Author and Subject Index to Volume 100
AUTHOR INDEX TO VOLUME 100

Allred, BJ 63, 107
Bigham, JM 107
Brockman, CS 39
Burk, WR 115
Carey, D 100
Christy, AD 36, 88, 94, 100, 107
Cline, MG 19
Deppong, DO 19
Egan, TP 24
Evans, JE 121
Fausey, NR 107
Forsyth, JL 36
Fried, CA 132
Gerken, JC 56
Gill, WM 121
Gottgens, JF 121
Gross, A 13
Haefer, RJ 73
Hull, GF 107
Hull, PJ 132
Hernandez, LC 2
Josephson, R 13
Knight, CC 8
Kuleck, WJ 8
Lalumandier, JA 2
Locci, AB 2
Mackey, SD 121
Manneh, A 13
McFarland, LA 100
McMahon, MJ 88
Miller, KE 56
Newman, A 13
Smeck, NE 56
Syron, E 13
Szabo, JP 39
Tornes, LA 56
Ungar, IA 24
Weatherington-Rice, J 36, 94
Yu, KOA 132

SUBJECT INDEX TO VOLUME 100

Note: Page numbers followed by 't' refer to tables or figures.

15Cs 124
208Pb 124
abscisic acid 22
Acer rubrum L., ACER x freemanii
 'Celzam' P.P. 19
Acer saccharum Marsh. 19
acid phosphatase (APase) 132
Agropyron pungens (Pers.) Roem and
 Schult. 24
Akron-Canton Interlobate Plateau 51
Altithermal Period 53
aluminum 79
angioplasty 13
angioplasty balloon 16
anthropogenic constituents 79
APase 132
apical dominance 19
aquifer 36
 bedrock 62
 sand and gravel 53
archaeology 117
argillans 58
artery
 bypass grafting 13
 coronary 13
ash green 19
ash white 19
Aster tripolium L. 24
Aswan High Dam (Nile River) 121
atherectomy
 coronary 13
 directional and rotational 16
Atriplex
 amnicola 26
 hortensis L. 24
 prostrata 24
Azimuthal resistivity 81
bacteriophages 79
Battelle Memorial Institute 119
bedrock
 consolidated 73
 crystalline 73
 Ordovician limestone 91
 Bellefontaine Upland 52
 Berea Headlands 52
 Benr, Tim M. 118
Biological Abstracts 119
biopores 88
Black, G. V. 2
Blaydes, Glenn W. 115
Böhning, Richard H. 118
Bork, Kennard B. 116t
botany 117
bromide 79
Bulletin of the Ohio Agricultural
 Experiment Station 115
By-Laws of The Ohio Agricultural
 Science 158
calcans 58, 58t
calcite 79
Carya
 glabra (Mill.) 19
 ovalis (Wang. Sarg.) 19
 ovata (Mill.) K. Koch 19
Centennial History of The Ohio
 Journal of Science, A 115-120
Centers for Disease Control and
 Prevention (CDC) 3
Central Ohio Clayey Till Plain 52
Chagrin River (OH) 121
change hierarchical 8
change multidimensional 8
Characterization Methods for
Fractured Glacial Tills 73-87
Chemical Abstracts 119
chemical tracers 80t
Chenopodiaceae 24
calcium 79
Christy, Ann D. 116t
citrus 19
clay 58
climatology 115
Constitution of The Ohio Academy of
 Science 151
contaminants 107
 landfills 36
 non-point source 36, 94
 point source 36, 94
 septic systems 36
cottonwood 19
dam
 Big Tujunga (CA) 122
 earth-fill 123
century 121
corrision 121
failure
 earthquake 121
 floods 121
 landslides 121
 volcanic activity 121
 flood control 121
 flooding 121
 hydroelectric power 121
 hydrology 121
 National Dam Safety Program 123
