1976-01

The Nature of Academies of Science
Academies of Science vary in membership from one or two hundred, (Idaho, New Mexico, Oregon) up to thousands (California, Ohio) or even tens of thousands (New York). Some meet only annually, some several times a year, others meet weekly or even more frequently (New York). Some limit their activities to meetings and simple types of publications, such as programs and abstracts only; others publish complete papers, or monographs. Some, such as those in California and St. Louis, operate museums, zoological gardens, or planteria. Some academies consist of a single section only, other have also a Collegiate and/or Junior Academy of Science. Many Academies run several simultaneous sections at their meetings.

Many of our state and city Academies of Science limit themselves to the so-called natural sciences as distinguished from the social sciences. By and large there is a tendency for greater strength in the biological sciences and in geology, where local differences due to geography and climate are important, and to be weaker in the physical sciences, such as chemistry, physics and astronomy, as well as in mathematics, where the interests of scientists tend to be independent of local geography, climate, seasons, and culture.

Some Academies include such fields as experimental psychology and statistical methods, and methodology of study in social and economic phenomena. Others, such as those of Michigan, Utah, Wisconsin and Virginia range far wider than their full names may indicate, into all fields of learning, including literature, while others, such as Minnesota, do the same without, however, indicating this explicitly in their names. There is no generally used pattern as to mode of subdivision into sections, or as to the nomenclature used for various sections or subsections. Section titles used by various Academies in the United States are listed below:

- Agribiology
- Anthropology
- Archeology
- Asian Studies
- Biochemistry
- Botany
- Chemical Engineering
- Collegiate Section
- Conservation
- Earth Sciences
- Economics
- Engineering
- Environmental Sciences
- Folklore
- Genetics
- Geo-science
- Ichthyology
- Invertebrate Zoology
- Law
- Marine Biology
- Medical Sciences
- Microbiology
- Mineralogy
- Mythology
- Oceanography
- Organic Chemistry
- Philosophy
- Physical Sciences
- Planetarium
- Plant Taxonomy
- Radiation Physics
- Science Education
- Social Sciences
- Statistics
- Wild Life
- Agricultural Sciences
- Aquaculture
- Architecture
- Astronomy
- Biophysics
- Cell Biology
- Chemistry
- Communication Sciences
- Dental Research
- East European Studies
- Economic Sciences
- Entomology
- Fine Arts
- Forensic Science
- Geography
- Herpetology
- Industry
- Landscaping
- Letters
- Material Science
- Medieval Studies
- Microbiology
- Mining
- Natural History
- Oncology
- Ornithology
- Philosophy of Science
- Physics
- Planetary Sciences
- Political Science
- Religious Studies
- Science Teaching
- Soil Science
- Technology
- Zoology
- Agriculture
- Aquatic Biology
- Arts
- Behavioral Sciences
- Biology
- Chemical Education
- Climatology
- Computer Sciences
- Dentistry
- Ecology
- Education
- Environment
- Fish
- Forestry
- Geology
- History of Science
- Inorganic Chemistry
- Language and Literature
- Mamm(al)ology
- Mathematics
- Meteorology
- Microscopy
- Molecular Biology
- Nutrition
- Optometry
- Phenology
- Physical Chemistry
- Physiology
- Plant Science
- Psychology
- Russian and East European Studies
- Science Teachers
- Space Sciences
- Vertebrate Zoology