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ABSTRACT. This paper compares ordinary least squares (OLS) and logistic regression in terms of their under-
lying assumptions and results obtained on common data sets. Two data sets were analyzed with both
methods. In the respective studies, the dependent variables were binary codes of 1) dropping out of
school and 2) attending a private college. Results of both analyses were very similar. Significance tests
(alpha = 0.05) produced identical decisions. OLS and logistic predicted values were highly correlated.
Predicted classifications on the dependent variable were identical in study 1 and very similar in study 2.
Logistic regression yielded more accurate predictions of dependent variable probabilities as measured by
the average squared differences between the observed and predicted probabilities. It was concluded that
both models can be used to test relationships with a binary criterion. However, logistic regression is superior
to OLS at predicting the probability of an attribute, and should be the model of choice for that application.
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INTRODUCTION
Logistic regression analysis is one of the most fre-

quently used statistical procedures, and is especially
common in medical research (King and Ryan 2002). The
technique is becoming more popular in social science
research. Ordinary least squares (OLS) regression, in its
various forms (correlation, multiple regression, ANOVA),
is the most common linear model analysis in the social
sciences. OLS models are a standard topic in a one-year
social science statistics course and are better known
among a wider audience. If a dependent variable is a
binary outcome, an analyst can choose among discrim-
inant analysis and OLS, logistic or probit regression. OLS
and logistic regression are the most common models
used with binary outcomes. This paper compares these
two analyses based on their underlying structural as-
sumptions and the results they produce on a common
data set.

Logistic regression estimates the probability of an out-
come. Events are coded as binary variables with a value
of 1 representing the occurrence of a target outcome, and
a value of zero representing its absence. OLS can also
model binary variables using linear probability models
(Menard 1995, p 6). OLS may give predicted values be-
yond the range (0,1), but the analysis may still be useful
for classification and hypothesis testing. The normal dis-
tribution and homogeneous error variance assumptions
of OLS will likely be violated with a binary dependent
variable, especially when the probability of the depend-
ent event varies widely. Both models allow continuous,
ordinal and/or categorical independent variables.

Logistic regression models estimate probabilities of
events as functions of independent variables. Let y re-
present a value on the dependent variable for case i,
and the values of k independent variables for this same
case be represented as x.. (j = l,k). Suppose Y is a
binary variable measuring membership in some group.
Coding y. = 1 if case i is a member of that group and
0 otherwise, then let p. = the probability that y. = 1. The

odds that y. = 1 is given by p. /( l-p.) . The log odds or
logit of p. equals the natural logarithm of p./(l-p.).
Logistic regression estimates the log odds as a linear
combination of the independent variables:

logit(p) = fs]X1
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where (130... fs"k) are maximum likelihood estimates of
the logistic regression coefficients, and the Xs are column
vectors of the values for the independent variables. A
coefficient assigned to an independent variable is in-
terpreted as the change in the logit (log odds that y = 1),
for a 1-unit increase in the independent variable, with
the other independent variables held constant. Unlike
the closed form solutions in OLS regression, logistic re-
gression coefficients are estimated iteratively (SAS Insti-
tute Inc. 1989). The individual y. values are assumed to
be Bernoulli trials with a probability of success given
by the predicted probability from the logistic model.

The logistic regression model predicts logit values
for each case as linear combinations of the inde-
pendent variable values. A predicted logit for case i is
obtained from the solved logistic regression equation
by substituting the case's values of the independent
variables into the sample estimate of the logistics re-
gression equation,

logit. = b. + b.x.. + b,x._ + - + b x...
o i 0 1 ll 2 i2 m ik

The predicted probability for case i is then given by

p. = exp (logit.) / [1 + exp (logit.)] .
This value serves as the Bernoulli parameter for the
binomial distribution of Y at the values of X observed
for case i. Logit values can range from minus to plus
infinity, and their associated probabilities range from 0
to 1. Tests of significance for the logistic regression co-
efficients ( 13.) are performed most commonly with the
Wald x2 statistic (Menard 1995, p 39), which is based on
the change in the likelihood function when an in-
dependent variable is added to the model. The Wald %2

serves the same role as the t or F tests of OLS partial re-
gression coefficients. Various likelihood function statistics
are also available to assess goodness of fit (Cox and
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Snell 1989, p 71).
On the other hand, ordinary least squares (OLS)

models the relationship between a dependent variable
and a collection of independent variables. The value of
a dependent variable is defined as a linear combination
of the independent variables plus an error term,