 National Dam Safety Review Board 123
 navigation 121
 recreation 121
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>safety</td>
<td>129</td>
</tr>
<tr>
<td>sediment budget</td>
<td>128</td>
</tr>
<tr>
<td>spar</td>
<td>123</td>
</tr>
<tr>
<td>spillway</td>
<td>121</td>
</tr>
<tr>
<td>Darcy’s law</td>
<td>64</td>
</tr>
<tr>
<td>Dean, H. Trendley</td>
<td>2</td>
</tr>
<tr>
<td>development cognitive</td>
<td>9</td>
</tr>
<tr>
<td>Distribution of Soils in Ohio that are Described with Fractured Substratums in Unconsolidated Materials</td>
<td>56-62</td>
</tr>
<tr>
<td>Do Leaves Control Episodic Shoot Growth in Woody Plants?</td>
<td>19-23</td>
</tr>
<tr>
<td>dolomite</td>
<td>79</td>
</tr>
<tr>
<td>ecology</td>
<td>121</td>
</tr>
<tr>
<td>enamel fluorosis</td>
<td>2</td>
</tr>
<tr>
<td>enamel mottled</td>
<td>2</td>
</tr>
<tr>
<td>escarpment</td>
<td>79</td>
</tr>
<tr>
<td>Allegheny</td>
<td>52</td>
</tr>
<tr>
<td>Berea</td>
<td>52</td>
</tr>
<tr>
<td>Columbus</td>
<td>52</td>
</tr>
<tr>
<td>Portage</td>
<td>52</td>
</tr>
<tr>
<td>eskers</td>
<td>51</td>
</tr>
<tr>
<td>fauna</td>
<td>115</td>
</tr>
<tr>
<td>Federal Emergency Management Agency</td>
<td>123</td>
</tr>
<tr>
<td>fertilizer</td>
<td>132</td>
</tr>
<tr>
<td>Field Workshop on Subsurface Fractures in Glacial Till and Their Environmental Implications: An Educational Experience for Professionals and Decision-makers</td>
<td>94-99</td>
</tr>
<tr>
<td>flood control</td>
<td>121</td>
</tr>
<tr>
<td>flora</td>
<td>115</td>
</tr>
<tr>
<td>Fluoridation Census 1992</td>
<td>3</td>
</tr>
<tr>
<td>fluorosilic acid (H$_2$SiF$_6$)</td>
<td>5</td>
</tr>
<tr>
<td>Forsyth, Jane L.</td>
<td>116t</td>
</tr>
<tr>
<td>Forsyth, Jane L.</td>
<td>118t</td>
</tr>
<tr>
<td>fracture</td>
<td>57</td>
</tr>
<tr>
<td>angle</td>
<td>40</td>
</tr>
<tr>
<td>aperture</td>
<td>68t, 70</td>
</tr>
<tr>
<td>aquifer</td>
<td>75, 39</td>
</tr>
<tr>
<td>bedrock</td>
<td>39</td>
</tr>
<tr>
<td>calcite</td>
<td>105, 107</td>
</tr>
<tr>
<td>calcite precipitation</td>
<td>88</td>
</tr>
<tr>
<td>characteristics</td>
<td>75t</td>
</tr>
<tr>
<td>chemical characteristics</td>
<td>40</td>
</tr>
<tr>
<td>chloride transport</td>
<td>82</td>
</tr>
<tr>
<td>clay mineralogy</td>
<td>105, 107</td>
</tr>
<tr>
<td>cleavage planes</td>
<td>51, 57</td>
</tr>
<tr>
<td>contaminant transport</td>
<td>75</td>
</tr>
<tr>
<td>contractional</td>
<td>88</td>
</tr>
<tr>
<td>cracks</td>
<td>57</td>
</tr>
<tr>
<td>data and information website</td>
<td>37</td>
</tr>
<tr>
<td>database</td>
<td>37</td>
</tr>
<tr>
<td>depth</td>
<td>49t, 51t</td>
</tr>
<tr>
<td>distribution in tills</td>
<td>39</td>
</tr>
<tr>
<td>distribution of hydrocarbons</td>
<td>76</td>
</tr>
<tr>
<td>dolomite</td>
<td>105, 107</td>
</tr>
<tr>
