etc. In the
near future improved determinations of polar motion and the Z axis
will be possible using new and improved observational procedures and
processing techniques. It should be clear that polar motion deter-
minations since 1899 will not have a uniform accuracy and a uniform
reference Z axis.

-127-



For further discussion we assume that we have a Z axis of what
ijs called the Conventional Terrestrial System (CTS) (Mueller, 1981).
The instantaneous rotation axis is located with respect to this Z axis
by the elements of polar motion x, ¥y,. The astronomic latitude of
a point, on the surface of the earth, would be the angle measured between
"the equator (perpendicular to the mean rotation axis) and the direction
of the gravity vector at the point of interest. The mean astronomic
latitude (¢y) can be obtained from the instantaneous astronomic latitude
(2;) (i.e. with respect to the instantaneous equator) using the coordinates
(x5 ¥ of the instantaneous pole with respect to the reference pole
using (Mueller, 1969, p. 87):

¢y =@ * y sinh - x cosh (7.1)

To define the instantaneous astronomic longitude we first define
the instantaneous astronomic meridian plane as that "plane containing
the astronomic normal at P and parallel to the instantaneous rotation
axis of the earth" (Mueller, 1969, p. 19). The mean astronomic meridian
will be that plane containing -the astronomic normal at P, and that
is parallel to the Z axis of the Conventional Terrestrial System. The
astronomic longitude is the angle between an initial meridian (today
defined by the BIH) and the astronomic meridian passing through the
point of interest. Values of the mean astronomic longitude (Ay) can be
obtained from the instantaneous astronomic longitude (AI) through the
application of the polar motion correction (Mueller, 1969, p. 87):

Ay = A - (xps1nA + ypcosA) tano _ (7.2)

The first substantial agreement on the definition of the initial
meridian was reached at the International Meridian Conference that
was held in Washington in October 1884 (Howse, 1980). There the initial
meridian was defined to be "passing through the centre of the transit
instrument at the Observatory of Greenwich". Since that time improved
definitions have been adopted. With various definitions in existence
at various times it 1is clear that astronomic longitudes considered
over an extended period of time may not form a homogeneous data set.
In the United States, astronomic longitudes were originally linked
to a defined longitude for a U.S. Naval Observatory site. However,
this longitude and the star catalogs used from 1922 were inconsistent
with that used by the Bureau International de 1 Heure (BIH). Petty
and Carter (1978) estimate an average longitude correction of -0V50
(positive west longitude) for astronomic longitudes determined in the
U.S. prior to 1962. This time dependent correction is called the
observatory correction and should be applied to astronomic longitudes
released by the National Geodetic Survey prior to 1978 (Petty, private
communication, 1981).

Today the initial axes (X, Z) are defined by an assigned set of
astronomic 1longitudes at approximately 50 time observatories through
out the world that submit data to the BIH in Paris. Such measurements
enable the precise definition of an initial meridian which is now not
physically observable at Greenwich. In practice, polar motion
corrections are applied to obtain a "mean" initial meridian.
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An astronomic azimuth is the angle between astronomic north (or
the astronomic meridian plane) and the plane containing the gravity
vector at the observation point and that passes through the point being
observed. Since the astronomic plane can vary due to variations in
the rotation axis described by polar motion, we should speak of an
instantaneous astronomic azimuth (A;) and a mean astronomic azimuth
(Ay). The two azimuths are related as follows (Mueller, 1969, p. 88):

Ay = Ap - (xpsina+ yycosn) sece (7.3)

In subsequent discussions we will refer only to the mean astronomic
azimuth. It will be measured from the north in a clockwise direction.

The astronomic zenith distance (Z') is the angle from the zenith defined
by the direction of the gravity vector to the point being observed.

In the above discussion we have considered astronomic measurements
referred to the direction of the gravity vector at a point on the earth's
surface. For applications that compare the astronomic and geodetic
coordinates (see the following sections) it 1is important that the
astronomic coordinates be reduced to the ellipsoid or in practice to
the geoid. To do this plumb line curvature corrections must be made
as described in Heiskanen and Moritz (1967, p. 193).

Figure 7.1 identifies various quantities with respect to the axes
of the Conventional Terrestrial System.
Z axis of
CTS A

| | stronomic
C\ Zenith
Parallel Z axis

Direction of Gravity Vector

Initial Meridian
Plane

e s o o e — - ——

stronomic Meridian

Figure 7.1
Measured Astronomic Quantities.
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7.2 A Comparison of Astronomic and Geodetic Angular Quantities

Astronomic and geodetic quantities such as latitude, 1longitude,
azimuth and zenith distance will primarily be different because such
quantities are measured with respect to different zenith directions.
The astronomic quantities are measured with respect to a zenith defined
by the direction of the gravity vector while the geodetic quantities
are defined with respect to a zenith defined by a normal to the
ellipsoid.

It is also possible that the coordinates differ because of the
use of different reference poles and different initial meridians for
the astronomic and geodetic systems. Ideally we would like such systems
to be the same but in reality they may not be.

For our first analytic examination of the differences between
the coordinates, we will assume, however, that the astronomic reference
axis 1is parallel to the rotation axis of our reference ellipsoid. We
will also assume that the longitudes are measured from initial meridians
that are parallel. This derivation follows that found in Heiskanen
and Moritz (1967, p. 184).

We now consider a unit sphere about point A on the surface of
the earth as shown in Figure 7.2. The intersection of the rotation
axis of the ellipsoid with the sphere 1is designated P. (Note that
there is only one pole as we have assumed that the geodetic and
astronomic rotation axes are parallel). The normal to the ellipsoid
passing through A will intersect the sphere at Z;, the geodetic zenith
at A. We now extend the direction of the gravity vector at A so that
it intersects the auxiliary sphere at Z, which is called the astronomical
zenith at A. We let m be the point of intersection of the line of
vision and the unit sphere when the theodolite (leveled with respect
to. the gravity vector) is pointed at the target M. Points Z; and Z,
are connected to the points P and m by great circles. The arc mi,
is the measured zenith distance to the point M and is called z'. The
plane AZ,m is the vertical plane at point A passing through M. The
arc mZ, is the geodetic zenith distance and is designated as z. The
plane AZ;m is the plane of the direct normal section from A to M measured
with respect to the ellipsoid normal passing through A. We note that
the arc Z,P is 90°-2. The plane AZ.,P is the plane of the geodetic
meridian at A. The plane AZ,P is the plane of the astronomic meridian
at A. The angle Z,PZ,=(42) is the angle between the astronomic and
geodetic meridians at A. Assuming the astronomic and geodetic longitudes
are computed from the same initial meridian we have

AR= A - A (7.4)

We also let the arc Z;Z, be 6 which is the total deflection of the
vertical at point A. %he angle PZ,Z, is the geodetic azimuth of the
(vy) plane AZ Z, which contains the total deflection of the vertical
at A. The corresponding astronomic azimuth of the plane AZ;Z, is v'.
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We draw the arc Z,Z, from Z, perpendicular to the geodetic meridian
PZ;. Then the arc ZgZ, is & which is the component of the total
deflection along the meridian. The arc Z,Z, is n which is the component
of the total deflection of the vertical in the prime vertical
“ direction.

The geodetic (normal section) azimuth of the plane AZ;m
is the angle PZ(;n which is designated «. The angle PZ m designated
A is the astronomic azimuth of the plane AZm.

From the right spherical triangle Z,Z,P we have:
cos (A - 1) = tane cot (p + ¢) (7.5)
sinn= sin (A - A) cose (7.6)

Since n and (A - ) are small angles and ¢ = ¢, we can write equation
(7.6) as:

n =(A-1) cosg (7.7)

or

(A -x) = nsecy (7.8)
Assuming that cos (o - o) = 1 in equation (7.5) we can show that:
- ¢ =& ’ (7.9)

Equations (7.7) (7.8) and (7.9) are the basic equations expressing
the components ¢ and n of the deflection of the vertical in terms of
astronomic and geodetic coordinates.