Y = i§0 e,

where the fss are the regression coefficients, Xs are
column vectors for the independent variables and e is a
vector of errors of prediction. The model is linear in the
£ parameters, but may be used to fit nonlinear relation-
ships between the Xs and Y. The regression coefficients
are interpreted as the change in the expected value of
Y associated with a one-unit increase in an inde-
pendent variable, with the other independent variables
held constant. The errors are assumed to be normally
distributed with an expected value of zero and a
common variance. In a random sample, the model is
represented as

and its coefficients are estimated by least squares; the
solution for the weights (b.) minimizes the sample error
sum of squares (E'E). Closed-form and unique estimates
of least squares coefficients exist if the covariance of X
is full rank. Otherwise, generalized inverse approaches
can produce solutions (Hocking 1985, p 127). Inferential
tests are available for the fss, individually or in com-
binations. In fact, any linear combination of the 13s can
be tested with an F-test.

The sample predicted Y values ( Y ) are obtained for
case i by substituting the case's values for the in-
dependent variables in the sample regression equation:

Yl = b 0 + b
1

X
1

+ b 2 X 2 + - + b
k

X
lk>

When Y is a binary variable, Y values estimate the
probability that Y. = 1. While probabilities range be-
tween 0 and 1, OLS predicted Y values might fall
outside of the interval (0,1). Out-of-range predictions
like this are usually the result of linear extrapolation
errors when a relationship is nonlinear. This problem
can be solved after the analysis by changing negative
predicted values to 0, and values greater than 1 to 1.
These adjusted predictions are no longer OLS estimates,
but they might be useful estimates of the probability
that y. = 1, and are certainly more accurate than out-of-
range OLS values.

Major statistical packages such as SAS (SAS Institute
Inc. 1989), have excellent software for analyzing OLS
and logistic models. The choice of models can be made
based on the data and the purpose of the analysis.
Statistical models can be used for prediction, classifi-
cation and/or explanation. This study will assess the
relative effectiveness of OLS and logistic regression for
these purposes by applying them to common data sets
and contrasting the results.

MATERIALS AND METHODS
In order to compare OLS and logistic regression,

common data sets were analyzed with both models, and

the results were contrasted. Monte-Carlo methods were
not used for this comparison because one would have
to use either the OLS or logistic structural model to gen-
erate the data. The comparative results would certainly
favor the generating model. By using two empirical
research data sets, no artificially induced structural
biases are present in the data.

The first data set was taken from a popular social
science statistics text (Howell 2002, p 728). The data set
has nine variables measured on 88 high school students.
The variables are described in Table 1. The dependent
variable (DROPOUT) was a binary variable coded 1 if
the student dropped out of school and 0 otherwise. The
remaining variables were used as independent variables
in this analysis. The second data set was a 600 case
extract from the High School and Beyond project
(National Center for Education Statistics 1995). The
dependent variable was coded 1 if the case attended a
private college, 0 otherwise. The independent variables
were high school measures of demographics, personality,
educational program and achievement scores. The
variables are described in Table 2.

Statistical Analysis System (SAS Institute Inc. 1989)
programs were used to analyze the data. PROC REG
was used to perform the OLS analysis and PROC
LOGISTIC was used for the logistic regression model.
The binary outcome variables served as the dependent
variables and the remaining variables listed in Tables 1
and 2 were respectively used as independent variables.
The models were compared by examining four results:
1) model and individual variable significance tests, 2)
predicted probabilities that y = 1, 3) accuracy of the
estimates of the probability that y = 1, and 4) accuracy
of classifications as a member of the group coded as a 1.

Methods — Dropout Study
For the dropout study, predicted values for both

models were correlated using Pearson and Spearman
correlation coefficients. The Spearman coefficient
measures rank correlation and the Pearson correlation
measures linear association between the OLS and logistic
predicted values. The OLS predicted values were also
adjusted to range between (0,1). This adjusted variable is
labeled OLS01 in Table 1. There were no OLS predicted
values greater than 1 but there were 11 negative values.
The predicted values were used to classify cases as a
dropout. Ten cases (11%) dropped out of school. A case
was classified as a dropout if its predicted value was
among the highest ten in the sample.