<td>earthworm burrowing</td>
<td>88</td>
</tr>
<tr>
<td>eskers</td>
<td>51</td>
</tr>
<tr>
<td>fissures</td>
<td>39</td>
</tr>
<tr>
<td>frequency</td>
<td>52t</td>
</tr>
<tr>
<td>gas and water movement</td>
<td>88</td>
</tr>
<tr>
<td>geologic causes</td>
<td>40</td>
</tr>
<tr>
<td>glacial till</td>
<td>88, 107</td>
</tr>
<tr>
<td>ground water movement</td>
<td>40</td>
</tr>
<tr>
<td>horizons C, O, A, F, and B</td>
<td>56</td>
</tr>
<tr>
<td>horizons solum</td>
<td>56</td>
</tr>
<tr>
<td>horizontal</td>
<td>40, 51</td>
</tr>
<tr>
<td>hydraulic conductivity</td>
<td>37, 107, 108t</td>
</tr>
<tr>
<td>ice lenses</td>
<td>40</td>
</tr>
<tr>
<td>infilling</td>
<td>88</td>
</tr>
<tr>
<td>iron content</td>
<td>105, 107</td>
</tr>
<tr>
<td>joints</td>
<td>39</td>
</tr>
<tr>
<td>kames</td>
<td>51</td>
</tr>
<tr>
<td>locations in Ohio</td>
<td>44t, 59t</td>
</tr>
<tr>
<td>mapping area</td>
<td>103</td>
</tr>
<tr>
<td>mapping line</td>
<td>103</td>
</tr>
<tr>
<td>microbial systems</td>
<td>89</td>
</tr>
<tr>
<td>microfaults</td>
<td>39</td>
</tr>
<tr>
<td>mycorrhizal fungi</td>
<td>90</td>
</tr>
<tr>
<td>natural faults</td>
<td>88</td>
</tr>
<tr>
<td>nuclear magnetic resonance imaging (NMRI)</td>
<td>75</td>
</tr>
<tr>
<td>paleosols</td>
<td>74</td>
</tr>
<tr>
<td>particle size distribution</td>
<td>105, 107, 111t</td>
</tr>
<tr>
<td>partings</td>
<td>57</td>
</tr>
<tr>
<td>physical and chemical properties</td>
<td>107, 107t</td>
</tr>
<tr>
<td>physical characteristics</td>
<td>40</td>
</tr>
<tr>
<td>planes</td>
<td>57</td>
</tr>
<tr>
<td>plant roots</td>
<td>89</td>
</tr>
<tr>
<td>Pleistocene lacustrine deposits</td>
<td>40</td>
</tr>
<tr>
<td>pollution</td>
<td>39</td>
</tr>
<tr>
<td>polygon</td>
<td>40, 53t, 56, 94</td>
</tr>
<tr>
<td>radon gas movement</td>
<td>39</td>
</tr>
<tr>
<td>research</td>
<td>36</td>
</tr>
<tr>
<td>root growth</td>
<td>88</td>
</tr>
<tr>
<td>root hairs</td>
<td>91t</td>
</tr>
<tr>
<td>root network</td>
<td>91t, 92t</td>
</tr>
<tr>
<td>shears</td>
<td>39</td>
</tr>
<tr>
<td>subsurface</td>
<td>36, 94</td>
</tr>
<tr>
<td>Fractures and Their Distribution in the Tills of Ohio</td>
<td>39-55</td>
</tr>
<tr>
<td>fragipans</td>
<td>58</td>
</tr>
<tr>
<td>Fraxinus americana var. americana</td>
<td>19</td>
</tr>
<tr>
<td>Fraxinus excelsior</td>
<td>21</td>
</tr>
<tr>
<td>Fraxinus pennsylvanica var. subintegerrima (Vahl.) Fern. [Pat Moorel]</td>
<td>19</td>
</tr>
<tr>
<td>geography physical</td>
<td>115</td>
</tr>
<tr>
<td>geology</td>
<td>117</td>
</tr>
<tr>
<td>economic</td>
<td>115</td>
</tr>
<tr>
<td>glacial</td>
<td>95</td>
</tr>
<tr>
<td>Pleistocene</td>
<td>39</td>
</tr>
<tr>
<td>Georef</td>
<td>119</td>
</tr>
<tr>
<td>glacial deposit</td>
<td>77</td>
</tr>
<tr>
<td>end-moraine</td>
<td>77</td>
</tr>
<tr>