They are only valid when the assumptions made about the geodetic
and astronomic pole, and the initial meridians are valid. Values of
¢ and n as defined by these equations are called astrogeodetic
deflections of the vertical. Since the geodetic coordinates will depend
on the dimensions of the reference ellipsoid and, more generally, on
the geodetic datum used for referencing the geodetic coordinates,
astro-geodetic deflections are (geodetic) datum dependent quantities.

Other interesting relationships may be derived from triangle L;1,2,.
Considering the triangle to be a plane triangle we can write:
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6
tany = % (7.10)

%f ngeded we could substitute expressions for ¢ and n into equation
7.10).

We next consider the relationship between the astronomic azimuth
A and the geodetic azimuth a. To do this we first designate angle
mZGZA as R and angle mZAT as Rl. Then:

Q
L]

R+vy
(7.11)

=
"

Ry + v
From the triangle ZGZAP in which the angle at ZA is 180° - v' we have:
-cosy' = -cosycos(A-1) + sinysin(A-A)sind (7.12)

Assuming cos{A-X) = 1, sin(A-1) = (A-}2) equation (7.12) may be written
as:

cosy - cosy' = (A-1) sinysine (7.13)
If we substitute equation (7.8) into (7.13) we obtain:
cosy - cosy' = ntanésiny (7.14)

We can now use the trigonometric identity given in equation (5.12)
$0 we have:

cosy - cosy' = -2sink(y+y') sink(y-v') = ntanésiny (7.15)

Letting %(y+Y') = v and sink(y-vy') = il%}—l we have:
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Yy -y = ntan¢

or . (7.16)

A f

(A-1)sine = (A-2) cos(90°-¢)

Now the spherical triangle mZgZ, is similar to the triangle ZgZaP in
the following way: the vertex P corresponds to the vertex m, the angle
g (at m) corresponds to the angle (A-A) and the sides z'and z correspond
to the sides 90°-¢ and 90°-¢-§¥ v' corresponds to R; and y to R. With
this analogy the last equation of (7.16) may be re-written:

R, - R=gqcosz’ (7.17)

From the triangle mZGZA we have:

singq = sine—z—}—:—%.- (7.18)

Since q and ¢ are small sing=q,and sine=6, equation (7.18) may be
used in (7.17) to write:

_ 6 sinkR
R1 - R = tan ' (7.19)

Adding equation (7.16) and (7.19) we have:

8 sinR
tan z'

(Rl - R) + (y'=-y) = + ntan¢ (7.20)

Differencing the two equations in (7.11) we find:

A-a= (R =R+ (y'-y) (7.21)

Now let R =a-y so that we can use equation (7.20) in equation (7.21)
to write:

ntany + B sinfa-y) (7.22)

A-a tan z

Expanding the sine of the difference of two angles:

§ sinaCOSy=- 6C0SasSiny

A -qo = ntang +
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From equation (7.10) we may substitute for ecosy and & siny, and taking
2'=z, we can write:

£sina - ncosc (7.24)

A - o = ntan¢ + Tan 2

Equation (7.24) may also be written in the following form:
A - o = (A-1) sin¢ + (gsina - ncosa) cot z (7.25)

This equation gives the relationships between the astronomic and geodetic
azimuth as a function of the astro geodetic deflections of the vertical.
In most triangulation networks z=90° so that cotz=0 and the last term
in equation (7.25) is negligible. In this case equation (7.25) is
written in amore familiar form:

A - o = ntané¢ = (A=) sin¢ (7.26)

Given A 2, A, ¢ we may use equation (7.26) to compute o, the geodetic
azimuth of a line. We have from (7.26):

a = A - (A-1) sing (7.27)

Equation (7.26) and/or (7.27) are referred to as Laplace's equations.
The geodetic azimuth calculated from equation (7.27) 1is called the
Laplace azimuth. '

Writing (7.25) in the form of (7.27) we obtain the "“extended"
Laplace equation: ‘ .

a = A - (A-2) sing - (£sina - ncosa) cot z (7.28)
or substituting for ¢ and n
o = A - sina cot z (¢-¢) - (sin¢~-cos¢cosacot z)(A-x) (7.29)

In order to compute a Laplace azimuth it is necessary to observe
the astronomic azimuth and longitude at & given point and to have avail-
able the geodetic longitude. (We shall see later that an exact - value of
A is not needed as the Laplace equation will be used in an adjustment
of the geodetic data). Stations at which these observations are made
are called Laplace stations. Such stations have been established in
most existing triangulation networks. The spacing of such stations
can vary from 10 km to 300 km depending on the size of the network
and the accuracy intended for the results.
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The_primary purpose of including a Laplace azimuth in a geodetic
network is to provide azimuth orientation for the network in such a
way_tﬁat orientation errors are spread uniformly in the network. In
add1t1onz ‘;he use of the equations such as (7.28) tends to enforce
the condition of the assumptions made in deriving the Laplace equation,
i.e. the parallelity of the pole axes and the parallelity of the initial
meridian (Moritz, 1978, p. 68).

In geodetic networks being developed today and in the future,
the need for Laplace azimuths has been significantly reduced due to
the incorporation of satellite position determinations into the network
“adjustment. Such determinations provide both orientation and scale
information that (with appropriate station spacing) strengthens the
geodetic network. The incorporation of such positions into the network
is discussed in Moose and Henriksen (1976), Ashkenazi (1981), Vincenty
(1982) and many others.

One last effect needs to be considered and that is the discrepancy
between the astronomic and geodetic zenith distances. To do this we
consider. the triangle mZ;Z,, as shown in Figure 7.3 where the arc Igl!
is perpendicular to mZA. Then the desired difference z'~z will be

the arc ZAZ . ZG

m
zi
- Figure 7.3
Determination of the Zenith Distances

Regarding the triangle ZGZAZ' as a plane triangle, we have:

2,2 = scos (180° - R ) = ~6cOsR, (7.29)
‘'using R, from equation (7.11) and noting that A-y' = a-y

ZAZ' = -gcos (A-y') = -ecos(a-v) (7.30)
or expanding cos (a-y):

ZAZ' = -9C05aCOSy - 6Sinasiny ~ (7.31)

Using equation (7.10) we may write (7.31) as:
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2,2' =z' -z =-(g cosa + n sina) (7.32) .

The term (£cosa + nsina) is the component of the deflection of
the vertical in the direction o. With equation (7.32) we can convert
from a measured zenith distance z', to a geodetic zenith distance z.
Such a procedure 1is necessary when heights are being obtained by
trigonometric levelling. :

7.21 The Correction of Directions for Deflection of the Vertical Effects

In a triangulation network horizontal angles are measured with
respect to the direction of the gravity vector at the point. What
is wanted for actual applications cre the corresponding directions with
respect to the ellipsoid normal passing through the point. This requires
a correction to the observed directions that will depend on the
deflections of the vertical.

To derive this correction we consider equation (7.28) which is
derived for azimuths. The term =-(A-1) sing 1is constant at a given
point as it depends only on A ,) and ¢ and is independent of direction.
This term expresses the influence on the azimuth of the noncoincidence
of the planes of the astronomic and geodetic meridian. The second
term -(£sina - ncosa) cot z expresses the influence on the measured
direction of the non coincidence of the vertical axis of the instrument
and the normal to the surface of the ellipsoid. It may thus be regarded
as a correction due to the deflection of the vertical axis of the
instrument from the normal to the surface of the given reference
ellipsoid.

Let D be the corrected direction and D' the observed direction.
We then write:

D =D" + 38 ) (7.33)
where

§ = -(£sin a- ncosa) cot z (7.34)

In most triangulation schemes we have noted that cot z would be close
to zero and therefore the correction & will be negligible. In
mountaineous areas z might reach 60° so that 6 might reach several
seconds of arc.

It is clear that to compute the direction correction, values of
g and n are needed. The most direct way is to make astronomic
measurements at all triangulation sites. However, this can be very
expensive in terms of both time and manpower so that alternate techniques
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may use existing deflections to predict the needed deflection at a
specific site. Such a procedure is not simple as the deflections of
the vertical are very much dependent on the terrain surrounding the
station. Schwarz (1979) describes some general considerations on this
‘problem for the United States.