Lastly, the sample was ranked with respect to the pre-
dicted probabilities for OLS and logistic regression.
Eight subgroups of the ranked probabilities were
formed. Actual probabilities of DROPOUT were calcu-
lated in each subgroup and compared to the average
OLS and logistic regression probability estimates. Hosmer
and Lemeshow (1989) developed a %2 goodness-of-fit
test for logistic regression by dividing the sample into
ten, equal sized ranked categories based on the pre-
dicted values from the logistic model and then con-
trasting frequencies based on predicted probabilities
with observed frequencies. The Hosmer and Lemeshow
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TABLE 1

OLS and logistic regression solutions for the Howell data (dependent variable = DROPOUT).

Model Test

OLS Regression

Significance Test:

R2 = 0.394
F879 - 6.431

/rvalue

<0.0001

Logistic Regression

SignificanceTest b

Cox and Snell
R2 = 0.287

t = 34.707

p-va\ue

O.0001

INTERCPT

ADDSC c

GENDER

REPEAT

IQ

ENGL

ENGG

GPA

SOCPROB

0.746

-0.043

0.848

4.023

-0.348

-0.452

-0.898

-0.173

3.753

0.4578

0.9659

0.3990

0.0001

0.7286

0.6526

0.3721

0.8629

0.0003

0.4442

0.0005

0.5824

6.5712

0.925

0.2857

0.6394

0.0772

6.0516

0.5051

0.9830

0.4454

0.0104

0.3362

0.593

0.4239

0.7812

0.0139

"Model test is an F statistic with 8,79 d.f. Variable tests are t statistics with 79 d.f.
b Model test is a Chi-square statistic with 8 d.f. Variable tests are Chi Square statistics with 1 d.f.
c Variables are: ADDSC = attention deficit disorder score; GENDER (1 = male 2 = female); REPEAT (1 = repeated a grade in school, 0 = did not repeat a grade);
IQ = score on a group IQ test; ENGL = level of English in ninth grade (1 = college prep, 2 = general, 3 = remedial); ENGLG = grades in English; GPA = grade point
average; SOCPROB = social problems in ninth grade (1 = yes, 0 = no); DROPOUT (1 = dropped out of school, 0 = did not drop out).

test is not generally applicable to OLS regression be-
cause it is possible to obtain negative predicted values
and hence, negative frequencies. A simple descriptive
measure of accuracy was developed, along the lines of
the Hosmer and Lemeshow measure, so OLS and logistic
regression solutions could be compared. Assume the
cases have been ranked into k ordered categories on the
predicted values from a model. Mean square error
(MSE) accuracy measures were calculated using the
following formula:

MSE = f (p. -p.) 7k,

where (p. - p. ) is the difference between the observed
and average predicted probabilities of being coded 1
on Y for the i-th ordered category of predicted values.
MSE is a measure of a model's accuracy in estimating the
observed probability of an event. If a model gives the
same probabilities as the actual probabilities, MSE will
be zero. In general, low values of MSE indicate accurate
estimation.

Methods — High School And Beyond Study
Essentially the same methods were employed with the

High School and Beyond data, except a cross validation
study was performed because of the larger sample
size. The cross validation was performed by randomly

dividing the total sample into two subsamples of size
300. OLS and logistics model solutions were alternately
applied from each subsample to the other subsample.
For example, the regression coefficients (both OLS and
logistic) from subsample 1 were applied to the data of
subsample 2. The procedure 'was then alternated, re-
versing the roles of the subsamples. Because of the
larger sample size , the MSE statistic was calculated on
ten ranked categories of the sample rather than the
eight categories used in the dropout study.

RESULTS
Dropout Study

Table 1 presents the OLS and logistic regression solu-
tions predicting DROPOUT from the remaining 8
variables. The OLS and logistic regression results are
presented for the full model and each independent
variable. The regression coefficients are not presented
because OLS and logistic coefficients are not directly com-
parable. OLS coefficients measure changes in expected
values of DROPOUT, while logistic coefficients measure
changes in the log odds that DROPOUT = 1.

On the other hand, the significance tests are com-
parable. The null hypotheses for both OLS and logistic
regression are identical. That hypothesis states the prob-
ability that y = 1 is a constant for all values of the
independent variable(s). Graphically, this hypothesis can
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TABLE 2

OLS and logistic regression solutions for the High School and Beyond Data dependent variable: school type (1 = private, 0 = public).