<td>ground-moraine</td>
<td>77</td>
</tr>
<tr>
<td>Illinois</td>
<td>122</td>
</tr>
<tr>
<td>Wisconsin-age</td>
<td>122</td>
</tr>
<tr>
<td>Glacial Geology of Northeastern Ohio</td>
<td>36</td>
</tr>
<tr>
<td>Glaciated Allegheny Plateau</td>
<td>51</td>
</tr>
<tr>
<td>glaciolitecetonite</td>
<td>52t</td>
</tr>
<tr>
<td>glasswort common</td>
<td>24</td>
</tr>
<tr>
<td>Goldthwait, Richard P.</td>
<td>34, 26</td>
</tr>
<tr>
<td>Gorta, Christine M.</td>
<td>116t</td>
</tr>
<tr>
<td>Grand River Finger-Lake Plain</td>
<td>52</td>
</tr>
<tr>
<td>Green, Earl L.</td>
<td>118</td>
</tr>
<tr>
<td>Griggs, Robert F.</td>
<td>115</td>
</tr>
<tr>
<td>ground water flow</td>
<td>40, 73</td>
</tr>
<tr>
<td>ground water recharge</td>
<td>78</td>
</tr>
<tr>
<td>Guttman scale</td>
<td>11</td>
</tr>
<tr>
<td>halophytes</td>
<td>24</td>
</tr>
<tr>
<td>Hayes, Seth</td>
<td>115</td>
</tr>
<tr>
<td>Herderendorf, Charles F.</td>
<td>116t</td>
</tr>
<tr>
<td>hickory pignut</td>
<td>19</td>
</tr>
<tr>
<td>hickory slaghark</td>
<td>19</td>
</tr>
<tr>
<td>Hine, James S.</td>
<td>117</td>
</tr>
<tr>
<td>Howland, Hollis J.</td>
<td>116t</td>
</tr>
<tr>
<td>hydroelectric power</td>
<td>121</td>
</tr>
<tr>
<td>hydrogeology</td>
<td>73, 95</td>
</tr>
<tr>
<td>hydrograph records</td>
<td>122</td>
</tr>
<tr>
<td>hydrologic models</td>
<td>122</td>
</tr>
<tr>
<td>hydrology</td>
<td>121</td>
</tr>
<tr>
<td>hydroponics</td>
<td>24</td>
</tr>
<tr>
<td>hydrostatic pressures</td>
<td>122</td>
</tr>
<tr>
<td>Isolated IAD Revascularization in the Modern Era: Demographics and Preliminary Outcomes</td>
<td>13-18</td>
</tr>
<tr>
<td>IVEX Dam (OH)</td>
<td>121</td>
</tr>
<tr>
<td>IVEX, storage capacity loss</td>
<td>129t</td>
</tr>
<tr>
<td>Journal of the Cincinnati Society of Natural History, The</td>
<td>115</td>
</tr>
<tr>
<td>Juglans nigra</td>
<td>19</td>
</tr>
<tr>
<td>kames</td>
<td>51</td>
</tr>
<tr>
<td>Kellerman, William A.</td>
<td>115</td>
</tr>
<tr>
<td>Kettering, Charles F. Foundation</td>
<td>119</td>
</tr>
<tr>
<td>kinetics, Michaelis-Menten</td>
<td>134</td>
</tr>
<tr>
<td>Krecker Frederick H.</td>
<td>118</td>
</tr>
<tr>
<td>lacustrine deposit</td>
<td>77</td>
</tr>
<tr>
<td>Lake Nassar (Nile River)</td>
<td>121</td>
</tr>
<tr>
<td>Landacre, Francis L.</td>
<td>117</td>
</tr>
<tr>
<td>Leptochloa fusca (L.) Kunth</td>
<td>24</td>
</tr>
<tr>
<td>Lessler, Milton A.</td>
<td>118</td>
</tr>
<tr>
<td>Lessons from a Dam Failure</td>
<td>121-131</td>
</tr>
<tr>
<td>Liquidambar striaciflua</td>
<td>19</td>
</tr>
<tr>
<td>Lumbiricus terrestris</td>
<td>89</td>
</tr>
<tr>
<td>macro pores</td>
<td>calcite 90</td>
</tr>
<tr>
<td>natural fractures</td>
<td>88</td>
</tr>
<tr>
<td>phosphate leaching</td>
<td>90</td>
</tr>
<tr>
<td>soil matrix</td>
<td>90</td>
</tr>