7.22 The Extended Laplace Equation

The Laplace equation and the deflection of the vertical equations
discussed in section 7.2 were based on the parallelity assumptions
defined previously. For the analysis of existing networks, and for
improved understanding of the problem it is helpful to have deflection
of the vertical equations (including the Laplace azimuth equation)
that does not have these assumptions.

This generalization has been discussed by Pick et al. (1973, p.
430), Grafarend and Richter (1977), Vincenty (1982) and others.

Let wy wys w, be small rotation angles describing the angular
mis-orientation” of the geodetic system with respect to the astronomic
system. The rotation angles are positive in a clockwise direction
when viewed from the axis origin. Under these circumstances the
relationship between an astronomic azimuth and a geodetic azimuth can
be written as (Vincenty, 1983, 01.20, private communication)

a = A - sing cotz(e-¢) - (sine - cose cosa cotz)(a-ir)
(7.35)
+ alwx + azwy + aswz

The expressions for a;, a,, and a; depend on the interpretation of
the mis-orientation. The coefficients given in Table 1 of Grafarend
and Richter (1977) assume a rotation of the astronomic reference system.
Another interpretation considers a change not only in the astronomic
system but also a resultant change in the geodetic coordinates. Clearly
we also can consider changes in the astro geodetic deflections of the
vertical as the coordinate system changes. For example the changes
in the astronomic azimuth (dA), astronomic latitude (ds¢), and astronomic
lTongitude (dA) caused by going from an old system to a new system would
be (Vincenty, 1982, p. 240):

dA = (cosx wy + sinma wy)/cos¢
de = -sinx wy + COSA wy (7.36)
dr = tang (cosx wy + simk wy ) - w,
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The corresponding changes 1in the deflections of the vertical,
if we assume no changes in the geodetic system, would be:

deg = do
(7.37)

dn = dA cosy

A more complete discussion of this problem is given in Vincenty
(1983) and Vani®ek and Carrera (1983).

7.3 Astro-Geodetic Undulations of the Geoid

In section 1 we briefly discussed the concept of the geoid as
an irregular surface corresponding to mean sea level in the ocean areas
and its extension into land areas. The location of the geoid with
respect to some ellipsoid can be specified through the undulations
of the geoid. We can also locate the geoid with respect to a specified
ellipsoid of a specific geodetic datum using astro-geodetic deflections
of the vertical.

In Figure 7.4 we sketch the geoid with respect to the ellipsoid
of a geodetic datum.

P' is a Point on the Geoid
P 1is a Point on the Ellipsoid

7

Center of Ellipsoid
Associated with
the Geodetic Datum

Geoid Surface

Reference Ellipsoid

Figure 7.4
Location of the Geoid with Respect to the
Reference Ellipsoid of a Specific Datum
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In this figure P is a point on the ellipsoid and P' is a corresponding
point on the geoid. The separation in a vertical direction between
P and P' is the astro-geodetic undulation, Nys. The quantity is positive
"‘when the geoid is outside the ellipsoid.

To compute astro-geodetic undulations we consider a geoid/ellipsoid
profile in a direction defined by the azimuth o, as shown in Figure
7.5.

Geoid Normal-® e-E11ipsoid Normal

Figure 7.5
Astro-Geodetic Geoid Profile in Azimuth o

The angle at A between the ellipsoid normal and the gravity normal
is the total deflection of the vertical, ¢, in the direction of the
section chosen. Let B be a point on the geoid, located a differential
distance, ds, away from A. The change in the geoid undulation in going
away from A to B is dN. From Figure 7.5 we can write:

_ N
¢ = -d! | (7.38)

where the minus sign is a convention introduced to maintain consistency
with the previous definitions of the astro geodetic deflections. We
write (7.38) as:

dN = -eds - | | (7.39)
where (from (7.32))

€ = £ cosa + nsina (7.40)
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Now consider the integration of (7.39) from point A to some other point (D) ina
network. We have from (7.39) and (7.40):

N-N= deN =-J’D(£c05a+ nsing) ds (7.41)
D A A

To evaluate (7.41) we need £and nalong some path that connects points A and

D. We note that (7.41) enables us to compute astro-geodetic undulation differences

only. For an "absolute" undulation it is necessary that the undulation be defined

at one point in the geodetic network. In a number of cases it is convenient to

define the astro geodetic undulation to be zero at the origin point of the geodetic
datum.

The actual implementation of (7.41) is done by numerical integration using
neighboring stations. If we consider two stations i and j separated by a distance
siJ, with deflection components at each station, we can write (7.41) as:

S .
Nij= =33((e;+8 ) cosog j+ (ny#ny) sine, 5) - (7.42)

In order to compute the astro-geodetic undulation in an area sense astro-geo-
detic profiles can be estimated and adjusted to form a consistent set of astro-geo-
detic undulations. For example consider the grid shown in Figure 7.6.

- ]

Figure 7.6
Astro-Geodetic Grid

At each point in the grid we might have astro-geodetic deflections that are used
to compute undulation differences. In a loop such as L, the sum of the
astro-geodetic undulations must be zero:

IN..=0 (7;43)
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This type of condition can be used to form a set of condition equations,
as is done in a levelling network adjustment, to obtain a unique, best
estimate, set of astro-geodetic undulations. Such a procedure was
"essentially used by Fischer et al (1967) in producing astro-geodetic
geoid charts of North and Central America. Carroll and Wessells (1975)
describe a more recent astro-geodetic geoid for the United States.
A smoothed version of this geoid based on a 15th degree polynomial
function of latitude and Tlongitude is shown in Figure 7.7. This map
shows geoid undulations with respect to the North American Datum 1927.
When the datum changes so will the astro-geodetic undulations.

In Figure 7.8 we show the astro-geodetic undulations of the geoid
given with respect to the World Geodetic System 1972 (WGS72) (Seppelin,
1974b). Comparing Figures 7.7 and 7.8 reveal clearly the differences
that are associated with the use of different geodetic datums.

The accuracy of the computation is based on several factors. One
critical factor relates to the parallelity assumptions made in deriving
the astro-geodetic deflection equations. If, for example, the initial
meridians of the geodetic and astronomic systems are not parallel,
a constant error in (primarily) n will occur which will cause errors

in t?e astro-geodetic undulation differences computed from equation
(7.42).

The accuracy of the AN computation will depend on the spacing
of the astronomic stations along a profile. A typical spacing may
be on the order of 20 km. However in mountainous regions this spacing
may have to be reduced to 10-15 km to achieve an accuracy comparable
to that in smooth areas. Based on loop closure analysis Bomford (1980,
P. 366 ) reports the following accuracy estimates for AN determinations
based on interpolation errors only:

Area_ Accuracy (S.D.) of aN
Alps £ 0012 Vi m
India + 0.00052 V2T m
Finland , £ 0.00036 /AL m

where 2 is the average interval, in km, between astronomic stations,
and L is the total length of the profile.

Other error sources include that associated with astronomic
lTongitude and with geodetic position and determination. Robbins (1977)
reported the following total AN errors for non-mountainous areas where
deflections are determined to +0V7 and the typical spacing is 25 km.

m (aN) ' Line Type
+ 1.5 (L/1000)% m North-South
+ 1.9 (L/1000)% m East-West
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For shorter lines better accuracy can be expected. Wenzel (1978),
for example, gives the following accuracy estimate for N based on
an analysis in the North Sea area:

m(aN) = £ 0.03YL m (7.44)
where the typical station spacing was 10 km.

And finally we note that the astronomic quantities used for the
deflection of the vertical computation must be quantities reduced to
the geoid from the actual observation point; and the geodetic positions
must be those referred to the ellipsoid based on the reduction of all
measured data to the ellipsoid. If the latter procedure is not followed
additional corrections must be made as described by Fischer (1967).

7.4 The Reduction of Measured Distances to the Ellipsoid

Distances that are measured in a geodetic network are usually
reduced, at least in principle, to the ellipsoid on which the
computations are made. Such a reduction is analogous to the correction
of directions for deflection of the vertical discussed in section 7.21.

In this section we consider two reduction cases. The first case
refers to the case of the reduction of base lines that have been measured
with respect to the local vertical. The second case considers the
reduction of chord distances measured with electronic distance measuring
equipment which is independent of the direction of gravity.