Model Test

OLS Regression

Significance Test:

R2 = 0.089
F12]587 = 4.765

jf-value

<0.0001

Logistic Regression

Significance Test b

Cox and Snell
R2 = 0.095
t = 59.823

p-value

<0.0001

SEXM1F2 c

RACE

SOCSTAT

HSPROG

LOCONTRO

SELFCONC

MOTIVAT

COMPOSIT

0.557(1)

3.463(3)

3.024(2)

14.371(2)

0.024(1)

0.000(1)

0.000(1)

1.750(1)

0.456

0.016

0.049

<0.0001

0.878

0.988

0.996

0.186

0.431(1)

9.198(3)

6.189(2)

25.395(2)

0.039(1)

0.007(1)

0.007(1)

1.435(1)

0.512

0.027

0.045

O.0001

0.844

0.932

0.936

0.231

"Model test is an F statistic with (12,587) d.f. Variable tests are F statistics with numerator d.f. in parentheses.
hModel test is a Chi-square statistic with 12 d.f. Variable tests are Wald Chi Square statistics with d.f. in parentheses.

'Variables are: SEXM1F2 (sex: male = 1, female = 2); RACE (1 = Hispanic, 2 = Asian, 3 = African-American, 4 = white); SOCSTAT (social status: 1 = low, 2 = medium,

3 = high); HSPROG (high school program: 1 = college prep, 2 = general, 3 = remedial); LOCONTRO = standardized measure of locus of control; SELFCONC =

standardized measure of self-concept; MOTIVAT = measure of motivation (average of three motivational items); COMPOSIT = composite measure of achievement

in reading, writing, mathematics, science and social studies.

be graphed as a horizontal regression line. If the same
data and same models are used, and the null hy-
pothesis is true in an OLS model, it must be true in the
logistic regression model. The test statistics differ be-
tween OLS it and F) and logistic (%2) but they should
produce the same rejection decisions. Table 1 shows that
all 11 significance tests at alpha = 0.05 agreed between
OLS and logistic regression. Both model tests were sig-
nificant, and the same independent variables (SOCPROB,
REPEAT) were significant.

Table 3 presents the results for the predicted prob-
ability that a case was a dropout. The first row of Table 1
presents the Pearson correlations between DROPOUT
and various estimates of the probability that a student
will drop out of school. Logistic regression estimates of
the probability of a dropout correlated strongest with
DROPOUT (r = 0.694), while OLS predicted values
correlated 0.628. The difference between the OLS and
Logistic probability correlations with DROPOUT was
statistically significant it = 2.18, df = 85, p <0.05).
Logistic and OLS predicted values correlated 0.925 and
the Spearman rank correlation between the OLS and
logistic estimates is 0.969. The fact that the Spearman
rank correlation is larger than the Pearson correlation
suggests a nonlinear but monotonic relationship be-
tween the OLS and logistic probability estimates.

OLS predicted values ranged from -0.111 to 0.786,
with 28 negative values. A new variable was created by

modifying the OLS values to conform to the (0,1) inter-
val. This modified variable appears as OLS01 in Table
3 and its values ranged from 0 to 0.786. OLS01 has a
slightly higher correlation with DROPOUT (r = 0.636)
than the raw OLS values.

These models can also be used for classification. In
the present application the predicted values were re-
duced to a binary variable; 1 = predicted dropout, 0
otherwise. Ten cases actually dropped out of school. In
order to match the observed frequencies of DROPOUT
= 1 and 0, OLS and logistic predicted probabilities were
converted to a binary group prediction by classifying
the top 10 predicted values as dropouts and the remain-
ing 78 values as non-dropouts. The OLS and logistic
regressions identified the same 10 cases as dropouts.
Seven of the 10 cases classified as dropouts were in fact
dropouts. Seventy-five of 78 cases were accurately classi-
fied as non-dropouts. Overall, 93% of the cases were
accurately classified.

Mean square error (MSE) values were computed for
logistic, OLS and adjusted OLS (OLS01) predicted values.
Table 4 provides an illustration of the MSE calculation
for the OLS and logistic models. Because of the small
sample size, eight ordered categories of predicted values
were used. Logistic regression produced the lowest
value (MSE = 0.0010) and therefore was the most ac-
curate model. OLS had the highest value (MSE = 0.0090)
and adjusted OLS (OLS01) estimates produced an MSE
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TABLE 3

Correlations among predicted probabilities and DROPOUT (Howell data, n = 88).

3. 5. 6.