<tr>
<td>soluble nutrients</td>
<td>90</td>
</tr>
<tr>
<td>Mad River Interlobate Plain</td>
<td>51</td>
</tr>
</tbody>
</table>
manganese 79
mango 19
maple silver-red 19
maple sugar 19
marsh, salt 24
costal 24
inland 24
inundation 24
Rittman OH 24
salt tolerant 24
waterlogging 24
Maumee Lakes Plains 51
McKay, Frederick 2
Melvin, John H. 119
Meserve, Lee A. 118
meteorology 115
Mitsch, William J. il6t
Molly Caren Agricultural Center (The Ohio State University) 37, 41, 89, 105, 107
moraine
Broadway 42, 51
end 42
glaciotectonic deformation 51
ground 42
London 42
London recessional 107
Powell 42, 107
recessional 42
Reesville 107
ridge 42, 51
St. Johns 42
superposed (palimpsest) 42
Union City 110
Morse, Max 115
Mortality of the Salt Marsh Species Salicornia europaea and Atriplex prostrata Chenopodiaceae) in Response to Inundation 24-27
O.S.U. Naturalist, The 115
oak red 19
Ohio Academy of Science, The (OAS) 37, 115
Ohio Administrative Code (OAC) 101
Ohio Geological Survey 125
Ohio Journal of Science, The 115
Ohio Naturalist, The 115
Ohio Revised Code (ORC) 101
Ohio Soil Survey Program 56
Ohio State University Scientific Society, The 115
Ohio Utility Protection Service (OUPS) 102
Ohio physiographic regions 42t
Ohio's Fractured Environment: Introduction to The Ohio Journal of Science's Special Issue on Fractures in Ohio's Glacial Tills 36-38
Oryza sativa L. 24
Oryza sativa L. 24
Pole growth, Calcite Precipitation, and Gas and Water Movement in Fractures and Macropores: A Review with Field Observations 88-93
S. alba 24
S. dolichostachya Moss 24
S. europaea 24
S. ramosissima J. Woods 24
S. stricta Dumort 26
samphire 24
Schaffner, John W. 115
Schmidlin, Thomas W. 118
Scirpus maritimus var. paludosus 26
sediment
alluvial 81
lacustrine 36, 39, 100
lake plain 100
loess 39
marine 36
sediments, glacial 81
sedimentology 121
sequencing, ordinal 8
siliciclastic sedimentary rocks 122
Snyder, Laurence H. 118
sodium fluoride (NaF) 5
sodium fluorosilicate (Na,SiF6) 5
Soil Characterization and Physical Studies Laboratory (The Ohio State University) 56
soil
alluvium 59
argillans 58
calcans 58
calcite 105, 107
Celina 107
chemical analysis 115
clay 56
clay eluviation-illuviation 57
clay mineralogy 105, 107
cohesion 69
colluvium 59
Crosby 107
dolomite 105, 107
fertility 90
hydraulic conductivity 81
iron content 105, 107
Kokomo 91
Kokomo 91
leaching 57
Lewisburg 107
mapping process 36
matrix 90
matrix polygons 109
Miamian 107
Miamian profile 57t
oxidation 57
oxygen 89
particle size distribution 105, 107
pedons 58
plant roots 57
porosity 88
profile 56, 89, 94
residuum 59
sand 56
silt 56
solum 56
structure 56
survey 36
Universal Soil Loss Equation 128
soil series containing fractures 59t
solum depth 57
spillway, design 121
spillway, emergency 121