To consider the first case we follow Heiskanen and Moritz (1967,
p. 190). In Figure 7.9 we have a measured distance, dz, on the earth's
surface. The inclination of the line with respect to the local horizon
is 8, and the deflection of the vertical in the direction (a) of the
line is ¢ given by (7.40). The differential line element parallel
to the ellipsoid is ds while the corresponding element on the ellipsoid
is dsp. We approximate the ellipsoid by a sphere whose radius is the
radius in direction « given by equation (3.104).

Local Horizon

Geoid
Ellipsoid

Figure 7.9
Baseline Reduction
(after Heiskanen and Moritz, 1967)
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The value of ds is d& projected on to the 1ine parallel to the ellipsoid:

ds = d2 cos (B-¢) = d# cbss + edg sing (7.45)
Letting

de' = dg cosB
de sing = dh
We can write (7.45) in the form:
ds = dg' + edh (7.46)

de ' is the projection of dg onto the local horizon. We now need to
reduce ds to dﬁ) which can be done by simple proportions:

ds _Rth_ |, h
Eg—o- R 1+R (7-47)

where h = H + N where H is the orthometric height (height above sea
level) and N 1is the geoid undulation for the spec1f1ed e]]1pso1d
Substituting (7.46) into (7.47) and retaining one term in the expansion
of (1 + h/R? we have:

dsg = ds - dsg = de' + edh - D asg

or letting
ds
dy = W?ﬂ' (7.48)
we have
dsy = de' + edh - hdy = da' + d(ch) - hd(y+e) (7.49)

Now consider a 1ine going from A to B. We integrate (7.49) between
the two points to find:

B
Sp = &' +eghy - ¢e,h, - & hd(y+e) (7.50)

If the height above the ellipsoid is taken asaconstant hp between A
and B and using (7.48), (7.50) can be written as:

-146-



So = 2' +eghy = eh, - h(epoe,) - s (7.51)

where h

is the mean elevation along the line. In (7.50) and (7.51)
L' qs:

m

B
L' = [ d& cos B (7.52)
A

which is the sum of the horizontal components of a measured distance.

Equation (7.51) is the basic equation for the reduction of measured
baselines. We note that the application of this formula requires
information on the deflection of the vertical and the geoid undulation
for proper reduction of the distances. In some applications the effect
of the deflections have been inappropriately neglected. The effect
of such neglection can be critical if the end point elevation differences
are large and/or the deflections are significantly different at the
end pont of the lines.

The geometry of the second case of reduction 1is shown iin
Figure 7.10. i

0
Reduction of Chord Distances to the Ellipsoid

Figure 7.10

In this figure the h value is the sum of the orthometric height plus
the astro-geodetic undulation. The radius of the sphere, R , s
(RA(a)+R (ag)/z. In this derivation we again follow Heiskanen and
Moritz (1967, p. 192) and approximate the ellipsoid by a sphere of
radius R in the azimuth o determined from (3.104). Using the law of
cosines in triangle OAB we have:

22 = (R+h,)2 + (R+hg)? - 2(R+h, )(R+hy) cos v (7.53)
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If we use the identity
cosy = 1 - 2sin2% (7.54)
we can write (7.53) in the form:
22 = (h_-h )2 + 4R2(1+L“)(1+ﬁ) sin2 ¥ (7.55)
B A R R 2 '

Now the corresponding chord distance between the points reduced to
the ellipsoid would be:

= 3 .‘k
2, 2R sin 5 (7.56)

which can be used in (7.55) to write (with Ah=hB-hA):

ha hg
2 2 ~A ~By,2
L Ah? + (1 + R)(1 + R)zo (7.57)

Solving for 2, we have:

22 - A h2
L, = (7.58)
° \/<1+%)(1+“—RB)

We now can use equations such as (4.57) or (4.58) to reduce the chord
distance to the distance, sy, on the ellipsoid.

- The accuracy of equation (7.58) has been studied by Thomson and
Vanicek (1974) and found to be adequate for all practical purposes.
Vincenty (1975) has also considered the reduction of spatial distances
to the ellipsoid incorporating deflections of the vertical to obtain
astro-geodetic undulation differences.
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8.  DIFFERENTIAL FORMULAS OF THE FIRST AND SECOND TYPE

] For applications such as the formation of observation equations
for triangulation and trilateration adjustment, and for the formation
of equations useful 1in the determination of the size and the shape
of the earth, it is necessary to obtain equations relating differential
changes 1in various quantities. Such equations are divided into two
types.

Differential formulas of the first type (or kind) are those which
give changes in the geodetic coordinates and directions as a function
of the starting coordinates and azimuth of a line. Differential formulas
of the second type (or kind) are those which give corrections for
coordinates and directions resulting from changes in the equatorial
radius and a shape defining parameter such as the flattening.

Discussions of these differential formulas may be found in Bagratuni
(1967, p. 280), Jordan (Volume III, second half, p. 439), Zakatov (1962,
p. 104), Grushinskiy (1969, p. 84), and Tobey (1927).

8.1 Differential Formulas of the First Type

We assume that we have computed the coordinates ¢,, A, and back
azimuth a,; of a point P, based on the coordinates ¢;, A, of the first
point P, and a distance s and azimuth 4 ,,. We now wish to find the
change in ¢, A, and oy if we change ¢;,2; »a;, » and s. We may express
this analytically by writing the following:

o 992 362 8¢2
d¢>2 = 8¢1 dcbl + 3s dS + 8&12 da12 (8.1)
oA D A
dr, = —2d —2 ds + —2 dg;, + di (8.2)
2 301 1 35 deyp 12 1
_ dag) LLTS! da21
dag = m dé, EYS ds + T da;, (8.3)

We note that in equations (8.1) and (8.3) no longitude term appears.
This is because of the rotational symmetry of the reference ellipsoid.
For convenience, equations (8.1), (8.2), and (8.3) are written in the
following form: :

) : a
de, = d¢21 + d¢% + d¢212 (8.4)
dh, = diy + il + A% + day2 (8.5)
dor21= dazi + dasz + daozlllz (8.6)
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The derivation of these equations 1is simple for some cases and more
complex for others. The various authors previously mentioned have
each obtained different solutions to this problem. Bagratuni and Jordan
have given the most rigorous expressions. Zakatov and Grushinskiy
give similar results, but certain terms in a slightly different fashion.

We now derive some of the terms given in equations (8.4, 5, and
6). We first consider the effect of extending a geodesic of Tlength
s by a differential length ds. The effect of this extension on moving
point F to F, is shown in Figure 8.1.

Figure 8.1
The Differential Effect of a Length Extension

G is a point on the meridian through F and on the parallel through
F,. We have:

FG

= ds cos {a,; - 180°)
(8.7)
FG = -ds cosaz;
We also have:
FG = Myde®, (8.8)
Equating equations (8.7) and (8.4) we have:
d¢52 . -Cosap; ds (8.9)

Mo
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Next we compute GF2 as:

GF, = ds sin (a21 - 180°) = -sin a21dS (8.10)
We also have GF, as:

GF, = Nycoso, dr°, (8.11)
Equating equations (8.10) and (8.11) we have:

S - zsin opyds
A% N,cos¢, (8.12)

To obtain the change in back azimuth we recall Clairaut's equation
(4.81) for a geodesic written in the following form:

N2c05¢2 sin (a21 - 180°) = a constant = ¢

or (8.13)

. _ o
Nzcosqb2 sin o, c=c

We differentiate this expression assuming all quantities are variables.
Thus: '

N,cos¢, cosa,, da,, + d(Nzcos¢2) sina,. = 0 (8.14)

1 21 21

Carrying out the differentiation of N,cos¢, we find:
d(N,cos¢,) = -M,sin¢, dé, (8.15)

With this latter expression substituted into equation (8.14) and a
solution made for da21 we have:

tans, 12 ds, (8.16)

da = tana 2 N

21 21

Up to this point equation (8.16) is a general equation in the sense
of a d¢, change yielding a doy; change. If we are interested in the
effect of ds on da, , we substitute equation (8.9) into (8.16) to
obtain:
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d“zl . =sinajyy tand, ds (8.17)
N,

i We next consider the various effects when the azimuth at the first
point 1is changed by an amount da;p. This situation 1is shown in
Figure 8.2 where point F is the original end point of the line and
F, is its end point after rotation.