1. DROPOUT

2. Logistic Reg.

3. OLS Reg.

4. OLS01

5. Ranked Log.

6. Ranked OLS

7. Binary Log.

8. Binary OLS

1.000 0.694

1.000

0.628

0.925

1.000

0.636

0.937

0.994

1.000

0.467

0.702

0.832

0.789

1.000

0.444

0.695

0.850

0.803

0.969

1.000

0.662

0.914

0.777

0.791

0.550

0.550

1.000

0.662

0.914

0.777

0.791

0.550

0.550

1.000

1.000

Variable Descriptions:

DROPOUT: 1 = dropped out of school, 0 = did not drop; Logistic Reg.: logistic regression predicted prob. (DROPOUT = 1); OLS Reg.: OLS regression predicted value

of DROPOUT; OLS01: adjusted OLS predicted values (negative values set to 0); Ranked Log.: ranked values of Logistic Reg.; Ranked OLS: ranked values of OLS Reg.;

Binary Log.: top 10 values of Logistic Reg. set to 1,0 otherwise; Binary OLS: top 10 values of OLS Reg. set to 1,0 otherwise.

of 0.0078. All of these MSE values are low, but logistic
regression was the most accurate model for predicting
the probability that a student will drop out of school.

High School and Beyond Study
Table 2 presents the OLS and logistic regression solu-

tions predicting School Type from the remaining 8
variables. Race, Social Status, and High School Program
were multicategory classifications and coded with dum-
my variables. Only the main effect tests are presented
in Table 4. The full model test and all eight partial
significance tests at alpha = 0.05 yielded the same
results. Both OLY and logistic regression yielded a sig-
nificant global test; and RACE, SOCSTAT and HSPROG
were the significant independent variables. White, upper
class students who took a college preparatory program
in high school had significantly higher probabilities of
attending a private college.

Table 5 presents the results for the predicted prob-
ability that a case attended a private college. The first row
of Table 5 presents the Pearson correlations between
SCHTYPE and various estimates of the probability that a
student will attend a private school. Logistic regression
predictions of the probability of a dropout correlated
strongest with SCHTYPE (r= 0.323), while OLS predicted
values correlated 0.298. The difference between the OLS
and Logistic probability correlations with SCHTYPE was
not statistically significant (t = 0.89, df = 597, p >0.05).
Logistic and OLS estimates correlated 0.957, and the
rank correlation between the OLS and logistic estimates
was 0.992.

OLS predicted values ranged from -0.15 to 0.35, with
47 negative values. A new variable was created by modi-
fying the OLS values to conform to the (0,1) interval. This

modified variable appears as OLS01 in Table 5 and its
values ranged from 0 to 0.35. OLS01 has a slightly higher
correlation with SCHTYPE (r = 0.306) than the raw OLS
values.

The predicted values were reduced to a binary vari-
able; 1 = predicted private school, 0 otherwise. Ninety-
four cases actually attended a private school. OLS and
logistic predicted probabilities were converted to a binary
group prediction by classifying the top 94 predicted
values as attending a private school and the remaining
503 values as not attending a private school. Logistic
regression accurately classified 484 cases (81%). OLS
regression accurately classified 480 cases (80%).

Mean square error (MSE) values were computed for
logistic, OLS, and adjusted OLS (OLS01) predicted values.
Logistic regression produced the lowest value (MSE =
0.0011) and therefore was the most accurate model. OLS
had the highest value (MSE = 0.0034) and adjusted OLS
(OLS01) estimates produced an MSE of .0029. All these
MSE values are low, but logistic regression produced the
most accurate model for predicting the probability that a
student will attend a private school. Figure 1 provides a
graphic representation of this goodness of fit infor-
mation. Figure 1 shows that logistic regression is superior
to OLS in the extreme prediction ranges, especially when
the predicted values are close to 0. Figure 2 presents a
scatter diagram of the OLS and logistic predicted values.
Figure 2 clearly shows how the logistic predicted values
are constrained within the (0,1) range, while the OLS
estimates can range outside of (0,1).

DISCUSSION
OLS and logistic regression analysis produced very

similar results when applied to the same two data sets
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TABLE 4

MS/:" calculations for OLS and logistic regression solutions for the

Howell data (n = 88, 11 cases per ordered category).

(i)

Predicted

Value

Ordered

Category

1

2

3

4

5

6

7

8

MSE

Logistic Regression

P,
Actual
Prob.

DROPOUT = 1

0.0000

0.0000

0.0000

0.0000

0.0909

0.0000

0.1818

0.6363

A

Pi

Average

Predicted

Value

0.0014

0.0036

0.0067

0.0127

0.0220

0.0540

0.1767

0.6320

0.0010

OLS Regression

P,
Actual
Prob.