Stansbery, David H. 118
statistics dominance 11
statistics traditional 11
stenosis coronary 16
stenosing intracoronary 16
Survey of All Water Treatment Plant Operators Who Fluoridate Drinking Water in Ohio 2-7
Survey of Fractured Glacial Till Geotechnical Characteristics: Hydraulic Conductivity, Consolidation, and Shear Strength 63-72
sweetgum 19
tannic acid (TA) 132
Tannic Acid Effects on Raphanus raphanistrum Root Acid Phosphatase 132-134
tannin
analysis 132
content of R. raphanistrum 132t
endogenous 132
levels 132
till
ablation 63, 89, 100
age dating 74
basal 50, 63
basal lodgement 81
biopores 73
bioturbated 89
boundaries 43t
burrows 73
characteristics in central and northern Ohio 46t
characterization methods
Azimuthal resistivity 81
computer simulations 81
electrical 81
gamma 81
magnetics 81
neutron activation 81
radar 81
remote sensing 81
seismic 81
clay 36
Darby 42, 45t, 107
Dissected Illinoian Till Plain 53
flow 63
fractured
 glacial 63, 94, 107
 ground water recharge 78
 transport of contaminants 78
 glazed
 coefficient of consolidation 66
 compression index 66
 consolidation 63
 contaminants 107
 fracture 73, 94, 100, 103t
 hydraulic conductivity 63
 joints 94, 100
 lacustrine sediments 100
 overconsolidation ratio 65
 shear strength 63
 stratigraphy 100
 effects of erosion 100
 effects of oxidation 100
 effects of vegetation 100
 effects of weathering 100
 unfractured 73
 water flow 107
 glaciolacustrine 89, 100
 Hayesville 43
 Hiram 43
 hydraulic conductivity, transmissivity 76
 Illinoian 43, 100, 91
 joints 36, 73
 lacustrine silts 50
 Late Wisconsinan 107
 loam 43
 locations in central and northern Ohio 43t
 lodgement 41, 63, 89, 100
 matrix 37, 73
 melt-out 43
 Millbrook 43
 oxidized, fracture 49t,
porosity 76
pre-Illinoian 102
pre-Illinoian loam 41
root channels 73
silt loam 42
silty clay 43
slope failure 39
Southern Ohio Loamy Till Plain 41
St. Joseph 41
symposium 36
water flow 41
wave-planed 43
Wisconsinan 41, 100, 107
wormholes 73
tooth calcification 2
tooth enamel 2
Tropical Storm Alberto 122
Tyler, Frederick J. 115
Universal Soil Loss Equation 128
US Army Corps of Engineers 123
US Public Health Service (USPHS) 2
Use of Test Pits to Investigate Subsurface Fracturing and Glacial Stratigraphy in Tills and Other Unconsolidated Materials, The 100-106
vegetation aquatic 130
walnut black 19
water 107
drinking 2
fluoridated 2
spectrographic analysis 2
treatment 2
Water Management Association of Ohio (WMAO) 37
Waterman Agricultural and Natural Resources Laboratory (The Ohio State University) 89
Weatherington-Rice, Julie 116t
Webb, David K., Jr. 118
Webster, Francis M. 115
wetland riparian 129
White, George W. 34, 36
Wissing, Thomas E. 118
Woodville Lake Plains Reefs 52
Zoological Record 119
zoology 117