P

Figure 8.2
The Differential Effect of an Azimuth Change

In Figure 8.2 we have drawn the arc FG such that it is perpendicular
to the meridian through Fz. In addition, due to the rotation, angle
FF,A will be close to a right angle so that angle GF,F will be
270° - a,.. Then we see from the figure that:

21

GF, = FF,cosGF, F = Fcmos(270° - a21) = -FF,sine,, (8.18)
However from the discussion in Section 4.22 we have:

FF, = wda, , (8.19)
which may be substituted into (8.18) to write:

GF, = -w sinay, da;2 (8.20)
The side GF2 may also be expressed as:

a2
-M,do, (8.21)

where the minus sign arises from the fact that an increase of @, will
cause a decrease in the latitude.
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o3
Equating equations (8.21) and (8.20) and solving for do, 12 e
have:

do 12 =wi%fudwz - (8.22)

In order to find the change in longitude due to this rotation, we express
FG as follows:

FG = FF,SinFF,G = FF,sin(270° - o)) = -FF,cosa,, (8.23)
Using equation (8.19) for FF,, and noting that:
a2
FG = N,coss,dA, (8.24)

. @12 .
we can find dxz to obtain:

12 -wcosa
= W LUSV2]
dAz Nzcos¢2 d“lz ' (8.25)

We now turn-to the derivation of the change of the back azimuth
caused by da,,. To do this we consider Figure 8.3:

/—Wt.'lc:t12
£

2

%01

44— Meridian through F,

Figure 8.3
The Back Azimuth Change due to do,,

In this figure: F, = original end point of the line
F2 = new end point after rotation do,,
F; = point on AF, on meridian through F;
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Now let do,; = dag where a, is the forward azimuth at point 2 (i.e.
F;). For the moment we designate the total change in dop as dajy.
We will consider it composed of two changes (dayy and daje). Let dapp
be the change in a,,as F, approaches F,. Now we also consider a special
change in da, when F, is displaced by ds = F,F; to F;. We define this
to be daye. We can note that the value of do,,is simply the sum of
the corrections:

dazr = dazm + daze . (8.26)

To find da,y, we note that it is simply the change in back azimuth as
we move along a meridian. ’

F B

- -
P
-
-
P

>
A D C

Figure 8.4
Detailed Back Azimuth Change Effects

We have: original endpoint

end point after rotation of.da12

= point on meridian through B, on line AC

point on original line determined by a 1ine parallel to BC

point on a line parallel to FB through D

m 1 o O oW
1

Now DC represents a distance change caused by the rotation. If
day, is positive ds 1is negative. For ease, we work with forward
azimuths. At B the forward. azimuth is FBD, while at D it is CDB. The
difference is the required change:

dazm = CDB - FBD = EDC
We have:

do, =& where CE = BC - DF and DC = -ds
so that:
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Using the definition of w we have:
BC = wdcx12

If we note that in going from B to F w will now be w +dw (dw will be
negative) we can also write:

DF = (w +dw) da12

Thus:

_ Wdoio- (w+dw)dags
daypy -ds (8.27)

Equation (8.27) is valid for point movement along a meridian. In our
particular case, (8.27) is needed in (8.26) as d“zn' We now require
d“ze which is simply equation (8.17):

- =ds tan¢, sinao, ’ 8.28
daze N2 ( )

In this case ds = F2F3 and is written as:

ds = wda12 COta21 (8.29)
Combining (8.29), (8.28), (8.27) into (8.26) we may write:
do, = (W . W tané, cosazy) 4 (8.30)

ds N2

12
Recall that this equation yields change in the back azimuth at the second
point caused by an azimuth change at the first point since dap, = dajy.
The value of dw/ds could be found by differentiating equation (4.103).
This would yield a series expression so that it is convenient to
formulate another approach. Recall that:

N,cos¢, sina, = N, cosé, sine,, = -N,cosé, sina,, (8.31)

We differentiate this using the results given in (8.15), recognizing
that ¢, is a constant. Then:
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-Nzcos¢>2 cosa,, do ot Mzsmqb2 sina,, d¢2 = N‘lcos¢l comlzd @, (8.32)

Now we use the value of d¢, from (8.22) in the above eqdation to find:

_ r=Nicos¢; cosaiz . Wtandy tanopy sinag; :
de, = [ N,cosé, cosa,, + N, 1 do,, (8.32a)

Since the two expressions (8.30) and (8.32a) are the same we can
solve for dw/ds to find:

dw _ ,-Nicos¢$; cosopo w tando
AL + ) (8.33)
N2c05¢2 cose,, N2cosa21

S

The derivations described in the last few pages represent only
a portion of the ones needed for equations (8.4, 5, 6). We choose
not to continue these derivations, but to now summarize the changes
we have derived and to give others, not derived, but that may be found
in the Titerature. We have:

1 M . . dw _
do,” = FE—[s1na12 s1na2,(a§)2 + cosa,, cosa,] d¢1,
(Jordan, p.441)
s -
do, = _E%fﬂzi_ ds ; (our 8.9)
2
12 _ W . .
do," " = M, sino,, da 5 (our 8.22)
¢1 - M- . _g_Vl .
da,” = N;E3§$; [sma12 cosa, (ds)2 - cosa, s1na2] do »
(Jordan, p. 442)
S _ -sinopy .
dAz = WZEEE¢2 ds; (our 8.12)

dAgIZ - :ﬁ;E%%%%i da,,; (our 8.25)
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daii = (%} sina,, --%% sina, cosa , tans,
Mpodwy o dwy
- W (ds)l (ds)?_ S'lnal
+ L (AW ine cosa, tans,) dé (Jordan 442)
No ‘ds’, 1 2 2 1 s s P.
oS, = zsinez) tandy 4. (our 8.17)
21 N s .

2

P - o .na
da = [ N;Cc0S¢; COSayo ¥ tan¢, tanajo si 21] . d

21 N2cosdy cosap) N2 @123
(our 8.32)
or
12 _ dw w tans, cosa., .
da21 = (ag-- Ny )dalz, (our 8.30).

The above equation summary will be referred to as equation (8.34).

8.2 Differential Formulas of the Second Type

In order to determine the influence of change in ellipsoid
parameters on coordinate and direction computations we can differentiate
any of the equations derived for the direct problem such as (6.19)
(the Legendre series) or the Puissant equations such as are given in

equation (6.40). For convenience we choose to use equations (6.19)
retaining the first terms only and letting the evaluations take place
at a mean latitude. We then write:

‘ 3
y3 COS212 s cosa 2 (1-e2sin2em) 72
¢,-¢.) = — cosc s = s = 8.35
(#5-01) = % m M a(1-e2) (8.35)
.V sina _ Sina ; 1-e2sin2¢p)%
(A -2) =~ s = 202 ssinap (1-e?sine (8.36)
2 "1 C CO0S¢ . chos¢m a cosg_

S Sinai2 taney
N

(apy-0;,) - 180° =%s1‘na tang o s = = (Az-xlv)sin(pm
(8.37)

We first differentiate equation (8.35) with respect to a and e2. We
have: :
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_ - -1 (1-e2sin2¢p)3/2 1
d(¢,-¢,) = s cosa , [a2 (1-67) da + =
(8.38)
3 o2 (1-e251n2¢m)1/2 (1—e251n2¢m)3/2 2
« (== sin + de
( 2 m (1-e2) (1-e2)2 ) ]
which may be written in the form:
(o -0 ) = s cosa)p(1-e?sin?¢p)3/2 [=da
2! a (1-e?) 3 | (8.39)
3 .2 1 1 2
+ (-5 sin“¢_ - + de
(-2 m (l-ezsin2¢m) 1-e2) ]

We note that the first term on the right hand side of (8.39) is simply
(¢2-¢1) as given by equation (8.35). To transform (8.39) into a simpler
form we recall that e?=2f-f2 so that

de? = 2(1-f) df = 2df (8.40)