DROPOUT =

0.0000

0.0000

0.0909

0.0000

0.0000

0.0909

0.0909

0.6363

= 1

A

Pi

Average

Predicted

Value

-0.0663

-0.0241

0.0028

0.0270

0.0495

0.0848

0.3016

0.5338

.0090

Averaae 0.25 •-
Prob.

OLS vs Actual

MSE = .0034

I I 1 1 1 1 1 1

Loo i s t i c vs Actual

MSE = .0011

FIGURE 1. Goodness of fit comparison between OLS and logistic
regression results for the high school and beyond data.

8

MSE = I(p_- p,.) 7 8

TABLE 5

Correlations among predicted probabilities and school type for High School and Beyond Data (n = 600).

1 3 4 6 7 10

1. SCHTYPE

2. Log Reg.

3. OLS Reg.

4. OLS_01

5. BINLOG

6. BINOLS

7. RANKLOG

8. RANKOLS

9. LOGCROSS

10. OLSCROS

1.000 0.323 0.298

1.000 0.957

1.000

0.306

0.972

0.993

1.000

0.268

0.676

0.575

0.594

1.000

0.243

0.675

0.577

0.595

0.924

1.000

0.309

0.969

0.985

0.989

0.630

0.627

1.000

0.302

0.964

0.991

0.995

0.626

0.630

0.992

1.000

0.220

0.872

0.844

0.856

0.573

0.587

0.846

0.849

1.000

0.194

0.827

0.872

0.866

0.483

0.492

0.851

0.863

0.929

1.000

Variable Descriptions:

1. SCHTYPE: 1 = attended a private college, 0 = otherwise.

2. Log Reg.: logistic regression predicted prob.(SCHTYPE = 1).

3. OLS Reg.: OLS regression predicted value of SCHTYPE.

4. OLS01: adjusted OLS predicted values (negative values set to 0).

5. BINLOG: top 94 values of Logistic Reg. set to 1,0 otherwise.

6. BINOLS: top 94 values of OLS Reg. set to 1,0 otherwise.

7. RANKLOG: ranked predicted values from Log Reg.

8. RANKOLS: ranked predicted values from OLS Reg.

9. LOGCROSS: cross validated logistic predicted probabilities.

10. OLSCROS: cross validated OLS predicted values.
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Logistic
Predicted
Value

-.2 -.1 o.o .1 .2 .3 .4

OLS Predicted Value for SCHTYPE

FIGURE 2. Scatter plot of predicted values for OLS and logistic regression for the high school and beyond data (n = 600).

examined here. If a researcher were concerned only
with testing relationships, either model could be used.
Both OLS and logistic regression yielded the same sig-
nificance test results (alpha = 0.05) for the entire model
and each independent variable. One would make the
same substantive interpretations using either model.

In both data sets, logistic regression produced more
accurate estimates of the probability of belonging to the
dependent category. Negative OLS predicted values
were observed on a number of cases in both studies, and
the OLS predicted values were not as strongly related
to the dependent binary variable as were the logistic
estimates. Also, the logistic estimates were aligned more
closely with observed probabilities compared to the OLS
estimates. If the purpose of the research is estimating
probabilities of the outcome event, logistic regression is
the better model.

While these results are based on only two data sets,
the pattern of findings were identical. These findings
could be discerned from a careful analysis of the struc-
tural models underlying logistic and OLS regression. The
OLS prediction of Y and the logistic prediction of the
log odds that Y = 1 are monotonically related. The logistic
function is restrained to range between 0 and 1, while
OLS predictions are not so constrained. Nonlinear trans-
formations of the independent variables in OLS, such as

polynomial expansions, could be used to fit nonlinear
relationships. But, OLS could still give predicted values
outside the (0,1) range. There is no way to limit the OLS
predicted values to this range and still satisfy un-
conditionally the least squares criterion.

If the purpose of the analysis was to classify cases on
the dependent variable outcome, either model could be
used. Both models yielded almost identical classifica-
tions of students as dropouts or private college attendees.

A review of all the results suggests that logistic re-
gression should be used to model binary dependent
variables. The structure of the logistic regression model
is designed for binary outcomes, whereas OLS is not.
Logistic regression results will be comparable to those of
OLS in many respects, but give more accurate predictions
of probabilities on the dependent outcome. Social science
researchers should become more familiar with logistic
regression methods and begin to use them when model-
ing the probability of binary outcomes.
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