Substituting the approximation of (8.40) into (8.39), and using equation
(8.35) we have:

da ; 2 3 sin%
d($2-¢1) = =(¢2-01) [~ - m-7 df 8.41
(92-01) = -(¢2-¢1) [5 '[1_e2 (1esin ) 1 df] (8.41)

Setting the (l-e?) and (1-e’sin,) that appear on the right hand side
of equation (8.41) to one, we finaTIy have:

d(02-01) = =(02-01) [L - (2 - 3 sinZe_)df] (8.42)

We next differentiate equation (8.36) with respect to a and e2. We
have at the start:

i
_ ssinays r-(1-e2sin2¢y)% da sin2¢,(1-e2sin2¢p) - de2
- [ - de? ] (8.43)

d(}\z'}\l ) E
COqum a2 . 2a

Simplifying we have:

-c & -8in2
d(}‘Z-)‘l) = %6%!#(1-9251'"2‘1)[")% [..di_{_ $1N“odm de2] (8.44)

2(1-ezsin2¢m)
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Noting that the first term on the right side of equation (8.44) is
the same as equation (8.36), Tletting de2=2df, and setting the term
—(l-ezsin2¢m) to one, equation (8.44) may be written:

d(rz-h1) = =(ag-2;) [ + sin2g df] (8.45)

To find the effect on the back azimuth, we first differentiate equation
(8.37) in the following form:

do,, = d(Ap-2;) sing (8.46)

Then, using equation (8.45) for d(x,-1,) we have:

do,, = -(xz=21) sine [fgi + sinZe df] (8.47)

We note that the first terms on the right side of equation (8.47) is
the total azimuth change, do, in moving from point one to point two.

The above derivations have been carried out with several
approximations. Consequently the equations are only valid for 1lines
up to 40-50 km for an accuracy of ".001-".002. In order to derive
more exact expressions it 1is convenient to differentiate the extended
power series formulas such as given in equation (6.19). The results
of such derivations are given in Bagratuni (1967, p. 286):

2 2
dlo241) = ~[02-01) = 3 tanen?(s7-9,)? - O mteem (3, )7 2

' 2.0e2
+ [(62-01)cos26, (2-t24n2+ 202 tanzg ) - 3{e2z®1) cosT4mtanen
’ (8.48)

- (2-2n2+2t2n2) + (Ap-h)zcos‘*cpmtanq:m

1
2 E ) 2
> (tan ¢m + 211 tan ¢m +

1 24apn
* 50 tan ¢m] df

d02-01) = -[0p%1) + (o941 6o -01) tang, (1-n2) 182

1
-[Ogy=2,) c052¢m (tan2¢m --§n2tan2¢m +-%n2tan“¢m) + (A=21)(0,6y)

e 2 3 2 1 24.04
'cos?e, tang, (tan?¢, - mn’tan?e + pn?tante )] df (8.49)
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d(a, ) = -[(xg-1))cose tane + (Az-21)(¢2-01 )cose (1+tan2e -n2tan2g )]

. da _ - 3 2, .1l 1 o
3 [(xp-2;)cos ¢mtan¢m(tan o = pn’tany  +HnZtan ¢m) (8.50)

- (¢2-¢1)(xz-xl)cos3¢m(1-tan2¢m - tan“¢m +-%n2-+ 2n2t2)] df

This concludes the discussion on differential formulas of the
first and second kind. We will see in the next section how the formulas

of the first kind can be used to develop triangulation/trilateration
observation equations. '
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9.  OBSERVATION EQUATIONS FOR TRIANGULATION, TRILATERATION COMPUTATIONS
ON THE ELLIPSOID

The equations discussed in section 8 enable us to develop
observation equations for use with azimuth (or direction) and distance
measurements made for conventional horizontal control. Specifically
we now need to develop equations that relate changes in the azimuth
and distance between two points to the corresponding changes of the
%eodegic coordinates. Our discussion follows closely that of Tobey

1928).

9.1 Direction and Distance Relationships

We first consider the change in latitude of a second point, caused
by a distance change (ds) and an azimuth change da;, at the first point.
From equations (8.9) and (8.22) we can write the total effect of these
two changes as follows:

_ W Ssina cosa
dop = g2+ day, - 2t ds (9.1)

The corresponding effect on longitude is:

= W _cosap, _ Sinap;
dz N2coso o dayz Nzcos¢2d (9.2)

Using equation (8.17) and (8.30) the total change 'inaz1 will be:

= (dw _ w tandé, cosap; _ tand, sinay;
dooy (dS N2 ) da12 N2 ds (9.3)
We now wish to solve equation (9.1), (9.2), and (9.3) for ds, daj,
and cap; in terms of d¢, and di,. To do this we first multiply (9.1)
by cosapi/Nocosé, and equation (9.2) by sinay/M,. We then add the
resulting equations to obtain:

ds = -M,cosa,, d¢, - N,cos¢, sina,, dA (9.4)

2 1 2

We next multiply equation (9.1) by sina,yNcos¢, and equation (9.2)
by -cosa,,/M,. We then add the resulting equations to obtain:

wda | = Mzsina

12 d¢2--N2cos¢2 cosa.. dx (9.5)

21 21 2

If we substitute the value of ds and da,, from (9.4) and (9.5) into
(9.3) we find:
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W dw
Wdo,, = M sina 7= ds, + N cose cosa , di, (9.6)

Having these three equations for the case where one point is free
to move, we may develop formulas for the case where both end points
are free to move. To do this we consider the end points originally
at P, and P, moved by a small amount to T, and T, as shown in Figure
9.1.

Figure 9.1
Differential Movements of Line Endpoints

First we consider P, moving to T,, resulting in changes in distances
and azimuths of the lines designated as: dsj,do;,,s dayp,. Such changes
would be given by equations (9.4), (9.5), and (%.6) directly. We also
move P, to T, causing additional changes dsy, daj,p do2lb  Ignoring
higher order effects, the total displacement should be the sum of these
two sets of displacements. Thus we set:

dst = dsa+ dsb
doj,, = doy,, * G, (9.7)
d“zlt =da, * d“zlb

Now the value of ds_, is given in equation (9.4). Using (9.4)
the value of ds, is: :

dsb

Thus:

-M1c05a12 d¢1 - Nlcos¢1 sina,, dxl

ds, = -Mcosa,, do, - Nycose, sina,, dy (9.8)

-M,cosa;,dé, - N.cos¢, sina,, di,
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However, we have by Clairaut's Theorem:

Nlcos¢1 sina, = -Nzcoscb2 sina

12 21

so that (9.8) becomes:

ds, = -M,cosa,, dé,- M cosa,, db, - N,cosé, sina,, (dr -dr;)  (9.9)

21 12 1

Equation (9.9) enables us to determine the required distance observation
equation where the distances are considered to have been reduced to
the ellipsoid.

We may calculate the change in azimuth at the first point by using

(9.5) for da12 , and equation (9.6) for da,,, when applied at the first
point. Thus:
do l—[M sina dw dé, + N,cos¢, cosa,, di ] (9.10)
12b w 12 ds 21 1 *

Combining this with (9.5) we have:

" da l-[M sina,, d¢, + M sina

12t d¢, -N,coss, coso,, (dr,-dr, )]

(9.11)

daw
12 ds

=

Recall that the value of w may be found from equation (4. 103) while
dw/ds is found from equation (8.33).

Equation (9.11) is not a simple form for computation and attempts
may be made at simplification for shorter 1length lines. The first
simplification is that made by allowing theellipscid to become a sphere
whose radius is the Gaussian mean radius at the first point. Then the
expression for w becomes:

= R sin'% (9.12)
so that:
:—:’ = cos & (9.13)

We now insert (9.12) and (9.13) into (9.11) using M, =M, =N, =R
to find:
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da , = SiN2L2 do, + 210921 dp, - SO302 COSen (dr,-dx, ) (9.14)
' tan % sin % sin %

If we expand the tangent and sine into a series and retain only the
first term we have:

_ R sina R sina R cos¢o2 €COSap1 /..
= R S1Na; o R 3lNagy - -
d“lzt s d¢1 + S d¢2 S (ox2 dAl) (9.15)

Equation (9.15) would be an approximation to the correct differential
relationship on the sphere, and an approximation to the differential
relationship on the ellipsoid (i.e. equation (9.11)).

In order to develop the formula usually used in practice we modify
(9.11) by assuming w = s so that dw/ds = 1. Then (9.11) becomes:

J1 . .
do 3 (Mlsma12 do, + Mzs1na

Lot dg, - N coss, cosa, (dAz-dxl))

(9.16)

21

It is clear that (9.16) is only an approximation to the more precise
result represented in (9.11).  01liver (1977) discusses the accuracy
of equation (9.9) and. (9.16) by comparing rigorously defined changes
to the different results. For a Tine of 50 km in length the maximum
azimuth error was 0.008" and the maximum distance error was 0.002 m
when the given diplacements were 0.15".

9.2 The Observation Equations

We now use the differential change formulas to develop the
observation equations for distance and azimuth observations. We write
a general observation equation in the form:

aF -
F(xo) +ﬁ dX = LOBS + v . (9.17)

where F is the function relating the observations, Logg, and the
parameters, X, of the problem. dX are the corrections to the approximate
values Xy, of the parameters and v is the observation residual. From
(9.17) we write:

V= F() - L + 25 ax (9.18)
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In section 9.1 we have developed .the expressions for %; dX. Thus for
a distance observation we can write:

Ve =S, " Sops + dst (9.19)

where ds_ is given by equation (9.9). In some cases a scale factor
unknown <(e.g. s(k-ko)) may be added to this expression when scale
inconsistencies in instruments and/or networks are suspected.

Next we consider the case where we observe a set of directions
to various stations. After a station adjustment (Bomford, 1980, p.
30) has been performed, and after the corrections for skew normals,
normal section to geodesic, and for the deflection of the vertical
have been made, the directions are designated by D., D;...D; where
D; is the direction along an initial line. The geoéetic azimuth of
this initial Tline is a_ which may be only approximately known (a. )
SO we write: I 1o

o. =a,, +1 (9.20)

where Z 1is known as the orientation or station correction. o3y can
be exactly computed given the approximate geodetic coordinates of the
two points involved with the initial | line. The "“observed" azimuth
(ai) for line i at the station would then be:

= +D -D = +72+D -D .
ozi ocI . . & 2 Y4 . I (9.21)

Usfng o, as the observed quantity in (9.18) we have:

V.5 a. '(a

i i0

10t 0; - DI) s Ltdog,,

where o5 is the approximate azimuth along line i (computed from the
approximate coordinates) and da;,, would be given by equation (9.16)
for example. In general, every station for which an approximate initial
azimuth is used will have an orientation correction associated with
it.

9.3 The Laplace Azimuth Observation Equation

Consider the Laplace azimuth as given by equation (7.27)

o = A-(r=-2) sing (9.22)
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As only anproximate values of A are known a; is subject to a correction
found by differentiating (9.22) noting that A and A are observed
quantities and that ¢ need only be approximately known.

daL = dx sing (9.23)
Then we regard the "observed" geodetic azimuth to be as follows:
= + .
aOBS a daL (9.24)

We then can write (9.18) as:

v T, - (aL + daL) + dalzt (9.25)
Using (9.16) and (9.23), (9.25) can then be written as:
_ - Misinago Mosinaog N>cosdo cosany
V= o + o2 de + 230020 g, - 2 dx,
+ (Na€0s2 COSO21 _ ging ) g, (9.26)

In (9.26) o, is computed using the approximate coordinates of
the two points and a; is computed from (9.22) using both observed and
approximate coordinates. In the adjustment, the weight for the Laplace
observation equation 1is determined considering the accuracy of A and
A that enters into (9.26).

9.4 Alternate Observation Equétion Forms

The techniques used in the previous sections are those generally
associated with the adjustment of classical two dimensional geodetic
networks. If a network 1is defined 1in three - dimensions there is
considerable simplification in the reduction procedure as points are
now defined in space and no reductions (for either directions or
distances) to the ellipsoid 1is needed. A review of various
three-dimensional adjustment techniques has been given by Ashkenazi
and Grist (1983).

A complete three dimensional adjustment procedure can be complicated
by the need for astronomic information and height information. However
the observation equations developed for a three dimensional adjustment
can be wused to derive new observation equations where astronomic
quantities are considered known and height data is considered known
or held fixed. '
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Bowring (1980) and Vincenty (1980b) discuss various aspects of
the new adjustment process which is called a "height controlled network
adjustment". One way to develop the new observation equations is to
‘simply set height and astronomic coordinate corrections to zero. Then
we have (Rapp, 1983, p. 156) for normal section directions (Di):

vp = A0 - (AIo + Di - DI) -7+ d1d¢1 + dzdx2 + dud¢2 + dsdA2 (9.27)

where A;, 1is the approximate astronomic azimuth of an initial 1line.
The observation equation coefficients are d;, d,, d, and d;. The chord
distance equation would be:

v =¢, -

c 0 COBS + f1d¢l + fzdkl + fqd¢2 + deAZ (9.28)

Bowring (1980) and Vincenty (1980) give the observation equation
coefficients for the new models when the general form is written as
follows:

v = F(Xo) - LOBS + qu1 + de1 - qu2 - de2 (9.29)
where:
du=(M+ h)d
(M+ h) do (9.30)
dv = (N + h) cos¢dxr

There are a number of advantages to the height controlled system
over that used classically for many years. Perhaps the most important
is that no reductions are performed on the observations to reduce them
to the ellipsoid. The azimuths are considered with respect to the
direction of the gravity vector and the distances are considered as
chords between the stations. A secondary advantage is that the
computational effort 1is reduced in the newer models as fewer
trigonometric functions are needed.
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10. GEODETIC DATUMS AND REFERENCE ELLIPSOIDS
10.1 Datum Development

The purpose of this chapter is to briefly introduce the topic
of geodetic datums and to consider their use and unification today.
Procedures for the actual definition of datums and the determination
of the ellipsoid parameters is described in Rapp (1983).

Historically, geodetic datums have been needed for the development
of geodetic networks. These datums usually provided an initial point
(695 Ag)> an initial azimuth (a,) for orientation purposes, and the
ellipsoid parameters. There are a total of five parameters needed
for this simple definition of a geodetic datum.

As need for geodetic control grew, various countries developed
their own geodetic datums. As more complete and reliable data was
obtained, new and more accurate geodetic datums were defined. Some
datums were defined with ellipsoid parameters that would make
astro-geodetic deflections small in a country. Small datums (for example
on islands) were defined only through astronomic coordinates with the
ellipsoid parameters being taken from an unrelated source.

The Tlocation of nine major geodetic datums is shown in Figure

10.1. A more complete datum Tocation map may be found in DMAHTC publi-
cation (1982). A list of 58 geodetic datums is given in Rapp (1983).

The determination of ellipsoid parameters has been actively carried
out since the 19th century. The techniques for these computations
have used a great variety of data including the analysis of triangulation
networks, gravity variations, satellite derived station positions,
and satellite altimetry. In 1909 the formal accuracy 1in the
determination of the equatorial radius was on the order of 18 m (Hayford,
1910) although the computed value was in error by 252 m. Today, using
a variety of measurement techniques the equatorial radius of the earth
is known to about *1 m. At this level of accuracy and better it becomes
important to have precise definitions of what is meant by ellipsoid
parameters. Such definitions are described in Rapp (1983). Table 9.1
gives parameters of the various ellipsoids used in.the past and those
that are current. In some cases the flattening is not specifically
defined but is derived from other quantities. For example, the Clarke
1866 ellipsoid parameters are defined in terms of a and b. The
flattening for the Geodetic Reference System ellipsoids is derived
from other data, primarily the second degree zonal harmonic of the
earth's gravitational field that is accurately defined through the
analysis of satellite motions. The estimates 1listed in this table
for the International Association of Geodesy are best estimates as of
the data given. They are not used for the definition of new sets of
constants.
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Ellipsoid
Name (Year Computed)

Airy (1830)

Bessel (1841)

Clarke 1866

Clarke 1880 (modified)

Clarke 1880

Everest (1830)

International (1924)
Krassovski (1940)

Mercury 1960

Modified Mercury 1968
Australian National

South America 1969

Geodetic Reference System 1967
WGS72

Int. Assoc. of Geodesy (1975)

Geodetic Reférence System 1980

Int. Assoc. of Geodesy (1983)
WGS84

Int. Assoc. of Geodesy (1987)

Table 10.1
Ellipsoid Parameters

Semi-Major Axis

Inverse Flattening
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a(m)
6377563.396
6377397.155
6378206.4
6378249.145
6378249.145
6377276. 345
6378388
6378245
6378166
6378150
6378160
6378160
6378160
6378135
6378140

+
o

6378137

6378136 +1
6378137

6378136

299.
299.
294.
293.
293,
300.

297

298.
298.
298.
298.
298.
298.
298.
298.

1/f
324964
152813
978698
4663
465
8017

3

3

3

25

25
2471674273
26

257 +.0015

298.25%7222101

298.

257

298.257223563



10.2 Datum Transformation

, A recognized goal of geodesy has historically been to obtain
geodetic coordinates on one common system. With so many geodetic datums
in the world this 1is a difficult procedure. However, using satellite
techniques it is possible to determine the rectangular coordinates
of points in a defined coordinate system that is close to being
geocentric. If a set of ellipsoid parameters are defined these
rectangular coordinates can be converted to a latitude, longitude and
height above the reference ellipsoid. If we make satellite observations
on a point whose coordinates are defined in a specific datum we can
compare the satellite coordinates and the datum coordinates to obtain
a connection between the two systems.

For simplicity we assume that our datum coordinate system and
the satellite system have a different center but have their X, Y, Z
axes parallel as shown in Figure 10.2.

Iy

o

IS E .

-:\
=}
Ny

]
]
-
% ~
AR
-<
Lo

Figure 10.2
A Satellite (S) and Datum(D) System with Parallel Axes

Consider the rectangular coordinates of point P in the datum system.
Such quantities can be computed from equation (3.152) where h is the
sum of the orthometric height (H) and the astro-geodetic undulation

(Npg):

XD = (N+H+ NAG) COS¢$ COSA
YD = (N+H+ NAG) cos¢ sina (10.1)
ZD = (N(1-e2) + H + NAG) sine

We let 4X, AY, AZ be the datum shifts with respect to the satellite
system so that:
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XS = XD + AX
Ys = YD + AY (10.2)
Zs = ZD + A7

Given a sufficient number of stations where the coordinates are
determined in both systems the datum shifts can be obtained. If we
- then go to an arbitrary point and find the satellite coordinates we
can subtract the datum shifts to obtain the rectangular coordinates
in the datum system. These coordinates can then be converted to geodetic
coordinates using the procedures described in section 6.8 where the
datum ellipsoid parameters are used.

The datum conversion model represented by the equation (10.2)
is based on the assumption that the axes of the two systems are parallel
and the systems have the same scale, and the geodetic network has been
consistently computed. In reality none of these assumptions are true
so that the AX, AY, AZ values can vary from point to point as shown
by Leick and van Gelder (1975) for the United States. A more general
transformation involves seven parameters which are three translations,
three rotations representing the non-parallelity of the axes of the
two systems and a scale factor representing the scale difference between
the two systems. This more general transformation can be represented
as follows: - :

X\ X AX X 0 vy -wy X

~Y) =Ly pH oy )+ jaL+ -, 0wy Y

..z 2/ \ez 24 4 -y 0 2/
(10.3)

In this equation AL is a scale difference parameter and w,, w,, w

are rotations about the X, Y, Z datum axes to bring them parallel to
the satellite axes. The development of equation (10.3) and applications
of this transformation are discussed in Rapp (1983).

If we are willing to adopt the simplified transformation model
represented by equation (10.2) values of the datum shifts are available
to go to the World Geodetic System 1972 (Seppelin, 1974a,b). Table

10.2 gives three shifts as taken from Seppelin (1974b). WGS1972 has now
been super-ceded by WGS84 (DMA, 1987). Table 10.3 gives the three datum
origin shifts for selected datums to go from the local system to WGSS84.
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Table 10.2

Datum Shift Constants
(Geodetic Datum to WGS 72)
(from Seppelin, 1974b)

Geodetic Datums

and Constants
Reference Ellipsoids ax(m) | avim) | az(m) | satm) AFX107"

North American 1927 - 221 157* | 176* | - 71.400 |-0.37295850

(Clarke 1866)

Alaska and Canada - 9 139 173 | - 71.400 |-0.37295850
European .

_ (International) -84 | -103 | -127 | -253.000 |-0.14223913

Tokyo

(Bessel) =140 516 673 7?7.845 0.10006272
Australian Geodetic

(Australian National) =122 | - 41 146 | - 25.000 |-0.00112415
Ordnance Survey of Great _ | -0 11

Britain 1936 (Airy) 368 120 425 571.604 |-0.11928812
South American 1969
01d Hawaiian

(Clarke 1866)

Maui 65 | -272 | =197 | - 71.400 |-0.37295850

Oahu 56 | -268 | -187 | - 71.400 |-0.37295850

Kauai 46 | -271 | -181 | - 71.400 |-0.37295850
Johnston Island Astro 1961 | .

(International) 192 | - 59 | -211 | -253.000 |-0.14223913
Wake-Eniwetok 1960 (Hough)

Kwajalein Atoll 112 68 | - 44 | -135.000 {-0.14223913

Wake Island 121 62 |- 22 | -135.000 {-0.14223913

Eniwetok Atoll 144 62 | - 38 | -135.000 |-0.14223913

*Mean value for the NAD 27 area excluding Alaska and Canada; see also

Figures 6, 7, and 8.
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Table 10.2 (cont'd)

Datum Shift Constants
(Geodetic Datum to WGS 72)

Geodetic Datums -Constants
and

Reference ElTipsotds | wx(m) | av(m) | az(m)| sa(m) | axi0”™
Wake Island Astro 1952 - -

(International) 283 | - 44 141 253.000 | -0.14223913
Canton Island Astro 1966 - - -

(International) 294 | -288 | -382 | -253.000 | -0.14223913
Guam 1963 - -

(Clarke 1866) - 89 | -235 2541 71.400 | -0.37295850
Ascension Island Astro 1958 - -

(International) -214 91 48 | -253.000 | -0.14223913
South Asia - -

(Fischer 1960) 21 |-61 |-15 20.000 | 0.00449585
Nanking 1960 ) ) ) ol

, (International) 131 347 0 { -253.000 .0.14223913

Arc 1950 - - - - -

(Clarke 1880) -129 | -131 282 | -114.145 | -0.54781925
Adindan - 1.

(Clarke 1880) -152 |- 26 | 212 | -114.145 | -0.54781925
Mer%ury 1960 )

Fischer 1960 ,

NAD 27 Area -.25 46 |- 49 | - 31.0 0.00449585

ED Area 13 |-8 |- 51]-231.0 0.00449585

TD Area 18 | -132 60 | - 31.0 0.00449585
Modéfied Mercury)1968

Fischer 1968

NAD 27 Area 4 12 7 {-15.0 0.00449585

ED Area 3 1 6 | - 15.0 0.00445585

TD Area 22 34 2 |-15.0 0.00449585
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Table 10.3

Transformation Parameters
Local Geodetic Systems to WGS84
(from DMA TR 8350.2, 1987)*
Geodetic Datums Constants
and -

Reference Ellipsoids AX (m) AY (m) AZ (m) Aa (m) Af x 104

Arc 1950 -143 -90 -294 -112.45 | -.54750714
(Clarke 1880) : -

Australian Geodetic 1984 | -134 -48 149 -23 -.00081204
(Australian National)

Cape -136 -108 -292 -112.45 | -.54750714
(Clarke 1880)

European 1950 -87 -98 -121 -251 -.14192702
(International)

Indian 214 836 303 860.655 | .28361368
(Everest)

North American 1927 -8 160 176 -69.4 -.37264639
(Clarke 1866)

South American 1969 -57 1 -41 -23 -.00081204
(South American 1969)

Tokyo -128 481 664 739.845 | .10037483
(Bessel 1841)

* Department of Defense World Geodetic System 1984, Its Definition and Relationship with Local
Geodetic Systems, DMA TR 8350.2, Washington, D.C., 1987.
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